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Abstract

Current graph representation (GR) algorithms re-
quire huge demand of human experts in hyper-
parameter tuning, which significantly limits their
practical applications, leading to an urge for auto-
mated graph representation without human inter-
vention. Although automated machine learning
(AutoML) serves as a good candidate for auto-
matic hyperparameter tuning, little literature has
been reported on automated graph presentation
learning and the only existing work employs a
black-box strategy, lacking insights into explain-
ing the relative importance of different hyperpa-
rameters. To address this issue, we study explain-
able automated graph representation with hyper-
parameter importance in this paper. We propose
an explainable AutoML approach for graph repre-
sentation (e-AutoGR) which utilizes explainable
graph features during performance estimation and
learns decorrelated importance weights for differ-
ent hyperparameters in affecting the model perfor-
mance through a non-linear decorrelated weight-
ing regression. These learned importance weights
can in turn help to provide more insights in hy-
perparameter search procedure. We theoretically
prove the soundness of the decorrelated weighting
algorithm. Extensive experiments on real-world
datasets demonstrate the superiority of our pro-
posed e-AutoGR model against state-of-the-art
methods in terms of both model performance and
hyperparameter importance explainability.
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1. Introduction
Graph representation (GR) has attracted lots of research
attentions from both academia and industry, due to its wide
applications in the past decade (Tenenbaum et al., 2000;
Hamilton et al., 2017b; Zhu et al., 2020). The increasing
amount of graph data in recent years has posed great chal-
lenges for graph representation algorithms which normally
contain a large number of hyperparameters to be optimized
through careful tuning. Automated machine learning (Au-
toML) serves as a good candidate to reduce the human effort
necessary for model tuning through automating the process
of hyperparameter optimization and improving the perfor-
mance of machine learning models (Hutter et al., 2019).
Existing AutoML models normally resort to a group of per-
formance evaluation functions which take hyperparameters
as input to estimate the potential performance given various
configurations of hyperparameters. These evaluation func-
tions are optimized in a black-box manner and unable to
explain the importance of each hyperparameter in affecting
the model performance. The only work applying AutoML
to graph representation (Tu et al., 2019) adopts Gaussian
Process with a predefined kernel as the covariance to es-
timate the hyperparameter performance, failing to explain
how each hyperparameter contributes to the estimated per-
formance and why a certain value of each hyperparameter
is chosen for the next round of evaluation.

However, the complex relational information carried in
large-scale graphs leads to an urge for questions such as
what is the importance of each hyperparameter, how it con-
tributes to the model performance and why one particular
value is selected for a hypeparameter in the next trial, which
serve as the key to scientific discoveries in automated graph
representation learning.

To answer these questions, we investigate explainable auto-
mated graph representation with hyperparameter importance
in this paper. Given that graphs in real world usually contain
billions of nodes and edges and the computational costs of
running graph representation algorithms on these graphs are
proportional to the number of nodes and edges, it will not
be realistic to search and optimize hyperparameters through
directly testing a graph representation algorithm on the orig-
inal large-scale graph many times. Therefore, we propose
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an explainable automated graph representation (e-AutoGR)
framework, which first runs the target graph representation
algorithm on several sampled subgraphs of much smaller
sizes for some trials, and then utilizes the running results
obtained from these subgraphs to infer the optimal hyperpa-
rameters for the original graph. We adopt six explainable
graph properties as explicit features to calculate the similar-
ities between the sampled subgraphs and the original graph
such that e-AutoGR is able to automatically determine the
number of trials on each subgraph. These explainable graph
features together with hyperparameters are passed into a
non-linear evaluation function to calculate the estimated
model performance under the current hyperparameter con-
figuration. In order to explain hyperparameter importance
in affecting the model performance, we propose a hyperpa-
rameter decorrelation algorithm (HyperDeco) to decorrelate
the mutual influences among different hyperparameters on
the estimated model performance, given graph features and
some hidden unobserved latent factors. We would like to
point out that there exists one work on non-graph problem
in literature (Hutter et al., 2014) aiming to assess hyperpa-
rameter importance through providing a classic functional
ANOVA technique for Bayesian Optimization with random
forest prediction, which limits its applicability in other pre-
dicting approaches. In contrast, our proposed e-AutoGR
model does not have this limitation and benefits in its flex-
ible applicability to any predicting function for relational
graph data.

As such, our proposed e-AutoGR framework is able to ex-
plain how important each hyperparameter is to the model
performance by learning decorrelated importance weights
through a non-linear hyperparameter decorrelated weighting
regression. These learned decorrelated importance weights
will in turn help to increase the explainability in hyperpa-
rameter search procedure. We further present a theorem as
well as the relevant proof to guarantee the theoretical sound-
ness of the decorrelated weighting algorithm. Compared
with existing methods, the proposed e-AutoGR framework
benefits in more explainable hyperparameter search and
performance evaluation strategy with insights on hyperpa-
rameter importance.

To summarize, this paper makes the following contributions:

• We investigate the problem of explainable automated
machine learning (AutoML) for graph representation
with hyperparameter importance, to the best of our
knowledge, for the first time.

• We propose an explainable automated hyperparameter
optimization framework (e-AutoGR) which is capable
of explaining how each hyperparameter contributes to
the model performance as well as why some certain val-
ues of hyperparameters are chosen for the next round

of evaluation, through a novel non-linear hyperparam-
eter decorrelated weighting regression. The proposed
explainable e-AutoGR framework also employs fully
explainable graph features to dynamically determine
the number of trials on each sampled subgraphs.

• We theoretically validate the correctness of the pro-
posed hyperparameter decorrelation algorithm.

• We conduct extensive experiments on several real-
world datasets to demonstrate the superiority of e-
AutoGR over various state-of-the-art methods in terms
of both model explainability and performance.

2. Related Work
In this section, we will discuss related works on graph rep-
resentation and automated machine learning (AutoML).

Graph Representation. Graph representation (Roweis &
Saul, 2000; Tenenbaum et al., 2000; Hamilton et al., 2017b)
aims at learning low-dimension vector representations of
nodes to facilitate a better understanding for semantic re-
lationships among nodes in graphs. Sampling based meth-
ods (Grover & Leskovec, 2016; Perozzi et al., 2014) employ
a truncated random walk to generate node sequences. These
node sequences can be regarded as sentences and fed into
the skip-gram model to learn low-dimension node represen-
tations. In addition, topological graph structure can also be
taken into account by factorization based models, through
requiring the node representations to be able to preserve
various topological properties in the original graph, which
includes but not limits to different order proximities (Zhang
et al., 2018) and asymmetric transitivity (Ou et al., 2016)
etc. With the success of deep neural networks, deep auto-
encoder based models are proposed to preserve the highly
non-linear first order and second order proximities (Tang
et al., 2015; Wang et al., 2016; Cao et al., 2015), capture
uncertainties (Zhu et al., 2018) or handle triplet relations (Tu
et al., 2018). Recently, inspired by Graph Convolutional
Network (GCN) (Kipf & Welling, 2016) which combines
convolution operators with graph to learn node represen-
tations in an end-to-end manner, a wide variety of graph
neural network based models have been proposed to take
both topological structures and node attributes into consid-
eration (Hamilton et al., 2017a; Velickovic et al., 2017; You
et al., 2018; Ma et al., 2019). The massive properties that
need to be preserved naturally require a large number of
hyperparameters to be controlled manually in graph repre-
sentation algorithms, posing a high demand for automating
the process of hyperparameter optimization in graph rep-
resentation. We would like to point out that the literature
on mining graphs or networks has two names: graph repre-
sentation and network embedding. We remark that graph
and network all refer to the same kind of structure, although
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each of them may have its own terminology. Therefore we
do not distinguish between them here.

Automated Machine Learning. Automated machine learn-
ing (AutoML) (Feurer et al., 2015; Yao et al., 2018; Hut-
ter et al., 2019) aims to set manual efforts free from tun-
ing machine learning models, ranging from data prepro-
cessing (Fang et al., 2017), feature engineering (Kanter &
Veeramachaneni, 2015), model selection (Escalante et al.,
2009; 2010), hyperparameter optimization (Thornton et al.,
2013; Mantovani et al., 2016; Luo, 2016; Sanders & Giraud-
Carrier, 2017; Golovin et al., 2017) and neural architecture
search (Zoph & Le, 2017; Liu et al., 2019; Guo et al., 2019;
Wu et al., 2019; Cai et al., 2018; Real et al., 2019; Liu et al.,
2018). Neural architecture essentially can be regarded as
a special type of hyperparameter which is indifferentiable.
Among all these tasks, hyperparameter optimization is the
most relevant to our proposed framework in this work. There
are several groups of methods widely used in hyperparam-
eter optimization, among which grid search and random
search (Bergstra & Bengio, 2012) are two most straightfor-
ward ways to search a good configuration of hyperparam-
eters from a set of candidates without taking the history
results into account. Bayesian optimization (Snoek et al.,
2012), as one of the most popular sequential model-based
optimization (SMBO) (Hutter et al., 2011) approaches capa-
ble of utilizing history results, adopts Gaussian process to
model the surrogate function that approximates the relations
between hyperparameters and their expected performance.
However, all these methods are optimized in a black-box
manner. The only work on AutoML for graph representa-
tion (Tu et al., 2019) uses Gaussian Process to estimate the
hyperparameter performance, and can hardly explain how
each hyperparameter contributes to the model performance
and why one particular value is chosen for a hyperparameter
to perform the next trial of evaluation.

3. Explainable Automated Graph
Representation: e-AutoGR

We first give a brief overview of the problem definition,
followed by the two core components of e-AutoGR: i) sub-
graph sampling and computation allocation and ii) weight-
ing regression with hyperparameter decorrelation.

3.1. Problem Definition

Given a graph G = (V,E) whose nodes and edges are de-
noted by V and E respectively. Assuming we sample s sub-
graphs from the original graph G, we denote Gi = (Vi, Ei)
where i = 1, 2, 3, . . . , s as the i-th subgraph. Let PR(Λ, G)
denotes the performance of graph representation algorithm
R with hyperparameter configuration Λ on graph G, where
the performance can be accuracy of node classification, link

prediction and graph reconstruction etc. We adopt the ac-
curacy of node classification and link prediction, two most
popular applications for graph representation, as the perfor-
mance to be estimated in this paper. As we point out earlier,
large-scale graphs in real world tend to have quite large |V |
and |E|, resulting in very high computational costs of run-
ning graph representation algorithms on these graphs. Thus
it will be unrealistic to search and optimize hyperparameters
through directly evaluating the performance of a graph rep-
resentation algorithm on the original graph for many times.
As such, e-AutoGR first samples several subgraphs which
is much smaller in size compared with the original, then
runs the selected graph representation algorithm with dif-
ferent hyperparameter configurations on each of subgraph
for different times depending on how similar the sampled
subgraph is to the original graph, finally utilizes the results
of performance obtained from these subgraphs to infer the
optimal hyperparameter configuration for the original graph.

Given a graph representation algorithm R and a target graph
G, the goal of e-AutoGR is to find out a hyperparameter con-
figuration Λ∗ having the optimal performance PR(Λ∗, G)
for algorithm R on graph G based on the results from run-
ning algorithm R on each of the sampled subgraphs Gi
several times. We additionally require e-AutoGR to be ca-
pable of explaining how each hyperparameter contributes to
the model performance as well as why one particular value
is chosen for a hyperparameter to perform the next trial of
evaluation.

3.2. Subgraph Sampling and Computation Allocation

We start by sampling subgraphs from the original graph.
Although the smaller sizes of subgraphs enable us to run
algorithmRmany more times on subgraphs, it is not desired
to abuse the computational resources. Thus we set a budget
n for the maximum total number of times to run R on
subgraphs and dynamically decide how many times R can
be executed on each subgraph within the budget.

3.2.1. SUBGRAPH SAMPLING

Each subgraph is sampled through executing several random
walks on the original graph and different subgraphs can
therefore be obtained by varying the the length of each
random walk. For subgraph Gi = (Vi, Ei), Vi is the set of
nodes traversed by the several corresponding random walks
and Ei = {(u, v)|u ∈ Vi∧v ∈ Vi∧ (u, v) ∈ E}. To ensure
the sampled subgraphs can cover the property and diversity
of the original graph as much as possible, the random walks
for sampling different subgraph are forced to start from
different regions of the original graph. In practice, the
random walks for different subgraphs can start from nodes
with different labels when the node labels are available and
start from different communities detected through some
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community detection methods (Fortunato, 2010) when the
node labels are unavailable. Without loss of generality, let’s
assume e-AutoGR samples s subgraphs in total.

3.2.2. COMPUTATION ALLOCATION ON SUBGRAPHS

Given the budge n and s sampled subgraph Gi, i =
1, 2, 3, ..., s, we for each subgraph Gi dynamically decide
a personalized number of times ti to execute R such that
n =

∑s
i=1 ti. For the sake of explainability, we adopt

six fully explainable graph feature (Bonner et al., 2016) to
conduct this allocation task:

• Number of nodes: |V |
• Number of edges: |E|
• Number of triangles: The number of nodes forming a

triangle which is a set of three nodes connected with
each other by three edges.

• Global clustering coefficient: 3∗Number of triangles
Number of triplets ,

where a triplet is three nodes that are connected by ei-
ther two or three (forming a triangle) undirected edges.

• Maximum total degree value: The total number of
edges the most connected node in the graph has to
other nodes.

• Number of Components: The total number of compo-
nents contained in the graph, where a component is
a subgraph in which there is a possible path between
every node, while nodes from different components
have no path connecting them.

Theses six explainable graph features thus form a 1 × 6
dimension vector and let us denote the feature vector of
original graph G and subgraph Gi as f and f i respectively.
We then adopt the Canberra Distance to calculate the sim-
ilarity between each subgraph Gi and the original graph
G:

gi = d(f i, f) =

6∑
k=1

|f ik − fk|
|f ik|+ |fk|

. (1)

The number of times executing algorithm R on subgraph
Gi is then determined as follows:

ti =

⌊
n ∗ gi∑s

k=1 g
k

⌋
. (2)

Let r = n −
∑s
k=1 tk, where r denotes the remaining

number of times we can execute algorithm R. We then
select the first r subgraphs having the largest gi, and let
ti = ti + 1 for each Gi in the selected r subgraphs.

We remark that other distance metrics include Bray, Corre-
lation, Chebyshev, Cosine and Manhattan etc., but they are
insensitive when feature vectors are highly similar, or pro-
duce unintuitive results such as a high similarity score for
highly dissimilar graphs. The Canberra distance can detect
changes close to zero, making it ideal for detecting small

variations (e.g., similarity of subgraphs close to each other)
in graph topology. Our assumption is that hyperparame-
ters for more similar subgraph will be more transferrable to
original graph.

We would also like to point out that increasing the size of
subgraph will not always result in getting more computation
resources. The reason is as follows. We aim to sample a
series of representative subgraphs that share “some” similar
properties with the original large-scale graph. We sample
each subgraph based on several random walks. And we
vary the length of each random walk to obtain subgraphs of
various sizes. To ensure different subgraphs diversely pre-
serve different properties of the original graph, the starting
points of random walks are explicitly chosen to be at the
different regions of the original graph. As different regions
(e.g., local communities or local topologies with same cate-
gory/label) may be of different sizes, larger subgraphs will
not always be more similar to the original graph.

3.3. Weighting Regression with Hyperparameter
Decorrelation

After running graph representation algorithm R on sampled
subgraphs for different times, we obtain n samples with
different configurations of hyperparameters and graph fea-
tures as well as their model performance. If algorithm R
runs on subgraph Gi for ti times, where i = 1, 2, 3, . . . , s,
then n =

∑s
i=1 ti. To infer the optimal hyperparameter

configuration for the original graph, we will need to learn a
non-linear mapping from hyperparameters to performance
with the importance of each hyperparameter in influencing
the performance. Given that the n samples are obtained
from different subgraphs rather than the original graph, the
non-linear mapping will also need to take graph features as
input to guide the learning process. Therefore, the perfor-
mance mathematically depends on hyperparameters, graph
features and some other unobserved hidden factors as well
as their mutual correlations simultaneously, which makes it
very difficult to calculate and learn the real importance of
each hyperparameter in influencing the performance.

To tackle this difficulty, we propose a hyperparameter decor-
relation weighting regression (HyperDeco) algorithm to
decorrelate the mutual influences among different hyperpa-
rameters and graph features as well as some hidden unob-
served latent factors on the estimated model performance.
Upon decorrelation, it will be possible to learn each hyper-
parameter’s true importance in impacting the performance.

3.3.1. HYPERPARAMETER DECORRELATION

Assuming we have n samples, each of which is represented
as a 1×p vector where p = p1 +p2. The first p1 dimensions
contain p1 hyperparameters and the last p2 dimensions con-
tain graph features obtained from Section 3.2.1 (p2 = 6 in
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our case). Let A ∈ Rn×p1 denote the matrix of hyperpa-
rameters, where n refers to the sample size and p1 means
the dimension of hyperparameters. Let B ∈ Rn×p2 de-
note the graph features with dimension p2. For simplify, let
X = [A,B] ∈ Rn×p.

In this paper, we focus on hyperparameters’ first moment
(i.e., mean) and propose to decorrelate all the predictors by
sampling reweighting in the training environment. The rea-
son of focusing on the first moment is as follows, Correlation
can be defined as Correlation = Cov[X,Y ]/d[X]d[Y ],
where Cov[X,Y ] = E[XY ]− E[X]E[Y ], E, d are expec-
tation (mean and first moment) and standard deviation re-
spectively. E[XY ] = E[X]E[Y ] leads to Correlation =
0 (i.e.,decorrelation), indicating the sufficiency of first mo-
ment. Specifically, we propose a hyperparameter decorrela-
tion regularizer for learning the sample weight γ as follows:

min
γ

p1∑
j=1

∥∥∥E[AT
,jΣγX,−j ]− E[AT

,jγ]E[XT
,−jγ]

∥∥∥2

2
, (3)

where γ ∈ Rn×1 are sample weights satisfying
∑n
i=1 γi =

n, Σγ = diag(γi, . . . , γn) is the corresponding diagonal
matrix, A,j denotes the jth column/hyperparameter in A,
and X,−j = X \A,j means all the remaining variables by
removing the hyperparameter A,j in X.1 The summand
represents the loss due to correlation between hyperparame-
ter A,j and all other hyperparameters together with graph
features X,−j . Note that, only first moment (i.e., mean) is
considered in Eq (3), but it is sufficient for hyperparame-
ter decorrelation. And higher-order moments can be easily
incorporated.

The following theoretical results show that our hyperpa-
rameter decorrelation regularizer can make the variables
in A become uncorrelated with variables in X by sample
reweighting, hence reduce the correlation among covariates
in the training environment, improving the accuracy and
explainability on importance estimation for hyperparameter.

With
∑n
i=1 γi = n, we can denote the loss in Eq (3) as:

LDeco =
∑p1
j=1

∥∥AT
,jΣγX,−j/n−AT

,jγ/n ·XT
,−jγ/n

∥∥2

2
. (4)

Lemma 1 If the number of covariates p1 and p2 is fixed,
then there exists a sample weight γ � 0 such that

lim
n→∞

LDeco = 0 (5)

with probability 1. In particular, a solution γ to Eq (5) is

γ?i =
Πp

j=1f̂(Xi,j)

f̂(Xi,1,··· ,Xi,p)
, where f̂(x·,j) and f̂(x·,1, · · · , x·,p)

are the Kernel density estimators.2

1We obtain X,−j in experiment by setting the value of A,j in
X as zero.

2In detail, f̂(xi,j) = 1
nhj

∑n
i=1 k

(
Xi,j−xi,j

hj

)
, where k(u)

Proof 1 See supplementary file.

But the solution γ that satisfies Eq (5) in Lemma 1 is not
unique. To address this problem, we propose to simultane-
ously minimize the variance of γ and restrict the sum of γ
in our regularizer as follows:

γ̂ = arg min
γ∈C
LDeco +

λ3

n

∑n
i=1 γ

2
i + λ4(

1

n

∑n
i=1 γi − 1)2, (6)

where C = {γ : |γi| ≤ c} for some constant c.

Then, we have following theorem on our hyperparameter
decorrelation regularizer in Eq (6).

Theorem 1 The solution γ̂ defined in Eq (6) is unique if
λ3n � p2 + λ4, p2 � max(λ3, λ4) and |Xi,j | ≤ c for
some constant c.

Proof 2 See supplementary file.

With Lemma 1 and Theorem 1, we can derive the following
property of the γ̂ given by Eq (6).

Property 1. When p1 and p2 is fixed, n → ∞, λ3n �
p2 +λ4, and p2 � max(λ3, λ4), the variables in A become
uncorrelated with the variables in X by sample reweighting
with γ̂.

3.3.2. DECORRELATED WEIGHTING REGRESSION

Upon obtaining γ̂ from hyperparameter decorrelation regu-
larizer in Eq (6), the learning of non-linear mapping from
hyperparameters and graph features to performance can be
formulated as a weighted non-linear regression problem:

Θ̂ = arg min
Θ

n∑
i=1

γ̂i · (Yi − φ(Xi,; Θ))2, (7)

where Yi is the observed performance for Xi, and φ( ; Θ)
is the non-linear mapping formulated through a multi-layer
perceptron (MLP) with parameter Θ. By Property 1, the
summation of the absolute values of each hyperparameter’s
weights towards neurons in the hidden layer of MLP can
be approximately adopted as the unbiased importance of
the hyperparameter in affecting the performance, since γ̂
decorrelates variables between A and X.

By combining the objective functions of the hyperparameter
decorrelation regularizer in Eq (6) and the weighted non-
linear regression in Eq (7), we propose a hyperparameter
decorrelation weighting regression (HyperDeco) algorithm

is a kernel function and hj is the bandwidth parameter for covariate
Xj ; and f̂(xi) = 1

n|H|
∑n
i=1 K

(
H−1(Xi − xi)

)
, where K(u)

is a multivariate kernel function, H = diag(h1, · · · , hp) and
|H| = h1 · · ·hp.
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Algorithm 1 Hyperparameter Decorrelation Weighting Re-
gression (HyperDeco)

1: Input: Observed X = [A,B] and performance Y ,
where A denotes hyperparameters and B denotes graph
features.

2: Output: Updated parameters γ, Θ.
3: Initialize parameters γ(0) and Θ(0),
4: Calculate loss function with parameters (γ(0),Θ(0)),
5: Initialize the iteration variable t← 0,
6: repeat
7: t← t+ 1,
8: Update γ(t) with gradient descent by fixing Θ,
9: Update Θ(t) with gradient descent by fixing γ,

10: Calculate loss function with parameters (γ(t),Θ(t)),
11: until Loss function converges or max iteration is

reached

to jointly optimize γ and Θ as follows:

min
γ,Θ

∑n
i=1 γi · (Yi − φ(Xi,; Θ))2 (8)

s.t
∑p1
j=1

∥∥AT
,jΣγX,−j/n−AT

,jγ/n ·XT
,−jγ/n

∥∥2

2
< λ2

|Θ|1 < λ1,
1
n

∑n
i=1 γ

2
i < λ3,

(
1

n

n∑
i=1

γi − 1)2 < λ4, γ � 0,

where n denotes the sample size, p1 refers to the dimen-
sion of hyperparameters A. Ai, and A,j represent the ith

sample and the jth variable in A, respectively. The term
γ � 0 constrains each sample weight to be non-negative.
With term 1

n

∑n
i=1 γ

2
i < λ3, we reduce the variation of the

sample weights. The term ( 1
n

∑n
i=1 γi − 1)2 < λ4 avoids

all sample weights to be zero.

3.3.3. OPTIMIZATION

To optimize our HyperDeco algorithm in Eq (8), we initial-
ize sample weights γi = 1 for each sample i and regression
coefficient Θ = 0. Once the initial values are given, in each
iteration, we first update γ by fixing Θ, then update Θ by
fixing γ until the objective function in Eq (8) converges.
The whole algorithm is summarized in Algorithm 1.

3.4. The e-AutoGR Framework: Optimizing
Hyperparameters with Importance Explanation

We resort to the MLP optimized through HyperDeco (Algo-
rithm 1) to predict the hyperparameters that may lead to the
optimal performance on the original graph G whose graph
features can be easily obtained according to Section 3.2.2.
We follow three steps:

• Step 1: We run HyperDeco with the observed samples
(i.e., X = [A,B]) to get the updated γ and Θ.

Algorithm 2 Explainable Automated Graph Representation
(e-AutoGR)

1: Input: Graph G, Graph representation algorithm R.
2: Output: The optimal hyperparameter configuration Λ∗.
3: Sample s subgraphs Gi, i = 1, 2, . . . , s from original

graph G according to Section 3.2.1.
4: Decide ti for each Gi according to Section 3.2.2.
5: Execute algorithm R on each subgraph Gi for ti times

and obtain hyperparameter matrix A and graph feature
matrix B as well as the performance vector Y .

6: Initialize Count = T .
7: repeat
8: Execute Step 1 to Step 3 in Section 3.4.
9: Count = Count− 1.

10: until Count == 0

• Step 2: We first rank hyperparameters in a descending
order by their importance in affecting the performance,
then optimize the most important hyperparameter with
the others fixed. We uniformly sample 1000 possi-
ble values for the hyperparameter to be optimized,
and search for the one with the best predicted per-
formance through the learned non-linear mapping by
MLP. Thus we traverse every hyperparameter one by
one according to their importance and each time op-
timize one hyperparameter by fixing the others. The
idea of using weights for the first layer of MLP to
estimate the variable importance is inspired by pre-
vious work (Hassanpour & Greiner, 2019), and we
conduct normalization for each hyperparameter i.e.,
(x−min)/(max−min),to deal with the scale issue.

• Step 3: We execute algorithm R with the predicted
hyperparameter configuration on the original graph G
and obtain the true performance. The new hyperpa-
rameter configuration, original graph features as well
as their performance can in turn be appended to the
existing observed samples as a new observed sample.

We repeat Step 1 to Step 3 T times and adopt the hyper-
parameter configuration having the best performance so
far as the current values for hyperparamters. Algorithm 2
summarizes the proposed e-AutoGR framework.
Complexity Analysis. The time complexity of HyperDeco
is O(cnp2), where c is the number of iterations, n is the
sample size and p is the sample dimension. This is because
the complexity of calculating Eq (8) is O(np2), and the
cost of updating γ and Θ are O(np2) and O(np) respec-
tively. The total time complexity of e-AutoGR is O(T |E|),
which is dominated by executing graph representation algo-
rithm R whose complexity is O(|E|) for T times. Actually,
T � |E|, s � |E|, n � |E|, p � |E| and |Ei| � |E|,
which makes the overall time complexity of sampling sub-
graphs, executing R on subgraphs and running HyperDeco
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algorithm negligible when comparing with executing R on
the original graph G.

Discussions. We close this section by pointing out that the
proposed e-AutoGR framework makes use of six explain-
able graph features for subgraph sampling and algorithm
executing frequency allocation. The HyperDeco algorithm
takes hyperparameters and graph features as input to learn
a decorrelated non-linear mapping to predict performance
with hyperparameter importance. The explainable graph
features serve as a kind of transferable meta-information
across different subgraphs and the original graph. As such,
our proposed e-AutoGR exhibits much more explainabil-
ity compared with existing literature. We also inevitably
introduce some extra hyperparameters for MLP, which is
the same case for existing works utilizing other techniques
or tools. We argue that the MLP used by e-AutoGR only
possesses a single hidden layer with 5 neurons whose hyper-
parameters are much easier and far less costly to optimize
than those complicated graph representation algorithms.

Almost all hyperparameters in major graph representation
algorithms can be supported by e-AutoGR, including model
specific hyperparameters such as number/length of random
walks and window size in DeepWalk (Perozzi et al., 2014),
weights of different order proximity in AROPE (Zhang et al.,
2018) etc. as well as some general hyperparameters such
as number of training epochs, learning rate, and dropout
rate for deep neural network based models. We choose
the six explainable graph features based on four criteria: i)
Scalability, ii) Sensitivity to graph size, iii) Sensitivity to
similar topologies, iv) Label free (being able to perform
comparisons without the need for labeled datasets). The
selected six features can make a very good balance between
topological sensitivity and runtime.

4. Experiments

Comparable Approaches. The following approaches in-
cluding e-AutoGR are compared. 1) e-AutoGR: This is
our proposed explainable automated graph representation
learning framework with decorrelated hyperparameter im-
portance in this work. 2) AutoNE (Tu et al., 2019): This is
the only existing work so far on AutoML for graph represen-
tation using Gaussian Process with a predefined kernel to
estimate the hyperparameter performance. 3) Bayesian opti-
mization (BayesOpt) (Snoek et al., 2012): This is the sequen-
tial model-based optimization method adopting Gaussian
process to model the surrogate function that approximates
the relations between hyperparameters and their expected
performance. 4) Random search (Bergstra & Bengio, 2012):
This is one of the most widely adopted strategies for hyper-
parameter optimization.

For e-AutoGR and AutoNE, the number subgraphs to be

sampled, i.e., s, is set to 5 in our experiment, the size of each
subgraph is uniformly chosen between 5%|V | and 20%|V |,
then five random walks will start in parallel to sample the
subgraph and stop when the size of the subgraph reaches
the chosen size. We repeat each method for five times and
report the mean as results.

Graph Representation Algorithms. We adopt the same
three graph representation models3 used by AutoNE as al-
gorithm R for test: i) DeepWalk (Perozzi et al., 2014) is the
most representative sampling based graph representation
algorithm. ii) AROPE (Zhang et al., 2018) is a represen-
tative factorization based graph representation algorithm.
iii) GCN (Kipf & Welling, 2016) is one of the most repre-
sentative deep neural network based graph representation
algorithms. The number of trials executing graph represen-
tation algorithm R on original graph G, i.e., T is set to 10,
which is also consistent with AutoNE.

Hyperparameter Search Space. For DeepWalk, the num-
ber of random walks is considered between 2 and 20, the
length of each random walk is considered between 2 and
80 and the window size is considered between 2 and 20.
For AROPE, the weights of different order proximity are
considered chosen between 0.0001 and 0.1. For GCN, the
number of training epochs is chosen between 2 and 300, the
number of neurons in each layer is chosen between 2 and
64, the learning rate is chosen between 0.0001 and 0.1, the
dropout rate is chosen between 0.1 and 0.9 and the norm-2
regularizations chosen between 0.00001 and 0.001.

Datasets. Our experiments are performed on three real-
world datasets: i) BlogCatalog4 is a social network which
contains 10, 312 nodes, 333, 983 edges and 39 categories;
ii) Wikipedia5 is a word co-occurrence network with 4, 777
nodes, 184, 812 edges and 40 labels; iii) Pubmed6 is a ci-
tation network consisting of 19, 717 nodes, 44, 338 edges,
500-dimension node features and 3 classes. As GCN re-
quires both graph topology and node features as input, we
will only test GCN on Pubmed rather than BlogCatalog and
Wikipedia which do not contain node features.

4.1. Experimental Results

Node classification and link prediction, two popular tasks
for graph representation are used to measure the perfor-
mance of each tested graph representation algorithm. The
learned representation for each node can be passed though a
logistic regression to do classification and the inner product
between the learned representations of two nodes can be

3i) https://github.com/phanein/deepwalk;ii) https://github.com/ZW-
ZHANG/AROPE;iii) https://github.com/tkipf/gcn

4http://socialcomputing.asu.edu/datasets/BlogCatalog3
5https://snap.stanford.edu/node2vec/
6https://github.com/tkipf/gcn/tree/master/gcn/data
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Table 1. Best performance for each comparable automated graph representation approach on different datasets in terms of link prediction
and node classification tasks over various graph representation algorithms. Bold font denotes the best approach.

Dataset Algorithm Task e-AutoGR AutoNE Random Bayesian
BlogCatalog Deepwalk Link Prediction 0.871817 0.792662 0.803191 0.807158
BlogCatalog Deepwalk Classification 0.414682 0.414234 0.411551 0.407449
BlogCatalog AROPE Link Prediction 0.852612 0.851921 0.846578 0.851878
BlogCatalog AROPE Classification 0.326721 0.325060 0.326020 0.326428
Wikipedia Deepwalk Link Prediction 0.729228 0.729330 0.696462 0.713133
Wikipedia Deepwalk Classification 0.519657 0.509920 0.503319 0.502617
Wikipedia AROPE Link Prediction 0.709392 0.709383 0.703443 0.707619
Wikipedia AROPE Classification 0.529743 0.529011 0.530418 0.529732
Pubmed Deepwalk Link Prediction 0.873301 0.867633 0.853459 0.851824
Pubmed Deepwalk Classification 0.810916 0.810368 0.809199 0.810417
Pubmed AROPE Link Prediction 0.791435 0.796737 0.790228 0.790123
Pubmed AROPE Classification 0.727413 0.725412 0.725789 0.726411
Pubmed GCN Classification 0.708830 0.708712 0.708719 0.707918

used to conduct link prediction for these two nodes. We
randomly withhold 20% of the node labels and 20% of the
edges for testing in node classification and link prediction
task, respectively. Micro-F1 score (Chinchor, 1992; Sasaki,
2007) and area under the curve (AUC) (Myerson et al.,
2001) are used as performance evaluation metrics for node
classification and link prediction, respectively.

We measure the performance of different hyperparameter
optimization methods with various numbers of trials to exe-
cute the selected graph representation algorithm R on the
original graph G. Table 1 presents the results of best perfor-
mance for each comparable approach over different testing
graph representation algorithms in terms of link prediction
and node classification tasks on the three datasets. We
observe that the proposed e-AutoGR model beats each base-
line method in all but three testing cases, demonstrating its
capability of achieving the best model performance.

Node Classification. Figure 1 (a), (b) and (c) present
the node classification performance of running AROPE on
Pubmed, BlogCatalog and Wikipedia. It is easy to observe
that our proposed e-AutoGR model beats all other methods
in 8 out of 10 trials and finds the best optimal hyperparam-
eter configuration after the final trial on Pubmed. Figure 2
(b) and (c) depict the node classification performance of
executing DeepWalk on BlogCatalog and Wikipedia. It is
observable that e-AutoGR performs almost as good as the
best state-of-the-art method after 10 rounds of executing
DeepWalk on BlogCatalog. We also observe from Figure 2
(a) that the proposed e-AutoGR framework running GCN
achieves a comparable performance with other baselines
after the last trial on Pubmed.

Link Prediction. Figure 1 (d) and Figure 2 (d) demon-
strate the link prediction performance of running AROPE
and DeepWalk on Wikipedia respectively. The proposed
e-AutoGR running AROPE performs the best in 5 out of
10 trials and beats all other comparative partners in the end.

When selecting DeepWalk as the executing graph represen-
tation algorithm, our e-AutoGR model also outperforms the
best baseline method after the final trial.

Hyperparameter Importance. The goal of e-AutoGR is
to answer questions such as what is the importance of each
hyperparameter, how it contributes to the model perfor-
mance and why some certain values of hyperparameters
are chosen in the next round of evaluation for automated
graph representation learning while maintaining a compa-
rable or even better model performance. Figure 3 shows
the importance explanation of different hyperparameters
learned by e-AutoGR. We observe that for AROPE, 1st
order proximity is the most important hyperparameter for
both node classification and link prediction on Wikipedia,
which makes much sense because higher order proximity
in AROPE has a larger uncertainty range, indicating that
we should focus more on tuning lower order proximity. For
Deepwalk, both tasks on Wikipedia demonstrate number
of walks and window size are more important than length
of each walk. We optimize five hyperparameters in GCN,
out of which dropout is the most important hyperparameter
influencing the performance and weight decay is the least
important hyperparameter. These results are also reason-
able because dropout effectively avoids model overfitting,
which is very important in practice, while weight decay is a
hyperparameter practically less tuned.

Therefore, we conclude that the proposed e-AutoGR frame-
work can indeed learn reasonable hyperparameter impor-
tance and provide insights in hyperparameter optimization
for explainable automated graph representation learning.

Explainability v.s. Performance. It is generally accepted
by the community that there is a trade-off between model
explainability and model performance, increasing model ex-
plainability tends to result in decreasing model performance.
In this work, we try to increase the model explainability as
well as keeping or improving model performance, which can
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Figure 1. Number of trials to execute algorithm R on graph G, i.e., T , vs. performance. The graph representation algorithm R is AROPE.
(a) Classification on Pubmed. (b) Classification on BlogCatalog. (c) Classification on Wikipedia. (d) Link Prediction on Wikipedia.
Performances are measured based on the average values of five executions for each algorithm.
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Figure 2. Number of trials executing algorithm R, i.e., T , vs. performance. The graph representation algorithm R is GCN for (a) and
DeepWalk for (b)(c)(d). (a) Classification on Pubmed. (b) Classification on BlogCatalog. (c) Classification on Wikipedia. (d) Link
Prediction on Wikipedia. Performances are measured based on the average values of five executions for each algorithm.

1st Order
2nd Order

3rd Order

Classification on Wikipedia

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

w
e
ig
h
t

1st Order
2nd Order

3rd Order

Link Prediction on Wikipedia

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

w
e
ig
h
t

Num of Walks

Walk Length

Window Size

Classification on Wikipedia

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

w
ei
gh

t

Num of Walks

Walk Length
Window Size

Link Prediction on Wikipedia

0.0

0.1

0.2

0.3

0.4

w
ei
gh

t

Epoc
hs

Hidd
en

Learning Rate
Dropout

Weight Decay

Classification on Pubmed

0.00

0.05

0.10

0.15

0.20

0.25

0.30

w
ei
g
h
t

(a) AROPE (b) AROPE (c) DeepWalk (d) DeepWalk (f) GCN
Figure 3. Explaining hyperparameter importance in affecting performance.

be demonstrated from our experiments that the proposed
model achieves comparable performance with black-box
baselines in 3 (Figure 1(c), Figure 2(a)(b)) out of 8 cases
and even outperforms baselines in 3 (Figure 1(a)(d), Fig-
ure 2(d)) out of 8 cases. For those results not as good as
baselines,one possible explanation is that the random ini-
tialization process in our setting for the original large-scale
graph may lead to bad initial values of the hyperparameters,
which can be alleviated by utilizing the best hyperparameter
settings in previous trials on sampled subgraphs.

5. Conclusion
In this paper, we explore explainable automated graph repre-
sentation learning with hyperparameter importance. We pro-
pose a hyperparameter decorrelation algorithm to achieve

hyperparameter importance explanation such that our ex-
plainable e-AutoGR framework demonstrates a much higher
degree of rationality and explainability compared with exist-
ing literature. Extensive experiments on real-world datasets
validate the effectiveness of the proposed model in providing
rational insights in learning more accurate hyperparameter
importance when achieving superior performance. Further
improving the explainability in automated graph representa-
tion learning deserves future investigations.
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