Explainable Automated Graph Representation Learning with Hyperparameter Importance

Supplementary File

Proof

Lemma 1 If the number of covariates p_1 and p_2 is fixed, then there exists a sample weight $\gamma \succeq 0$ such that

$$\lim_{n \to \infty} \mathcal{L}_{Deco} = 0 \tag{1}$$

with probability 1. In particular, a solution γ to Eq (1) is $\gamma_i^{\star} = \frac{\prod_{j=1}^p \hat{f}(\mathbf{X}_{i,j})}{\hat{f}(\mathbf{X}_{i,1},\cdots,\mathbf{X}_{i,p})}$, where $\hat{f}(x_{\cdot,j})$ and $\hat{f}(x_{\cdot,1},\cdots,x_{\cdot,p})$ are the Kernel density estimators.¹

Proof 1 From [1], if $h_j \to 0$ for $j = 1, \dots, p$ and $nh_1 \cdots h_p \to \infty$,

$$\hat{f}(x_{i,j}) = f(x_{i,j}) + o_p(1)$$

and

$$\hat{f}(x_i) = f(x_i) + o_p(1)$$

Note that for any j,

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i,j} \gamma_{i} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i,j} \frac{\Pi_{j=1}^{p} f(\mathbf{X}_{i,j})}{f(\mathbf{X}_{i,1}, \cdots, \mathbf{X}_{i,p})} + o_{p}(1) \\ &= \mathbb{E} \left[\mathbf{X}_{i,j} \frac{\Pi_{j=1}^{p} f(\mathbf{X}_{i,j})}{f(\mathbf{X}_{i,1}, \cdots, \mathbf{X}_{i,p})} \right] + o_{p}(1) \\ &= \int \cdots \int \mathbf{X}_{i,j} \Pi_{l=1}^{p} f(\mathbf{X}_{i,l}) d\mathbf{X}_{i,1} \cdots d\mathbf{X}_{i,p} + o_{p}(1) \\ &= \int \mathbf{X}_{i,j} f(x_{i,j}) d\mathbf{X}_{i,j} + o_{p}(1) \end{split}$$

Similarly, for any j and k, $j \neq k$

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i,j} \mathbf{X}_{i,k} \gamma_{i} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i,j} \mathbf{X}_{i,k} \frac{\Pi_{j=1}^{p} f(\mathbf{X}_{i,j})}{f(\mathbf{X}_{i,1}, \dots, \mathbf{X}_{i,p})} + o_{p}(1) \\ &= \mathbb{E} \left[\mathbf{X}_{i,j} \mathbf{X}_{i,k} \frac{\Pi_{j=1}^{p} f(\mathbf{X}_{i,j})}{f(\mathbf{X}_{i,1}, \dots, \mathbf{X}_{i,p})} \right] + o_{p}(1) \\ &= \int \int \mathbf{X}_{i,j} \mathbf{X}_{i,k} f(x_{i,j}) f(x_{i,k}) d\mathbf{X}_{i,j} d\mathbf{X}_{i,k} \\ &= \int \mathbf{X}_{i,j} f(x_{i,j}) d\mathbf{X}_{i,j} \cdot \int \mathbf{X}_{i,k} f(x_{i,k}) d\mathbf{X}_{i,k} \end{split}$$

¹In detail, $\hat{f}(x_{i,j}) = \frac{1}{nh_j} \sum_{i=1}^n k\left(\frac{\mathbf{X}_{i,j} - x_{i,j}}{h_j}\right)$, where k(u) is a kernel function and h_j is the bandwidth parameter for covariate \mathbf{X}_j ; and $\hat{f}(x_i) = \frac{1}{n|H|} \sum_{i=1}^n K\left(H^{-1}(\mathbf{X}_i - x_i)\right)$, where K(u) is a multivariate kernel function, $H = diag(h_1, \dots, h_p)$ and $|H| = h_1 \dots h_p$.

Thus, for any $j \neq k$, we have

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i,j} \mathbf{X}_{i,k} \gamma_{i} - \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i,j} \gamma_{i} \right) \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i,k} \gamma_{i} \right) \right)^{2} = 0.$$

Hence, for any $\mathbf{A}_{,j} \neq \mathbf{X}_{,k}$, we have

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{A}_{i,j} \mathbf{X}_{i,k} \gamma_{i} - \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{A}_{i,j} \gamma_{i} \right) \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i,k} \gamma_{i} \right) \right)^{2} = 0.$$

Finally,

$$\lim_{n \to \infty} \sum_{i=1}^{p_1} \left\| \mathbf{A}_{,j}^T \mathbf{\Sigma}_{\gamma} \mathbf{X}_{,-j} / n - \mathbf{A}_{,j}^T \gamma / n \cdot \mathbf{X}_{,-j}^T \gamma / n \right\|_2^2 = 0.$$

But the solution γ that satisfies Eq (1) in Lemma 1 is not unique. To address this problem, we propose to simultaneously minimize the variance of γ and restrict the sum of γ in our regularizer as follows:

$$\hat{\gamma} = \arg\min_{\gamma \in \mathcal{C}} \mathcal{L}_{Deco} + \frac{\lambda_3}{n} \sum_{i=1}^n \gamma_i^2 + \lambda_4 \left(\frac{1}{n} \sum_{i=1}^n \gamma_i - 1\right)^2, \tag{2}$$

where $C = \{\gamma : |\gamma_i| \le c\}$ for some constant c.

Then, we have following theorem on our hyperparameter decorrelation regularizer in Eq (2).

Theorem 1 The solution $\hat{\gamma}$ defined in Eq (2) is unique if $\lambda_3 n \gg p^2 + \lambda_4$, $p^2 \gg \max(\lambda_3, \lambda_4)$ and $|\mathbf{X}_{i,j}| \leq c$ for some constant c.

Proof 2 For simplicity, we let $\mathcal{L}_1 := \frac{1}{n} \sum_{i=1}^n \gamma_i^2$, $\mathcal{L}_2 := \left(\frac{1}{n} \sum_{i=1}^n \gamma_i - 1\right)^2$, and $\mathcal{J}(\gamma) := \mathcal{L}_{Deco} + \lambda_3 \mathcal{L}_1 + \lambda_4 \mathcal{L}_2$.

First, we calculate Hessian of $\mathcal{J}(\gamma)$, denoted as **H**, as follows:

$$\mathbf{H} = \frac{\partial^2 \mathcal{L}_B}{\partial \gamma^2} + \lambda_3 \frac{\partial^2 \mathcal{L}_1}{\partial \gamma^2} + \lambda_4 \frac{\partial^2 \mathcal{L}_2}{\partial \gamma^2}.$$

With some algebra, we have

$$\begin{array}{lcl} \frac{\partial^2 \mathcal{L}_1}{\partial \gamma^2} & = & \frac{1}{n} \mathbf{I}, \\ \frac{\partial^2 \mathcal{L}_2}{\partial \gamma^2} & = & \frac{1}{n^2} \vec{\mathbf{1}} \vec{\mathbf{1}}^T, \end{array}$$

where $\mathbf{I} \in \mathbb{R}^{n \times n}$ is identity matrix, and $\vec{\mathbf{1}} = [1, \dots, 1]^T \in \mathbb{R}^{n \times 1}$. For the term \mathcal{L}_{Deco} , when $|\mathbf{X}_{i,j}| \leq c$, for any j and k, we have

$$\begin{split} \frac{\partial^2}{\partial \gamma^2} (\frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i,j} \mathbf{X}_{i,k} \gamma_i)^2 &= \mathcal{O}\left(\frac{1}{n^2}\right), \\ \frac{\partial^2}{\partial W^2} ((\frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i,j} \gamma_i) (\frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i,k} \gamma_i))^2 &= \mathcal{O}\left(\frac{1}{n^2}\right). \end{split}$$

and

$$\frac{\partial^2}{\partial \gamma^2} ((\frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i,j} \mathbf{X}_{i,k} \gamma_i) (\frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i,j} \gamma_i) (\frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i,k} \gamma_i)) = \mathcal{O}\left(\frac{1}{n^2}\right).$$

Then

$$\frac{\partial^2}{\partial \gamma^2} \left(\frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i,j} \mathbf{X}_{i,k} \gamma_i - \left(\frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i,j} \gamma_i \right) \left(\frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i,k} \gamma_i \right) \right)^2 = \mathcal{O}\left(\frac{1}{n^2} \right).$$

 \mathcal{L}_{Deco} is sum of p(p-1) such terms, then

$$\frac{\partial^2 \mathcal{L}_B}{\partial \gamma^2} = \mathcal{O}\left(\frac{p^2}{n^2}\right).$$

Thus,

$$\mathbf{H} = \mathcal{O}\left(\frac{p^2}{n^2}\right) + \frac{\lambda_3}{n}\mathbf{I} + \frac{\lambda_4}{n^2}\vec{\mathbf{1}}\vec{\mathbf{1}}^T = \frac{\lambda_3}{n}\mathbf{I} + \mathcal{O}\left(\frac{p^2 + \lambda_4}{n^2}\right).$$

Therefore, **H** is an almost diagonal matrix when $\frac{\lambda_3}{n} \gg \frac{p^2 + \lambda_4}{n^2}$, equivalent to $\lambda_3 n \gg p^2 + \lambda_4$. From the relative Weyl theorem [2], **H** is positive definite. Then the loss function $\mathcal{J}(\gamma)$ in Eq (2) is convex on \mathcal{C} , and has a unique optimal solution $\hat{\gamma}$.

We further want \mathcal{L}_{Deco} to dominate the regularization terms $\lambda_3 \mathcal{L}_1$ and $\lambda_4 \mathcal{L}_2$. On \mathcal{C} , $\mathcal{L}_1 = \mathcal{O}(1)$ and $\mathcal{L}_2 = \mathcal{O}(1)$. Moreover,

$$\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i,j}\mathbf{X}_{i,k}\gamma_{i} - \left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i,j}\gamma_{i}\right)\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i,k}\gamma_{i}\right)\right)^{2} = \mathcal{O}(1).$$

and then

$$\mathcal{L}_{Deco} = \mathcal{O}(p^2).$$

As long as $p^2 \gg \max(\lambda_3, \lambda_4)$, \mathcal{L}_{Deco} dominates the regularization terms \mathcal{L}_1 and \mathcal{L}_2 .

References

- [1] Bruce E Hansen. Lecture notes on nonparametrics. Lecture notes, 2009.
- [2] Yuji Nakatsukasa. Absolute and relative weyl theorems for generalized eigenvalue problems. *Linear Algebra and its Applications*, 432(1):242–248, 2010.