
AlphaNet: Improved Training of Supernets with Alpha-Divergence

A. Weight-sharing NAS

Most RL-based NAS (e.g., Zoph & Le, 2017) and differentiable NAS (Liu et al., 2019; Cai et al., 2019b) consist of the
following two stages as shown in Figure 7:

1) Stage 1 (architecture searching) - search potential architectures following a single resource constraint by using black-
box optimization techniques (e.g., Zoph & Le, 2017) or differentiable weight-sharing based approaches (e.g., Liu
et al., 2019; Cai et al., 2019b);

2) Stage 2 (retraining) - retrain deep neural networks (DNNs) found in step 1) from scratch for best accuracy and final
deployment.

Architecture 
Learner

Performance 
Evaluation

Architecture

Performance feedback

Stage 1 (NAS) - architecture searching Stage 2 (NAS) - retraining

Training from scratch 
for deployment

Discovered 
architectures

Figure 7. An overview of convectional NAS pipeline.

Though promising results have been demonstrated, these NAS methods usually suffer from the following disadvantages:
1) need to re-do the NAS search for different hardware resource constraints; 2) require training the selected candidate from
scratch to achieve desirable accuracy; 3) 1) especially for RL-based NAS that uses black-box optimization techniques,
it requires training a large number of neural networks from scratch or on proxy tasks; These disadvantages significantly
increase the computational cost of NAS and make the NAS search computationally expensive.

Supernet-based Weight-sharing NAS To alleviate the aforementioned issues, supernet-based weight-sharing NAS
transforms the previous NAS training and search procedures as follows; see Figure 8.

1) Stage 1 (supernet pretraining): jointly optimize the supernet and all possible sub-networks specified in the search
space, such that all searchable networks simultaneously achieve good performance at the end of the training phase.

2) Stage 2 (searching & deployment): After stage 1 training, all the sub-networks are optimized simultaneously. One
could then use typical searching algorithms, like evolutionary algorithms, to search the best model of interest. The
model weights of each sub-network are directly inherited from the pre-trained supernet without any further re-training
or fine-tuning.

All candiate DNNs 
with weight-sharing

One-step 
training

Architecture

DNN gradients

Stage 1 supernet pretraining Stage 2 searching & deployment

Searching promising DNNs 
under constraints

All pre-trained 
candidate DNNs

Figure 8. An overview of supernet-based weight-sharing NAS.

Compared to RL-based NAS and differentiable NAS algorithms, the key advantages of the supernet-based weight-sharing
NAS pipeline are: 1) one needs to only perform the computationally expensive supernet training for once. All sub-networks
defined in the search space are ready to use after stage 1 is fully optimized. No retraining or fine-tuning is required; 2) all
sub-networks of various model sizes are jointly optimized in stage 1, finding a set of Pareto optimal models that naturally
supports various resource considerations.



AlphaNet: Improved Training of Supernets with Alpha-Divergence

Notable examples of supernet-based weights-sharing NAS include BigNAS (Yu et al., 2020), OFA (Cai et al., 2019a),
AttentiveNAS (Wang et al., 2020a) and HAT (Wang et al., 2020b).

B. Weights-sharing NAS training settings

We exactly follow the training settings in Wang et al. (2020a) 2. Specifically, we train our supernets for 360 epochs with
cosine learning rate decay. We adopt SGD training on 64 GPUs. The mini-batch size is 32 per GPU. We use momeutm
of 0.9, weight decay of 10�5, dropout of 0.2, stochastic layer dropout of 0.2. The base learning rate is set as 0.1 and is
linearly scaled up for every 256 training samples. We use AutoAugment (Cubuk et al., 2018) for data augmentation and
set label smoothing coefficient to 0.1.

We use the same search space provided in Wang et al. (2020a), see Table 7. Here Conv denotes regular convolutional
layers and MBConv refers to inverted residual block proposed by Sandler et al. (2018). We use swish activation. Channel
width represents the number of output channels of the block. MBPool denotes the efficient last stage in Howard et al.
(2019). SE represents the squeeze and excite layer (Hu et al., 2018). Input resolution denotes the candidate resolutions.
To simplify the data loading procedure, we always pre-fetch training patches of a fixed size, e.g., 224x224 on ImageNet,
and then rescale them to our target resolution with bicubic interpolation following (Yu et al., 2020).

Block name Channel width Depth Kernel size Expansion ratio SE
Conv {16, 24} - 3 - -

MBConv-1 {16, 24} {1,2} {3, 5} 1 N
MBConv-2 {24, 32} {3, 4, 5} {3, 5} {4, 5, 6} N
MBConv-3 {32, 40} {3, 4, 5, 6} {3, 5} {4, 5, 6} Y
MBConv-4 {64, 72} {3, 4, 5, 6} {3, 5} {4, 5, 6} N
MBConv-5 {112,128} {3, 4, 5, 6, 7, 8} {3, 5} {4, 5, 6} Y
MBConv-6 {192, 200, 208, 216} {3, 4, 5, 6, 7, 8} {3, 5} 6 Y
MBConv-7 {216, 224} {1, 2} {3, 5} 6 Y

MBPool {1792, 1984} - 1 6 -
Input resolution {192, 224, 256, 288}

Table 7. An illustration of our search space. Every row denotes a block group.

C. Knowledge distillation

Consider the image classification task over a set of classes [m] := {1, · · · ,m}, where we have a collection of training
images and one-hot labels Dtrain = {(x, y)} with (x, y) 2 X ⇥ Y and y 2 {0, 1}m. We are interested in designing a
deep neural network q(x; ✓) : X ! Y that captures the relationship between x and y. Here ✓ is the network parameters of
interest.

KD provides an effective way to train q by distilling knowledge from a teacher model in addition to the one-hot labels.
The teacher network is often a relative larger network with better performance. Specifically, let p be the teacher network,
KD enforces q to mimic the output of p by minimizing the closeness between q and p, which is often specified by the KL
divergence DKL(p k q), yielding the following loss function,

L(✓) = (1� �)LERM(✓) + �LKD(✓), with

LERM(✓) = E(x,y)⇠Dtrain


L(y, q(x; ✓))

�
,

LKD(✓) = Ex⇠Dtrain


DKL(p(x) k q(x; ✓))

�
. (7)

Here L(·) represents the empirical loss, e.g., the typical cross entropy loss L(y, q(x; ✓)) =
Pm

i=1 �yi log qi with qi be the
i-class probability produced by q. And DKL(p k q) = Ep[log(p/q)]. Furthermore, � 2 [0, 1] is the distilling weight that
balances of the empirical loss and KD loss.

2https://github.com/facebookresearch/AttentiveNAS



AlphaNet: Improved Training of Supernets with Alpha-Divergence

One could also apply a temperature T to soften (or sharpen) the outputs the teacher model and the student model in KD.
More precisely, given an input x, we assume zpi (x) and zqi (x) the logit for the i-th class produced by p and q, respectively.
Then the corresponding predictions of p and q after temperature scaling are as follows,

pi(x;T ) = softmax(zpi ;T ), qi(x;T ) = softmax(zqi ;T ),

with softmax(zi;T ) = exp(zi/T )/
P

i exp(zi/T ). In this way, the previous KD objective (7) is now adapted to the
following,

L(✓;T ) = (1� �)LERM(✓) + �T 2LKD(✓;T ), with

LKD(✓;T ) = Ex


DKL(p(x;T ) k q(x;T, ✓))

�
. (8)

Here T 2 is introduced to ensure the gradients from the KD loss is at the same scale w.r.t the gradients from the empirical
loss, see (e.g., Hinton et al., 2015). We set � = 0.9 as default.



AlphaNet: Improved Training of Supernets with Alpha-Divergence

D. Additional results on ablation studies

Following the settings in section 4.2, we provide further analyses on the performance of sub-networks learned under
different ↵ and � settings.

Va
lid

at
io

n
A

cc
ur

ac
y

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

77.0
77.5
78.0
78.5
79.0
79.5
80.0
80.5

w/ ./-.D
w/ AdDptLve-.D (α− -1, α+ 1, β 1)

0)/23s

Va
lid

at
io

n
A

cc
ur

ac
y

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

77.0
77.5
78.0
78.5
79.0
79.5
80.0
80.5

w/ ./-.D
w/ AdDptLve-.D (α− -1, α+ 1, β 10)

0)/23s

Va
lid

at
io

n
A

cc
ur

ac
y

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

77.0
77.5
78.0
78.5
79.0
79.5
80.0 w/ ./-.D

w/ AdDptLve-.D (α− -2, α+ 1, β 5)

0)/23s

Va
lid

at
io

n
A

cc
ur

ac
y

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

77.0
77.5
78.0
78.5
79.0
79.5
80.0
80.5 w/ ./-.D

w/ AdDptLve-.D (α− 0, α+ 1, β 5)

0)/23s

Figure 9. Additional results on ablation studies. Each box plot shows the performance of sampled sub-networks within each FLOPs
regime. From bottom to top, each horizontal bar represents the minimum accuracy, the first quartile, the median, the third quartile and
the maximum accuracy, respectively.



AlphaNet: Improved Training of Supernets with Alpha-Divergence

Va
lid

at
io

n
A

cc
ur

ac
y

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

77.0
77.5
78.0
78.5
79.0
79.5
80.0
80.5 w/ ./-.D

w/ AdDptLve-.D (α− -1, α+ 0.5, β 5)

0)/23s

Va
lid

at
io

n
A

cc
ur

ac
y

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

77.0
77.5
78.0
78.5
79.0
79.5
80.0
80.5 w/ ./-.D

w/ AdDptLve-.D (α− -1, α+ 2, β 5)

0)/23s

Va
lid

at
io

n
A

cc
ur

ac
y

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

20
0-2
50

25
0-3
00

30
0-3
50

35
0-4
00

40
0-4
50

45
0-5
00

50
0-5
50

55
0-6
00

77.0
77.5
78.0
78.5
79.0
79.5
80.0
80.5 w/ ./-.D

w/ AdDptLve-.D (α− -1, α+ -1, β 5)

0)/23s

Figure 10. Additional results on ablation studies. Each box plot shows the performance of sampled sub-networks within each FLOPs
regime. From bottom to top, each horizontal bar represents the minimum accuracy, the first quartile, the median, the third quartile and
the maximum accuracy, respectively.


