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Proof

Lemma 1 If the number of covariates p1 and ps is fized, then there exists a
sample weight v = 0 such that
lim £Deco =0 (1)
n—oo
H:;:l f(X,7)
) R F(Xia, Xip)
where f(z. ;) and f(z.1, -+ ,x.,) are the Kernel density estimators.*

with probability 1. In particular, a solution v to Eq (1) is v} =

Proof 1 From [1], if h; = 0 for j=1,--- ,p and nhy --- hy, = o0,

f(@ig) = f(i5) + 0p(1)
and
flw:) = f@:) +0p(1)
Note that for any j,

1 1 me_, f(X,5)
e Xi i =g i X %y T (1)

n?_, f(Xij)
=E [Xo; 2% ] 4 0,(1)

=[ [ X f(X)dX g - - dX 4 0p(1)
=[ X f(@i;)dX; 5 + 0p(1)

Similarly, for any j and k, j # k

LS X X, =t S X X = ) 1
n Zi:l 1,58,k Vi =, 21:1 i.j 1’kf(Xz,1.,~-,Xi,p)+Op()

m2_, (X ;)
=E [Xuxzkif@éf( ,xi,p)] +0p(1)

=/ [X;;Xiwf (i) f(2ig)dX; ;dX; k
=X f(@i)dX; 5 - [ Xipf(ig)dX p

'n detail, f(x”) = i >k (X”hijz”» where k(u) is a kernel function and h; is

the bandwidth parameter for covariate X;; and flz) = ﬁ > K (H Y(X; —2;)), where
K (u) is a multivariate kernel function, H = diag(hi,--- ,hp) and |H| = hy -+ - hp.



Thus, for any j # k, we have
. n n n 2
lim (1370 X Xawvi— (5 20 Xigm) (5 Xy Xawri))” = 0.
Hence, for any A ; # X i, we have

lim (2500 A Xeyi— (200, Adg) (2500, X)) = 0.

n—00

Finally,

lim 2 |ATS, X, /n — ATy /n- XL 5 /n|[; = 0.

7L4)OC

But the solution 7 that satisfies Eq (1) in Lemma 1 is not unique. To
address this problem, we propose to simultaneously minimize the variance of
and restrict the sum of v in our regularizer as follows:

. . A 1
7Y = argmin ‘CDeco + 732?:1 72'2 + >‘4(*Z?’:1 Vi — 1)25 (2)
yeC n n

where C = {7 : |;| < ¢} for some constant c.
Then, we have following theorem on our hyperparameter decorrelation reg-
ularizer in Eq (2).

Theorem 1 The solution 4 defined in Eq (2) is unique if Asn > p? + A4,
p? > max(A3, A1) and |X; ;| < ¢ for some constant c.

Proof 2 For simplicity, we let L1 := 23" 42 Lo = (230 1~ — 1)2} and
\7(7) = Lpeco + A3L1 + M Lo.
First, we calculate Hessian of J (), denoted as H, as follows:

0Ly 02Ly 0L

H-= 977 + A3 977 + M\ 90
With some algebra, we have
PL_ 1
92 n’
2
837522 = ii”,
where I € R™™ is identity matriz, and 1 = [1,---,1]T € RPxL

For the term Lpeco, when | X, ;| < ¢, for any j and k, we have
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and

0?1 1 — 1 <& 1

—f§ X, X, i—EXi_-i—E X)) =0(=].

872((711:1 2 ,k’Y)(ni:1 ,J’Y)(ni:1 KYi)) O<n2>
Then

a—2(3 §n X, X — (= §n X, ) (& f:x- =02

8’}/2 ni:l A ni:l B ni:l B B n2 )’

Lpeco 18 sum of p(p — 1) such terms, then

Thus,

2\ A Moer A 21\
Ho<1’2>+31+‘;11 31+(9(p a 4).
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Therefore, H is an almost diagonal matriz when % > 1)2:72)\4; equivalent to
A3n > p? + \g. From the relative Weyl theorem [2], H is positive definite.
Then the loss function J () in Eq (2) is conver on C, and has a unique optimal

solution 4.
We further want Lpeeo to dominate the regularization terms A3Lq and AgLs.

OnC, L1 =0(1) and L3 = O(1). Moreover,
1< 1< 1< )
(ﬁ in,sz',k%‘ - (ﬁ ZXz‘,j%)(ﬁ in,k%‘)) =0(1).
i=1 i=1 i=1
and then
Lpeco = O(pz)-

As long as p? > max(A3, A1), Lpeco dominates the reqularization terms Ly
and L.
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