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A. Original Results for Sensitivity Analysis

In Section 5.7 of the main paper, we report the performance
of Self-Tuning on Standard Cars on various values of fea-
ture size L and queue size D. With a 3D plot, it vividly
shows the robustness of Self-Tuning to different values of
L and D. However, the detailed numbers of Self-Tuning
are not accessible via a figure. To this end, we report the
original results here in Table 1 and Table 2 respectively. Due
to the constraint of computing resources, we did not conduct
experiments with L > 1028 and D > 32, though there is a
high probability that better results would be achieved with
larger values of L and D.

Table 1. Classfication accuracy on Stanford Cars with 15% labels.

Test Acc. \ D

8 16 24 32
L
128 69.87 70.45 70.60 70.8
256 70.23 70.67 70.70 70.98
512 70.61 70.87 71.25 72.04
1028 71.79 71.99 72.21 72.50

Table 2. Classfication accuracy on Stanford Cars with 30% labels.

Test Acc. \ D

8 16 24 32
L
128 81.43 82.01 82.16 82.36
256 81.66 82.23 82.26 82.54
512 82.06 82.43 82.81 83.01
1028 82.79 83.27 83.18 83.58

B. Analysis on Why Self-Tuning Works

In Section 5.8 of the main paper, Figure 7(a) shows that
Self-Tuning has a larger improvement over the accuracy of
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Figure 1. Comparisons between Self-Tuning with FixMatch on
pseudo-label accuracy and test accuracy.

pseudo-labels than FixMatch, given an identical pre-trained
model with approximate pseudo-label accuracy. Due to the
space limit, more details of Figure 7(a) are missing in the
main paper, which will be covered here. For Figure 7(a),
the test accuracy is calculated on the whole test set while the
pseudo-label accuracy is calculated on each minibatch of the
unlabeled data, resulting in a smooth test accuracy and an
unsteady pseudo-label accuracy. The pseudo-label accuracy
in the main paper is the original training process. For clear
comparison, we further provide training processes smoothed
by a moving average method with different moving average
widths are shown in Figure 1 here. These figures reveal
that even pseudo-label accuracy is shaking across differ-
ent training iterations, Self-Tuning has steady performance,
indicating that the proposed pseudo group contrast (PGC)
mechanism successfully mitigates the reliance on pseudo-
labels and boosts the tolerance to false-labels.

Different from Figure 7(a) that focuses on the initial
pseudo-label accuracy with an identical pre-trained model,
Figure 7(b) shows the between the gap between test ac-
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Figure 2. Comparisons between Self-Tuning with FixMatch on
pseudo-label accuracy and test accuracy.

curacy with pseudo-label accuracy after the model con-
verges. Figure Figure 7(b) in the main paper reveals that
Self-Tuning has a larger gap between test accuracy with
the accuracy of pseudo-labels than that of FixMatch. This
observation is consistently held under different sizes of label
space. Detailed numbers of test accuracy and pseudo-label
accuracy when the label space enlarges from 10 (CUB10)
to 200 (CUB200) are shown in Figure 2(a) and Figure 2(b).
Since the pseudo-label accuracy is recorded after the model
converges, a higher pseudo-label accuracy for Self-Tuning
than FixMatch is seen, though they are initialized with an
identical pre-trained model with approximate pseudo-label
accuracies for a fair comparison.

Further, as mentioned in the main paper, by unifying the
exploration of labeled and unlabeled data and the transfer of
a pre-trained model, Self-Tuning escapes from the dilemma
of just developing TL or SSL methods. As analyzed in
the main paper, this unified form of learning labeled and
unlabeled data is much better than a sequential form.

C. When Self-Tuning Works and Fails

We empirically found that Self-Tuning works in most down-
stream datasets except a target dataset with long-tailed dis-
tributed labeled data, such as Caltech and SUN-397. Domi-
nated by head-classes, it is hard for a model to distinguish
tailed-classes from other classes, even with the proposed
Self-Tuning method since a cross-entropy loss on labeled
data is included. Further, we also found that this conclu-
sion is consistently held with previous methods including
L2-SP, DELTA, BSS and Co-Tuning. The performance on
these long-tailed datasets was not reported by previous meth-
ods. Maybe a simple combination with long-tailed learning
methods, e.g. resampling or reweighting, can alleviate this
problem and we leave it as future work.



