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Abstract

The supplemental material contains supporting proofs for the main document.

A Proofs for Section [2

Lemma A.1l. (Solution of continuous Lyapunov equation). Suppose W is stable. The solution Y of
continuous Lyapunov equation

WY +YW' +Q=0
can be written as
Y = /000 eVTQeW Tdr. (A1)
Proof. The result can be found in Theorem 7.5 of [I], so we omit its proof. O

In the following, given K such that A — BK is stable, we define two operators Tg, Fx on symmetric
matrix X as

Tr(X) = /OO e(A—BK)TXe(A—BK)TTdT7
Fr(X) = (?4 ~ BK)X + X(A—- BK)".
Then
FroTx+1=0,
or
Tk = —Fr'.
Additionally, from we have

Yk =Tx(DDT).
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Lemma A.2. (Perturbation of Pg). Assume K, K’ are both stable. Then
Pyr — Pg = / eA-BEN T ET(K' — K) 4+ (K' — K) Ex + (K' — K)TR(K' — K)]eBX)7dr. (A.2)
0

Moreover, this implies that Px is differentiable.

Proof. Taking the difference between two equations corresponding to K’ and K, we have

0= (A-BK')"Px/ + Px/(A—BK')" —(A—BK' 4+ B(K — K'))" Px + Px(A— BK' + B(K — K'))"
+(K'-K+K)'R(K' - K +K)—- K'RK
= (A- BK')"(Pg: — Px) + (Px — Px)(A— BK')T — (K' — K)"B" Px — PxB(K' — K)
+(K'-K+K)'R(K' - K +K) - K'RK
= (A— BK")"(Pg' — Pg) + (Pxr — Px)(A— BK")"
+Eg(K' - K)+ (K' - K)"Ex + (K' — K)"R(K' — K).

Here Ex = RK — BT Pk is defined in Proposition In other words, Px: — Pk is the solution of the
continuous Lyapunov equation

(A-BK')'Y +Y(A-BK')+ Ej.(K' — K)+ (K' — K)"Ex + (K’ = K)'R(K' - K) =0,
in which Y is the unknown matrix. Recalling Lemma [A7T] we finish the first part of the proof.

Define vectorization operator for n X m matrix Y = (yij)ign,jgm as

VeC(Y) = (y117"~7yn17y127"' 7y’r7‘2;'’'7:(/17717"'7y7'l/rr7,)—r

We have the fact that vec(ABC) = (CT ® A) vec(B). Using this, (A.2)) gives us

vee(Pr: = Pic) :/ vee (U BKY T BL(K! — K) + (K = K) T By + (K' = K)R(K' = K)Je4 557 dr
0

— / <€(A*BK’)TT ® 6(A*BK’)Tq—d,]_) VeC[EI—E(K/ o K) + (K/ o K)TEK + (K/ o K)R(K/ o K)]
0

- / (em*BK’)TT ® e<A*BK’>TTdT) vec[Ep (K' — K) + (K' — K)TExr + U],
0

where
U= (K'-K)'R(K'— K)+ (Ex — Ex)"(K' = K) + (K' = K)" (Ex — Ex)
=—(K'-K)"R(K' — K) + (Px — Px)B(K' — K) + (K' — K)' BT (Px/ — Pg)
= O(|IK" - K|%).
The last line uses the expression of Pgs — Pk in the first part of Lemma[A2] again. Therefore, there exists
Z o that depend on A — BK’ and Ex such that vec(Px — Py/) = Zgr vec(K — K') + O(||K — K'||%), where

Z g will be defined as the derivative of vec(Pk) at K = K’ with respect to vec(K). Therefore, Pk is indeed
differentiable and its differential d Px used in the proof of Proposition [I| below is well-defined. O

Now we are ready to prove the expression of the policy gradient as follows.
Proposition A.3. (Proposition .
ViJ(K)=2(RK — B" Pg)Sk = 2Bk Yk, (A.3)

where Efx = RK — BT Pg.



Proof. Rewrite the Lyapunov equation as ¢(K, Px) = 0, where ¢ is a function of two independent
arguments, defined as

¢(K,Px) = (A— BK)' Px + Px(A— BK)+Q+ K'RK.
Taking differential on both sides (the differentiability of Px has been shown in Lemma [A.2)), we have

0= Vgo(K, Px)dK + Vp, ¢(K, Px)dPg
= [(~BdK)" Px + Px(—BdK) + (dK)"RK + K" RdK] + [(A — BK)"dPx + dPx(A — BK)],

or equivalently,
(A—BK)"dPg + dPx(A - BK) + (K"R— PxB)dK + (dK)" (RK — B" Pg) = 0. (A.4)

Note that (A.4) have similar structures. We apply the trace operator to left multiplied by dPx and
(A.4) left multiplied by Yk, and then take the difference to obtain

tr(dPxk DD ") = tr[ (K 'R — PxB)dK + Yk (dK)" (RK — B Pg)]
= 12Xk (K "R — Pg B)dK].
From , by definition, we have
tr[(VigJ(K))"dK] = dJ(K) = tr(dPxk DDT).

Comparing the above two equations, since the matrix quantities are equal for any direction of dK, we conclude
Vi J(K)=2(RK — BT Pg)Yk. O

Lemma A.4. (Lemma[2). The cost function is gradient dominated [3], that is

|| &+
Omin(R)02

min

J(K) - J(K*) < tr(VgJ(K) Vg J(K)). (A.5)

(DDT)
In additional, we have the following lower bound for J(K) — J(K™*)

Omin (DDT)

T) = ) 2 P

tr(EyFk). (A.6)

Proof. Based on and Lemma we have

J(K') — J(K)
= tr[(Pxs — Px)DD']

= tr [ / eA-BE) T (K — K) + (K — K) Ex + (K' — K)TR(K' — K)]e(A—BK'VDDTdT}
0

= tr [ / eA-BE) T DDTe(A-BE) 'rqr B (K' — K) + (K’ — K) T Ex + (K' — K)TR(K' — K)]}
0

tr[Sx [Ep(K' — K) + (K' = K)"Eg + (K' — K) " R(K' — K)]]
= g/ (K — K+ R 'Ex)"R(K' — K + R™'Ex) — E R™'Ek]].

Here the second equality uses Lemma the fourth equality uses the fact that g is the solution the
Lyapunov equation (A — BK')X + X(A— BK)" + DDT =0 and Lemma



To prove the upper bound (A.F), we use the fact that the quadratic term (K’ — K + R™'Ex) T R(K' —
K + R7'Ex) above is positive semi-definite. Letting K’ = K*, we have

J(K) = J(K*) = te[Ex-[EL R Ex — (K* = K + R Ext) R(K* — K + R Ex)]]
< tr[g-EL R Ek]
12kl
Umin(R)
12 5+
Ounin (R 725 (20
12 k||
= Omin(R)o7, (DDT)

< tr(Ex Ex)

IN

tr(ViJ(K) Vg J(K))

tr(VgJ(K) Vg J(K)).

The last inequality follows from the fact that Y = DDT > amin(DDT) - 1.
To prove the lower bound, we choose a specific form of K’ to make the quadratic term to be zero and use
the fact that J(K*) < J(K'). Letting K’ = K — R™!Ex, we have

J(K) - J(K') = tr[Sx Ex R Eg].
Then
J(K) = J(K") = J(K) - J(K)
> tr[Sx B R Ek]

Omin (DDT)

2 tr(Ey Ex).

Lemma A.5. (Perturbation analysis of ¥ ) Suppose A — BK is stable and

(Q)Umin(DDT)
4J1(K)|Bl

1K' - K| < Tmin

then A — BK’ is also stable and

JE) N\ 1Bl
ISk — S| < 4 (Umin(Q)) DK K.

Proof. The first claim is easy to prove with Lemma 10 in [4]. The second claim is similar to Appendix C.4 in
[2]. We first claim

J(K)
Umin(Q)

2k ||
Umin(DDT) ’

IZkll < and || Tkl < (A7)

and it is clear to see that
[Frer = Fr |l < 2|| BII[| K" — K|

Then

2J(K)| B[l K" - K|

1
;- < —.
ITacllFie = Frcll < b < 5




Then we have

IZx =Skl = (T = T (DD < [T lllFxr — Fre | Z
<TxlllFxr = Frll(Zxl + 155 — Xk |)

Therefore,

1B = || < 20Tk |[[[Fxr = FrelllZx]

J(K) \*__|IB] ;o
S4(0—min(62)> O—min(DDT)”K KH

So it remains to show the claim in (A.7). The first claim can be seen from

J(K) = tr(2x (Q + K" RK)) 2 tr(2x)0min(Q) 2 12k |omin(Q) -

The second claim can be shown from the following fact. For any unit vector v € R? and unit spectral norm
matrix X,

o0
’UTTK(X)’U:/ tr(Xe(A_BK)TTUUTe(A_BK)T)dT
0

= / tr(DDTe(A_BK)TTvae(A_BK)T)dT (DDT)"V2Xx (DD )72
0
= (UTEKW) . H(DDT)71/2X(DDT)71/2” < ||EK||0';111U(DDT)-

We now complete the proof. O

Lemma A.6. (Estimate of one-step GD). Suppose K’ = K — nV g J(K) with

— { 80min(Q) 1 <amin<Q>omm<DDT>>2 ! }

SIK)|A] 16 J(K) BV < I
then
O mi o2 T
a7) = 3(5) < (1 T2 DD (1) - (1)),

Proof. By the proof of Lemma [2] we have

J(K) - J(K")
=2t/ (K — K') Eg] — tr[2x/ (K — K')TR(K — K')]
= dntr(C Sk EREr) — 4n* tr(Sx Y g Sk Eje REK)
> dntr(SxExExYk) — 4|2k — Skl tr(Sx B Ex) — 402 || Sk | | R tr(Ex Eje Ex S )

Sk — %
> dntr(SxEfExSk) — 417”0’(_(25” tr(Sxk B ExSk) — 42| Sk || Rl tr(Sx Ef Ex k)
_ Ex —Ek] T
=4n |1 nZx R ) tr(Vi J(K) Vi J(K))
Umin(EK)
Tmin(R) 0 (DDT) [k — Xk
> 4 min 1-— — / — *M).
> 4n ISl oo (DDT) nlEx RN ) (J(E) = J(K™))



The condition on 7 ensures

(Q)Umin(DDT)

Omin
K" - K| < :
4J(K)|B||

so by Lemma [A75]
IZx =Bkl _, J(K) ’
Umin(DDT) = Umin(Q)Jmin(DDT)
with the assumed 7. Then

IBIIIV I (K| <

)

g

K - (DDT K ,
Sl < ISkl + (S5 — Sxll < LE) | amin(DDT) - JE) [P
12| < 12kl + Xk K|

Umin(Q) 4 o Umin(Q) 4 ’
which implies ||Zx/ || < Sji(f(%) Hence,
Ik — Skl 1 4JER[ 1
- 2| R||>1 - —)—F— > =
o pp TR IR) 21— g —n = >
with the assumed 7. Now we have
Omin (R Urznin DDT N
) = (") 2y 2 B lDD ) (5 5) — (1),
which is equivalent to the desired conclusion. O

Theorem A.7. (Theorem [3). With an appropriate constant setting of the stepsize n in the form of

Umin(Q) T 1 1
TIPOIY( ; Omin DD 3 5 >7
(o) PP ) B ]

and number of iterations

[Zk- J(Ko) — J(K™)
N > 1
N nailin(DDT)Umin(R) Og € 7

the iterates of gradient descent enjoys
J(Ky)— J(K*) <e.

Proof. Tterating the gradient decent for N times, from Lemma we know

. Omin(R)o2, (DDT)\ ™ .
) = (7)< (172D ) — )
Therefore, if N is chosen as the above, we can make the right hand side smaller than e. O

B Proofs for Section [4]

Proposition B.1. (Proposition‘ Assume A — BK is stable. The optimal intercept b to minimize J» (K, b)
for any given K is that

V= (KQ'A" + RT'BT)(AQ™'AT + BR™'BT)la (B.1)
Furthermore, Jo (K, bX) takes the form of
Jo(K,b5) = aT(AQ*AT + BR™'BT) ta (B.2)

which is independent of K.



Proof. The problem of min, J2 (K, b) is equivalent to the following constrained optimization

wn(5) (45 ) ()
st. (A—BK)u+ (a+ Bb) =0 (B.3)

Using the Lagrangian multiplier method, we have

2M<“>+NA0, NT (“>+ao,

b b
where . . .
_(Q+K'RK —-K'R _ (A - BK)
M= < —RK R ’ N = BT '

From the first equation we get (u',b7)T = —M~'NX/2. Plugging this into the second equation, we derive
A= —2(NTM~'N)"ta. Therefore, the optimal (€, b%) is

MK
<bK) =M 'N(N"M'N)"a.

And the optimal value of J(K,b) is Jo(K,b%) =a" (NTM~1N)"ta. By some simple calculation,

M*l B Q—l _Q—lKT
- (KQl KQflKT +R1) ’

and NTM~'N = AQ 'AT + BR™'BT. Therefore, the final optimal

p* QAT —1 4T —1pTy-1
v ) = "\ kgiaT ¢ pripT) QT A T BRETE ) A

We have assumed M and NTM~'N are non-singular above. We now rigorously show that they are indeed
invertible. Specifically, if M is singular, 3z = (x| ,24 )T # 0 but 2" Mz = 0. Since Q = 0, we have z; = 0.
Since R > 0, we have —Kx; + 25 = 0, thus 2 = 0. Then we get a contradiction. If NTM~!N is singular,
Jz # 0, but Nz = 0, which leads to (A — BK )z = 0. Given that A — BK is stable, this implies z = 0, again
we get a contradiction. The proof is now complete.

O

Theorem B.2. (Theorem . With the stepsize 7 in the form of

Umin(Q) T 1 1
n = poly <70min(DD )3777 )

C(Ko) 1B IR
and number of iterations

Xkl J1(Ko) — 1 (K¥)

N > 1
= 102 (DD Jomin(R) e

the iterates of gradient descent enjoys Ji (Kn)—J1(K*) < e. If we follow b% = —(KQ 'AT+R™!BT)(AQ'AT+
BR™'BT)~la, we have

J(Kn,b5Y) — J(K*,b*) < e.
Furthermore,
|Kn — K*||p < omil>(R)omi (DD T)VE, (5N —b* |2 < Cyla)omil*(R)om! *(DDT)VE,  (B.4)

where Cy(a) = |QT*AT(AQ™'AT + BR™'BT)"1a|y is a constant depending on the intercept a.



Proof. We only need to show the bound for Ky and %~ in (B.4)). From the proof of Lemma 2, we showed
that for any K, K’,

JI(K) = JW(K') =[Sk [Ep (K — K')+ (K - K') T Er + (K — K')TR(K — K')]].
Choosing K’ = K*, since Ex~ = 0, we get
JI(K) = JJ(K*) = tr[Sg (K — K*)TR(K — K*)] > 0min(R), 0min(DD ) || Ky — K*||%.

Therefore, if (Kx,b5~) makes J(Ky,b5V) — J(K*,b*) = J1(K) — J1(K*) < ¢, we surely obtain ||[Ky —
K*|[} < 05t (R)opiy (DD )e.

min

The bound for b5V is straightforward as

65— b*|l2 < | Ky — K*[2|Q AT (AQ' AT + BR™'BT) al
< Cy(a)| Kn — K*||r < Ch(a) oyl (R)opl (DD )z .

min min

C Proofs for Section [5

Proposition C.1. (Proposition [§). Under Assumption [7] the operator A(-) = Aa(+,A;(+)) is Lo-Lipschitz,
where Lg is given in Assumption 7| Moreover, there exists a unique Nash equilibrium pair (u*,7*) of the
MFG.

Proof. Consider the linear policies 7k ;(z) = —Kx + b. Define the distance metric of the linear policy as
follows

ATK by Th by) = [ EK1 = Kall2 + [[br = ba2.- (C.1)
Then for the mapping A;(u), as the optimal K* does not depend on p, we have for any py, e € R4TF,
d(Ar (1), Aa(p2)) = ||bT,u - 53,u||2
<IK' QAT+ RBT o[ (AQ AT + BRTBT) T A| I — pzll
+||(4@ AT + BRT'BT) B i1 — pzll2)
< Li([e = p2elle + 11, — p2ull2) = Lallpn — pall2 .- (C.2)

For the mapping Ao (i, 7), with the same optimal policy 7 € IT under some p € R4t*_ for any p, pp € RITF,
it holds that

|A2(pr, m) — Ao(p2, m)||2 = Hﬂnew,z(ﬂl) - Nnew,r(/i2)||2 =+ ”/‘new,u(ﬂl) - /‘new,u(ﬂ2)”2
< (A= BE*) ' Allallpre — p2ll2
+ (A= BE*) "' Blla|lp1,u — p2,ull2
+[|E* (A~ BE) " All2|l e — pizll2
+ K" (A= BE*) ' Bllalp1,u — p2,ull2
|2 + It — p2,ull2) = Lallpy — pofl2.- (C.3)

< Lo(|lp1,5 — H2,z



With the same mean-field variable u, since any two optimal policies m; and 7o share the same K*, we also
have the following bound

A2 (g, m1) = Ao (p, m2)l2 < (H(A = BE*)7'Bllz + |1 + K*(A - BK*)*IBllz) [[bmy = br, [l2
= La||br, = br, |2 (C.4)

Therefore, combining (C.2). (C.3), (C.4), we obtain for any p1, s € R4TE,

[A(1) — Ap2) 2 = [[A2(p1, Ar(p1)) — Aa(pa, Ar(p2)) 2
< A2, Ar(pa)) = Ao(pa, A (p2))ll2 + [[A2(p1, Ar(p2)) — Az(pz, Ar(p2)) |2
< Ls d(Ar(pa), A (p2)) + Lol — pefl2
< (L1L3 + La) |1 — p2ll2 = Lo [[p1 — pzll2 - (C.5)

So given the assumption that Ly < 1, the operator A(-) is a contraction. By Banach fixed-point theorem, we
conclude that A(-) has a unique fixed point, which gives the unique Nash equilibrium pair. This completes
the proof of the proposition.

O

Theorem C.2. (Theorem E[) For a sufficiently small tolerance 0 < & < 1, we choose the number of iterations
S in Algorithm [I] such that

x| a1
5 > a7 ©6)
For any s =0,1,...,5 — 1, define
ey = min {272|BI;2|(A - BK*) 32 Cy(us) %%, (c.7)
2254 LuCy (1) + 20k (12)) 262, 62}  Oenin(R)0enin(DDT) (C.8)
where
Cyps) = IQ'AT(AQ™T AT + BR™'BT) a2, (C.9)
Cic(pts) = (.12 + (1 + Lz 12) 1 Bll2)
(1A = BE) M+ (L K 2) (A = BE*) " [3I1B2) (C.10)

In the s-th policy update, we choose the stepsize 1 as in Theorem [5| and number of iterations

|Z k- Jpot (Kr,) = 1 (K7)
NS > 1 S S Sy ,
= 10y (DD T)omin(R) o8 s
such that J, (Kr,,,,05,,) — Ju, (K*, b}, ) < es where K*, by are parameters of the optimal policy 7}, =

Ay (ps) generated from mean-field state/action ts, Ju,(Kr,br) = Ju,(7) is defined in the drifted MFG
problem .7 and Jy,, 1(K5) is defined in (14) corresponding to J, (K, br). Then it holds that

s —p'lla <&, 1Kz = K¥llp <&, lbrg = 0%[l2 < (14 Ly)e. (C.11)

Here p* is the Hash mean-field state/action, K, b, are parameters of the final output policy mg, and
K* b* are the parameteris of the Nash policy 7* = A;(u*).



Proof. Define p},; = A(us) as the mean-field state/action generated by the optimal policy 7, = A1 (us).
Then by and (20)), we know that p} , = (u;‘H’mT,u:H’uT)T, and

Wipre = —(A = BE")TH(Bb, +d..),
Wiirw = b+ K*(A—BK*)"\(Bb, +d,,).

Therefore, by triangle inequality,
se1 = 1 ll2 < llpssr = pegalle + iy — p¥lla = By + Es. (C.12)

Next we bound F; and F», separately.
The bound for Es is straighforward. From Proposition [8] we have

By = |1 = 1¥ll2 = [[AGks) = A2 < Lollug — 17ll2

where Lo = L1L3 + Lo is defined in Assumption m
The bound for F; is more involved.

By = lpst1 — pssille = ltst1e — tssrzlle + [ pst1u — 511 ull2

< (I(A=BE") " Blla + |l + K*(A= BK*)™Bll2) b, — b},

2

+|1Bbr, ., + @2 (I(A = BE,,,) ™ = (A= BE*) |

+ || Kpo (A= BE, )" — K*(A - BK*)’1H2) —F 4+ F,.

From Theorem we have [|br,,, —b% [l2 < Cb(/‘S)UI;iln/Q(R)J;nln/Q(DDT)\/a’ where Cy(115) = |Q AT (AQ*AT +
BR™'BT)"'a,. |l2. So

Fy < LsCylps)on /2 (Ryo /(DD T) /2, . (C.13)

min

Recall that Ly = [[(A — BK*)™1B|j2 + ||[I + K*(A — BK*)"1B]|3 is defined in Assumption [7] Now let us
bound F5.
Firstly,
2 < ||Bb,, +ap.ll2 + | Bll2llbr,, — b, [|2
< (&, ll2 + Lal Bllallsll2) + [ Bll2Co(pts) ot *(R)omt! 2(DDT) /2
< e llz + (Lillpsllz + DI Bll2,

|Bbn,., + &,

if we choose e such that Cb(us)JI;ilr{2 (R)a;iln/z(DDT)\/?S < 1. The second inequality is due to L;-Lipschitz
of Aq(+). Secondly,

I(A = BEx, )7 = (A= BE") Y2 < (A = BKx )7 2ll(A = BE*) 7 2| B(Kr, ., — K72

Therefore,

(A = BE*) 3l Bll2l1 K, — K*[l2
1= [[(A—=BE*) 2| Bll2[[ Kr, ., — K*[|2
<2[(A - BEK*) 3Bzl Kr, oy — K2,

I(A~BE, )™ — (A~ BK") ||, <

s+1

10



if we choose &, such that | (A=BE )" |lo| B2l Kr, ., —K*[|2 < [[(A=BEK*)" ]| Bll2o i * (R)orms (DDT) /&5 <

1/2 where we use the bound || K, ,, — K*|2 < O'I;i1n/2(R)U;1i1r(2 (DDT),/z, from Theorem [5| Lastly,

1K, . (A= BEr, )" = K*(A= BE")"'||2
<y = K7 |2ll(A = BEr )7 l2 + | K7||2ll(A = BER,,)™" = (A= BK*) 7'l
<Ky = K [2ll(A = BEr )7 l2 + 2 K7 ||2| (A = BEK*) T3] Blla| K,y — K72
< 2| Ky, — K7[2(A = BE™) ™ o + 2| K[| (A = BE™) ™3] Bll2]| K.y, — K2,

where the last inequality assumes |(A — BK*)7 2| Bll2| K=
derivations, we reach the following bound for F5

— K*||2 < 1/2 again. Combing the above

s+1

— K*|l2 < 20k (us)omi 2 (R)omi/2 (DD )/ | (C.14)

Fy <20k (ps) |1 K=

s41

where
Cuc(its) = (I, 12 + (1 + Ll 12) 1Bl ) (1A = BE*) ™ o + (1 + 1K [2)I(A = BE*) 7 [3]1Bll2) -
Combining the bounds (C.13]) and (C.14)), we have

E1 < (LsCy(ps) + 2Ck (1)) ot > (R)omi! *(DD 1) /B .

Finally, we hope to choose ¢, such that F; < €-27°~2, which will be sufficient to prove the theorem. Therefore,
we just need to set €, as follows

o = min {272 B, (4 = BK)™ ;2 Colp) >,
27257 (LsCy(ps) + QCK(MQ))—%Z} - Omin(R)Tmin(DDT) .
With the bounds of E; and E5, we have shown from that
lps+1 = w*llz < Lollps — u*ll2 +€-27°72. (C.15)

Iterating over s and noting that Ly < 1, we have

s = 1*ll2 < L§llmo — 1|2 + /2.

Therefore, if we choose S > log(2||po — p*||2 - €71)/log(1/Lo), we have ||ps — p*|]2 < e.
Finally we show the bounds for K., and b,,. Since K* does not depend on us, for any iteration s
including the last iteration S, we directly get

1Krs = K*||p < o (R)opi 2(DDT) /5 <&, (C.16)

from Theorem [5| By the triangle inequality,
[brs = b"ll2 < [|brs — bygll2 + 11055 — 07|z
< Co(ps)omin” (R)oi*(DDT)V/Es + Lillus — p° 2
< (14 Lq)e, (C.17)

where the second inequality comes from Theorem [5| and the last inequality comes from the choice of €g. Thus
we now complete the proof of the theorem.
O
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