
Global Convergence of Policy Gradient for Linear-Quadratic
Mean-Field Control/Game in Continuous Time

Weichen Wang 1 Jiequn Han 2 Zhuoran Yang 3 Zhaoran Wang 4

Abstract
Recent years have witnessed the success of multi-
agent reinforcement learning, which has moti-
vated new research directions for mean-field con-
trol (MFC) and mean-field game (MFG), as the
multi-agent system can be well approximated by
a mean-field problem when the number of agents
grows to be very large. In this paper, we study
the policy gradient (PG) method for the linear-
quadratic mean-field control and game, where we
assume each agent has identical linear state transi-
tions and quadratic cost functions. While most re-
cent works on policy gradient for MFC and MFG
are based on discrete-time models, we focus on a
continuous-time model where some of our analyz-
ing techniques could be valuable to the interested
readers. For both the MFC and the MFG, we pro-
vide PG update and show that it converges to the
optimal solution at a linear rate, which is verified
by a synthetic simulation. For the MFG, we also
provide sufficient conditions for the existence and
uniqueness of the Nash equilibrium.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) has
become a very powerful tool for learning the optimal policy
of a complicated system, with many successful applications
including playing games achieving potential superhuman
performance, such as Atari (Mnih et al., 2013), GO (Sil-
ver et al., 2016; 2017), Poker (Heinrich & Silver, 2016;
Moravčı́k et al., 2017), multiplayer online video games Dota
(OpenAI, 2018) and StarCraft (Vinyals et al., 2019), and
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more realistic real-world problems, such as robotic control
(Yang & Gu, 2004), autonomous driving (Shalev-Shwartz
et al., 2016), and social dilemmas (de Cote et al., 2006;
Leibo et al., 2017; Hughes et al., 2018). The above are just
some illustrative examples. More generally, RL has been
applied to design efficient algorithms for decision making
to minimize the long-term expected overall cost through
interacting with the environment sequentially.

On a separate line of research, the subject of the optimal
control assumes knowledge of the system dynamics and the
observed reward/cost function, and studies the existence
and uniqueness of the optimal solution. Extensive litera-
ture extends this area from the most basic setting of the
linear-quadratic regulator problem (Willems, 1971; Bert-
sekas, 1995; Anderson & Moore, 2007) to the zero-sum
game (Engwerda, 2005; Zhang, 2005) and to the multi-
agent control/game (Egerstedt & Hu, 2001; Parsons &
Wooldridge, 2002; Shamma, 2008; Semsar-Kazerooni &
Khorasani, 2009; Dimarogonas & Johansson, 2010). How-
ever, the multi-agent control/game is typically computation-
ally intractable for a large real-world problem, as the joint
state and action spaces grow exponentially in the number of
agents. Mean-field control/game proposed by (Huang et al.,
2003; 2006; Lasry & Lions, 2006a;b; 2007) can be viewed
as an approximation to the multi-agent control/game when
the number of agents grows to infinity. In mean-field con-
trol/game, each agent shares the same cost function and state
transition, which depend on other agents only through their
aggregated mean effect. Consequently, each agent’s optimal
policy only depends on its own state and the mean-field
state of the population. This symmetry across all agents sig-
nificantly simplifies the analysis. Mean-field control/game
has already found a lot of meaningful applications such
as power grids (Minciardi & Sacile, 2011), swarm robots
(Fang, 2014; Araki et al., 2017) and financial systems (Zhou
& Li, 2000; Huang & Li, 2018).

Although the traditional optimal control approach lays a
solid foundation for theoretical analysis, it fails to adapt
well to the modern situation where we may have a huge
system or complicated environment to explore. Therefore,
recent years have witnessed increased interest in applying
the RL techniques to various optimal control settings. See
(Fazel et al., 2018; Zhang et al., 2019; Bu et al., 2019; Elie
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et al., 2020) for some examples. Specifically, this paper fo-
cuses on the RL technique of policy gradient (Sutton et al.,
2000; Kakade, 2002; Silver et al., 2014), where we update
the policy following the gradient of the cost function, and
the setting of the linear-quadratic mean-field control/game
(MFC/MFG), where we assume each agent has identical
linear state transition and quadratic cost function. The MFC
differs from the MFG in that the former allows all the agents
to directly control the mean-field state and collaborate in or-
der to maximize the social welfare together, while the latter
can only allow each agent to make an individual decision
with a guess on the mean-field output, hoping to achieve the
Nash equilibrium of the system. The paper aims to show
that policy gradient methods can achieve a desired linear
convergence for both MFC and MFG. We follow the tra-
ditional optimal control setting for simplicity and choose
the model-based approach to better present the theoretical
results and algorithm. The corresponding model-free al-
gorithm to estimate the gradient can be derived similarly
following the works such as (Fazel et al., 2018; Carmona
et al., 2019; Fu et al., 2019).

Many of the recent stochastic mean-field control/game litera-
ture are based on the continuous-time models, e.g. (Bensous-
san et al., 2013; Cardaliaguet & Hadikhanloo, 2017; Car-
mona et al., 2018), where the main focus is on characterizing
the properties of the optimal solution through solving a pair
of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck (FP)
equations, rather than designing provably efficient learning
algorithms. However, new developments on policy gradi-
ent algorithms for MFC and MFG are mainly based on
discrete-time models, e.g. (Elliott et al., 2013; Guo et al.,
2019; Carmona et al., 2019; Fu et al., 2019). One reason
is that discrete-time models can be more straightforward
to analyze. For example, (Fazel et al., 2018) pioneered the
techniques to show the theoretical global convergence of PG
for the classical linear-quadratic regulator (LQR) in discrete
time. One contribution of the current paper is to extend
those techniques to the setting of continuous-time stochastic
models.

We will organize the paper as below. In Section 2, we re-
view the continuous-time classical LQR problem and show
that the PG converges to the optimal solution at a linear
rate, with techniques designed for analyzing continuous
stochastic dynamics. In Section 3, we formulate the MFC
problem and reveal that with some reparametrization, MFC
can be readily transformed into a classical LQR problem.
The MFG however is much more involved to study, so we
present the drifted LQR problem first in Section 4 as an
intermediate step towards analyzing PG for MFG. Last but
not least, in Section 5 we provide an algorithm for solving
MFG which provably also enjoys the linear convergence
rate. The algorithm naturally contains two update steps:
for a given mean-field state, each agent seeks the best re-

sponse by solving a drifted LQR problem; then to find the
Nash equilibrium, we update the mean-field state assuming
each agent follows the best strategy. We will define the
Nash equilibrium more concretely and provide sufficient
conditions for its existence and uniqueness in Section 5 as
well. Finally, we demonstrate our theoretical results with
synthetic simulations in Section 6 and conclude the paper
with some discussions in Section 7.

Notations. For a matrix M , we denote by ‖M‖2
(or ‖M‖), ‖M‖F the spectral and Frobenius norm,
σmin(M), σmax(M) its minimum and maximum singular
value, and tr(M) the trace ofM whenM is a square matrix.
Let 〈M,N〉 = tr(M>N). We use ‖α‖2 (or ‖α‖) to repre-
sent the `2-norm of a vector α. For scalars a1, . . . , an, we
denote by poly(a1, . . . , an) the polynomial of a1, . . . , an.

2. Linear-Quadratic Regulator
As the simplest optimal control problem, linear quadratic
regulator serves as a perfect baseline to examine the perfor-
mance of reinforcement learning methods. Viewing LQR
from the lens of Markov decision process (MDP), the state
and action spaces are X = Rd and U = Rk, respectively.
The continuous-time state transition dynamics is specified
as the following stochastic differential equation (SDE):

dXt = (AXt +But)dt+DdWt, (1)

where Wt is standard d-dimensional Brownian motion. We
consider the infinite-horizon time-average cost that each
agent aims to minimize

lim sup
T→∞

E

[
1

T

∫ T

0

c(Xt, ut)dt

]
,

X0 ∼ µ0, c(x, u) = x>Qx+ u>Ru,

where the initial state X0 is assumed to be sampled from
the initial distribution µ0. The A ∈ Rd×d, B ∈ Rd×k,
D ∈ Rd×d, Q ∈ Rd×d, R ∈ Rk×k are matrices of proper
dimensions with Q,R � 0.

It is known that the optimal action are linear in the corre-
sponding state (Anderson & Moore, 2007; Bertsekas, 1995).
Specifically, the optimal actions satisfy u∗t = −K∗Xt

for all t ≥ 0, where K∗ ∈ Rk×d can be written as
K∗ = R−1B>P ∗, with P ∗ being the solution to the con-
tinuous time algebraic Riccati equation

A>P ∗ + P ∗A> − P ∗BR−1B>P ∗ +Q = 0. (2)

2.1. Ergodic Cost and Relative Value Function

Inspired by the form of the optimal policy, we consider the
general linear policy ut = −KXt, where K ∈ Rk×d is the
parameter to be optimized. The state dynamics becomes

dXt = (A−BK)Xtdt+DdWt. (3)
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We assume A− BK is stable1, that is the real parts of all
the eigenvalues of A−BK are negative. Denote the invari-
ant distribution of (3) as ρK . It is a Gaussian distribution
N(0,ΣK), where ΣK satisfies the continuous Lyapunov
equation

(A−BK)ΣK + ΣK(A−BK)> +DD> = 0. (4)

Then the associated ergodic cost J(K) and the relative value
function VK(x) can be expressed as

J(K) := EXt∼ρK [c(Xt, ut)]

= EXt∼ρK [X>t (Q+K>RK)Xt]

=
〈
Q+K>RK,ΣK

〉
,

(5)

VK(x) := E
[∫ ∞

0

[c(Xt, ut)− J(K)]dt |X0 = x

]
.

Using dynamic programming, we have the Hamilton-Jacobi-
Bellman (HJB) equation for VK(x)

c(x,−Kx)− J(K) + [(A−BK)x]>∇VK(x)

+
1

2

〈
∇2VK(x), DD>

〉
= 0.

(6)

Assuming the ansatz VK(x) = x>PKx+ CK with a sym-
metric PK and plugging it into (6), we have

xT (Q+K>RK)x− J(K) + 2x>(A−BK)>PKx

+
〈
PK , DD

>〉 = 0.

This implies the following two equations need to be valid at
the same time

(A−BK)>PK +PK(A−BK)+Q+K>RK = 0, (7)

J(K) =
〈
PK , DD

>〉. (8)

To see it is possible, notice that the continuous Lyapunov
equation (7) has a well-defined solution PK if A−BK is
stable2, and it also satisfies (8) since combining (4)(5)(7)
we find

J(K) =
〈
Q+K>RK,ΣK

〉
= − tr[((A−BK)>PK + PK(A−BK))ΣK ]

= − tr[PK(ΣK(A−BK)> + (A−BK)ΣK)]

=
〈
PK , DD

>〉.
Therefore if A−BK is stable, there exists a well-defined
PK satisfying (7)(8) simultaneously. Note that by definition
Ex∼ρK [VK(x)] = 0, so the constant term in VK(x) can be
determined as

CK = Ex∼ρK [x>PKx] =
〈
PK ,ΣK

〉
.

1Actually, we only require a stable initial K0 in the policy gra-
dient method, as long as the step size η is small, we can guarantee
that all K’s following policy gradient descent will be stable. See
Section 2.2 and Lemma A.5 in the supplementary material.

2Please refer to Lemma A.1 in the supplementary material and
the reference therein.

2.2. Policy Gradient and Convergence

To implement the gradient descent method on J(K), with
a fixed stepsize η, we follow K ← K − η∇KJ(K). The
following proposition gives out the explicit formula for
∇KJ(K).

Proposition 1. (Expression of the gradient).

∇KJ(K) = 2(RK −B>PK)ΣK = 2EKΣK ,

where we define EK := RK −B>PK .

The proof of Proposition 1 can be found in Appendix A
of the supplementary material (Proposition A.3). With the
above explicit formula for policy gradient, we present an
upper bound for J(K) − J(K∗) below, which shows the
cost function is gradient dominated (Karimi et al., 2016).

Lemma 2. (Gradient domination).

J(K)− J(K∗) ≤ ‖ΣK
∗‖ tr(∇KJ(K)>∇KJ(K))

σmin(R)σ2
min(DD>)

.

Lemma 2 indicates that J(·) is regular in the sense that,
despite nonconvex, all stationary points of J(·) are global
minima. This property is essential in establishing the linear
convergence of policy gradient. Although the current paper
only focuses on the LQ setting, as a first step towards un-
derstanding policy gradient for continuous-time control, the
analysis could be generalized beyond the LQ setting for a
regular cost function.

The following theorem is the main result for this section,
revealing that the policy gradient method for the continuous-
time LQR achieves linear convergence rate. Its proof, to-
gether with those for the above proposition and lemma can
be found in Appendix A of the supplementary material.

Theorem 3. (Global convergence of model-based gradi-
ent descent). Assume the policy gradient starts from an
initial K0 satisfying that A − BK0 is stable. With an
appropriate constant setting of the stepsize η in the form
of η = poly

(
σmin(Q)
C(K0) , σmin(DD>), ‖B‖−1, ‖R‖−1

)
, and

number of iterations

N ≥ ‖ΣK∗‖
ησ2

min(DD>)σmin(R)
log

J(K0)− J(K∗)

ε
,

the iterates of gradient descent enjoys J(KN )−J(K∗) ≤ ε.
Comparing to Theorem 7 of (Fazel et al., 2018) for the linear
convergence of policy gradient for the discrete-time LQR,
the results for the continuous case is simpler in that η does
not depend on ‖A‖ and σmin(R).
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3. Linear-Quadratic Mean-Field Control
Now we consider a linear-quadratic regulator with mean-
field interactions

dXt = (AXt+ĀE0[Xt]+But+B̄E0[ut])dt+DdWt+D̄dW 0
t ,

(9)
in which Wt,W

0
t are the idiosyncratic and common noise

modeled by two independent d-dimensional Brownian mo-
tions and E0 denotes the conditional expectation given W 0

t .
We call E0[Xt] and E0[ut] in (9) the mean-field state and
mean-field action respectively. In MFC problem, the agent
seeks for policy in terms of ut = u(Xt,E0[Xt]) to mini-
mize the following infinite-horizon time-average cost

lim sup
T→∞

E

[
1

T

∫ T

0

c(Xt,E0[Xt], ut,E0[ut])dt

]
,

X0 ∼ µ0, Q, Q̄, R, R̄ � 0 ,

c(x, x̄, u, ū) = x>Qx+ x̄>Q̄x̄+ u>Ru+ ū>R̄ū .
(10)

The discrete version of this model for MFC has been studied
in (Carmona et al., 2019). Here we consider the continuous-
time model for both MFC and MFG in this and the next
sections. Another comment is that assuming identical transi-
tion and cost may seem to be unrealistic in practice, but this
allows us to focus more on how individual agents interact
with the mean-field and to study the asymptotic limit when
the number of agents grows to infinity. This simplification
has been adopted by some recent theoretical works such as
(Elie et al., 2020; Guo et al., 2019; Carmona et al., 2019; Fu
et al., 2019)

3.1. Reparametrization

For this problem, under some suitable conditions, one can
prove the optimal control is a linear combination of Xt and
E0[Xt], see e.g. (Carmona et al., 2018). We can actually re-
cast the original MFC into a LQR problem with a larger state
space. Specifically, motivated by the form of the optimal
policy, we consider the general linear policy

ut = −K(Xt − E0[Xt])− LE0[Xt], (11)

where θ = (K,L) are the two parameter matrices to be
optimized. Denote by Y 1

t = Xt−E0[Xt] and Y 2
t = E0[Xt].

An important observation is that, under the policy (11), the
dynamics of these two processes are decoupled

dY 1
t = (A−BK)Y 1

t dt+DdWt,

dY 2
t = (A+ Ā− (B + B̄)L)Y 2

t dt+ D̄dW 0
t .

Moreover, the running cost can also be written as a quadratic
function of (Y 1

t , Y
2
t ). Therefore one can essentially opti-

mize K and L similar to the LQR, and all the theoretical
results should follow.

4. Drifted Linear-Quadratic Regulator
In this section, we extend the simplest linear SDE dynamics
to include an intercept in the drift. This extension is going to
be useful for MFG. The state transition dynamics considered
in this section is

dXt = (a+AXt +But)dt+DdWt . (12)

Each agent still aims to minimize the same quadratic cost
c(x, u) = x>Qx+ u>Ru.

4.1. Ergodic Cost

We again consider the general linear policy, but with an extra
intercept, ut = −KXt + b, where K ∈ Rk×d and b ∈ Rk
are the parameters to be optimized. The state dynamics
becomes

dXt = ((A−BK)Xt + a+Bb)dt+DdWt. (13)

The invariant distribution ρK,b of (13) is a Gaussian distri-
bution N(µK,b,ΣK), where µK,b satisfies µK,b = −(A−
BK)−1(a + Bb) and ΣK does not depend on b and still
satisfies the continuous Lyapunov equation (A−BK)ΣK +
ΣK(A−BK)> +DD> = 0. The associated ergodic cost
can be expressed as

J(K, b) := EXt∼ρK,b
[c(Xt, ut)] = J1(K) + J2(K, b) ,

(14)
where J1(K) and J2(K, b) are defined as

J1(K) =
〈
Q+K>RK,ΣK

〉
=
〈
PK , DD

>〉 ,
J2(K, b) =

(
µK,b
b

)>(
Q+K>RK −K>R
−RK R

)(
µK,b
b

)
Here J1(K) is the expected total cost in the regular LQR
problem without intercept and PK is the solution of the
continuous Lyapunov equation (7). Meanwhile, J2(K, b)
corresponds to the expected cost induced by the drift a of
the transition dynamics and the policy intercept b.

4.2. Policy Gradient and Convergence

Proposition 4. The optimal intercept bK to minimize
J2(K, b) for any given K is that

bK = −(KQ−1A>+R−1B>)(AQ−1A>+BR−1B>)−1a
(15)

Furthermore, J2(K, bK) takes the form of

J2(K, bK) = a>(AQ−1A> +BR−1B>)−1a (16)

which is independent of K.

Since minb J2(K, b) does not depend onK, it holds that the
optimal K∗ can be obtained by minimizing J1(K) similar
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to the case of no intercept, that is, updating K following
the gradient direction ∇KJ1(K). So the optimal K∗ does
not depend on the intercept a at all. Once we have the
optimal K∗, the optimal b∗ = bK

∗
is obtained by plugging

in K∗ in (15). From Proposition 1, we know ∇KJ(K) =
∇KJ1(K) = 2(RK −B>PK)ΣK .

Define µK to be the mean of the invariant density cor-
responding to ut = −KXt + bK . Then µK =
−(A − BK)−1(a + BbK) = −Q−1A>(AQ−1A> +
BR−1B>)−1a, which does not depend on K. The state
dynamics can be written as

d(Xt − µK) = (A−BK)(Xt − µK)dt+DdWt.

And the cost function J(K) = J(K, bK) = J1(K) +
a>(AQ−1A> + BR−1B>)−1a. These derivations reveal
that we can directly apply convergence theorem of the pol-
icy gradient for the classical LQR to Xt − µK . We relegate
all the proofs to Appendix B of the supplementary material.

Theorem 5. (Global convergence for drifted LQR). With
the initial A− BK0 stable and the stepsize η in the same
form as Theorem 3 and the number of iterations

N ≥ ‖ΣK∗‖
ησ2

min(DD>)σmin(R)
log

J1(K0)− J1(K∗)

ε
,

if we follow bK = −(KQ−1A> + R−1B>)(AQ−1A> +
BR−1B>)−1a, we have J(KN , b

KN ) − J(K∗, b∗) ≤ ε.
Furthermore,

‖KN −K∗‖F ≤ σ−1/2
min (R)σ

−1/2
min (DD>)

√
ε,

‖bKN − b∗‖2 ≤ Cb(a)σ
−1/2
min (R)σ

−1/2
min (DD>)

√
ε ,

where Cb(a) = ‖Q−1A>(AQ−1A>+BR−1B>)−1a‖2 is
a constant depending on the intercept a.

5. Linear-Quadratic Mean-Field Game
The linear-quadratic MFG has the same dynamics (9) and
cost function (10) as the MFC problem. But the key differ-
ence is that MFC allows all the agents to conduct the control
together, whereas in MFG each agent has to optimize its own
objective assuming a guess of the mean-field state/action.
Therefore, the ultimate goal of studying MFG is to see if
multiple agents can reach a Nash equilibrium, where given
the mean-field state/action, the policy of each agent is op-
timal and given all the agents carry out the optimal policy,
we recover exactly the same mean-field state/action.

So the idea of policy gradient for MFG is straightforward:
for any given mean-field state/action, we update policy by
following the gradient and then with the updated policy
we update the mean-field state/action. We will provide
sufficient conditions for the existence and uniqueness of

the Nash equilibrium and show that PG can converge to the
Nash equilibrium at a linear rate.

To that end, we need to study the linear-quadratic control
problem for any given mean-field state µx and mean-field
action µu, that is,

dXt = (AXt + Āµx +But + B̄µu)dt+DdWt + D̄dW 0
t ,

c(Xt, ut) = X>t QXt + µ>x Q̄µx + u>t Rut + µ>u R̄µu,

Jµx,µu(π) = lim sup
T→∞

E

[
1

T

∫ T

0

c(Xt, ut)dt

]
, X0 ∼ µ0,

(17)
where ut is the action vector generated by playing policy
π. Define µ = (µ>x , µ

>
u )> ∈ Rd+k. We hope to find the

optimal policy π∗µ = infπ∈Π Jµ(π). This is clearly a drifted
LQR problem with an intercept Āµx + B̄µu in the drift. As
in the drifted LQR, we consider the class of linear policies
with an intercept, that is,

Π = {π(x) = −Kx+ b : K ∈ Rk×d, b ∈ Rk}.

Hence it suffices to find the optimal policy π∗µ within Π.

Now, we introduce the definition of Nash equilibrium (Saldi
et al., 2018). The Nash equilibrium is obtained if we can
find a pair (π∗, µ∗), such that the policy π∗ is optimal for
each agent when the mean-field state/action is µ∗, while all
the agents following the policy π∗ generate the mean-field
state/action µ∗ as t→∞. To present its formal definition,
we define Λ1(µ) as the optimal policy in Π given the mean-
field µ, and define Λ2(µ, π) as the mean-field state/action
generated by the policy π given the current mean-field µ as
t→∞.
Definition 6. (Nash Equilibrium Pair). The pair (µ∗, π∗) ∈
Rd+k ×Π constitutes a Nash equilibrium pair of (17) if it
satisfies π∗ = Λ1(µ∗) and µ∗ = Λ2(µ∗, π∗). Here µ∗ is
called the Nash mean-field state/action and π∗ is called the
Nash policy.

5.1. Existence and Uniqueness of Nash Equilibrium

Let us first rewrite (17) as follows:

dXt = (ãµ +AXt +But)dt+ D̃dW̃t,

c(Xt, ut) = X>t QXt + u>t Rut + C̃µ,
(18)

where ãµ = Āµx + B̄µu is the intercept in the drift,
D̃ = (D, D̄) ∈ Rd×2d is an expanded matrix, W̃t =

(W>t ,W
0
t
>

)> ∈ R2d is 2d-dimensional Brownian motion,
C̃µ = µ>x Q̄µx+µ>u R̄µu is a constant. So this is exactly the
drifted LQR problem we considered in (12) with the same
quadratic cost function ignoring the constant term.

Therefore, for the mapping π∗µ = Λ1(µ), from (15) in Propo-
sition 4, we know π∗µ(x) = −K∗x+ b∗µ where

b∗µ = −(K∗Q−1A>+R−1B>)(AQ−1A>+BR−1B>)−1ãµ .
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Note that K∗ is fixed for all µ. For the mapping µnew =
Λ2(µ, π) = (µ>new,x, µ

>
new,u)> where π(x) = −Kπx+bπ , it

is not hard to see the new mean of the mean-field state/action
should be

µnew,x = −(A−BKπ)−1(Bbπ + α̃µ) , (19)

µnew,u = bπ +Kπ(A−BKπ)−1(Bbπ + α̃µ) . (20)

With the more detailed formulas for the mapping Λ1 and
Λ2, we then establish the existence and uniqueness of the
Nash equilibrium. The following conditions are required.

Assumption 7. We assume the following conditions hold.

(i) The continuous-time Riccati equation A>P ∗ +P ∗A> −
P ∗BR−1B>P ∗ +Q = 0 admits a unique symmetric posi-
tive definite solution P ∗.

(ii) The optimal K∗ = R−1B>P ∗. It holds that L0 =
L1L3 + L2 < 1, where

L1 = ‖K∗Q−1A> +R−1B>‖ ·max
{∥∥∥Γ−1Ā

∥∥∥,∥∥∥Γ−1B̄
∥∥∥} ,

L2 = max
{
‖∆A‖+ ‖K∗∆A‖, ‖∆B‖+ ‖K∗∆B‖

}
,

L3 = ‖(A−BK∗)−1B‖+ ‖I +K∗(A−BK∗)−1B‖ ,

and Γ = AQ−1A> + BR−1B>, ∆A = (A − BK∗)−1Ā
and ∆B = (A−BK∗)−1B̄.

Proposition 8. (Existence and Uniqueness of Nash Equi-
librium). Under Assumption 7, the operator Λ(·) =
Λ2(·,Λ1(·)) is L0-Lipschitz, where L0 is given in Assump-
tion 7. Moreover, there exists a unique Nash equilibrium
pair (µ∗, π∗) of the MFG.

Note that Assumption 7 (ii) essentially assumes a contrac-
tive mapping of Λ(·). This condition is solely for technical
purpose, without which it is not clear to us whether Nash
equilibrium for the MFG problem even exists. That being
said, we hope to argue that the assumption is not very restric-
tive. For example, if we do not have the mean-field effect,
i.e. Ā = B̄ = 0, then L1 = L2 = 0 and the Lipschitz con-
stant L0 = 0. This reduces to the regular LQR problem for
each agent and the Nash equilibrium exists trivially since no
agents interact at all. This condition in some sense requires
that the mean-field effect cannot be too strong to adversely
affect the existence of the Nash equilibrium.

5.2. Policy Gradient Algorithm and Convergence

To achieve the Nash equilibrium, the natural algorithm is
that (i) for any given mean-field state/action µs, we solve
the drifted LQR problem in (17) by policy gradient up-
date until sufficient accuracy is achieved, say Jµs

(πs+1)−
Jµs

(π∗µs
) ≤ εs where π∗µs

= Λ1(µs) and εs will be deter-
mined later; (ii) with the given πs+1, we update the mean-
field state/action µs+1 by µs+1 = Λ2(µs, πs+1) where the

Algorithm 1 Policy Gradient for Mean-Field Game
Input: Total number of iterations S, stepsize η, number
of iterations Ns for each policy update;
Initial mean-field state/action µ0 = (µ>0,x, µ

>
0,u)>, initial

policy π0 with parameters Kπ0
and bπ0

.
Output: Pair (πS , µS).

1: for s = 0, 1, . . . , S − 1 do
2: Policy Update:
3: K0 = Kπs

; ãµs
← Āµs,x + B̄µs,u;

4: for n = 0, 1, . . . , Ns − 1 do
5: Kn+1 ← Kn − 2η(RKn −B>PKn)ΣKn ;
6: end for
7: Kπs+1

← KNs ;
8: bπs+1

= −(Kπs+1
Q−1A> +R−1B>)(AQ−1A> +

BR−1B>)−1ãµs
;

9: πs+1(x) = −Kπs+1x+ bπs+1 ;
10: Mean-Field State/Action Update:
11: µs+1,x ← −(A−BKπs+1

)−1(Bbπs+1
+ α̃µs

);
12: µs+1,u ← bπs+1

+Kπs+1
(A−BKπs+1

)−1(Bbπs+1
+

α̃µs
);

13: end for

detailed formulas for Λ2(·, ·) are provided in (19) (20). We
summarize the above procedure in Algorithm 1.

The following theorem shows the linear convergence of
Algorithm 1 to the MFG Nash equilibrium. The proof is
deferred to Appendix C in the supplementary material.
Theorem 9. (Convergence of Algorithm 1). For a suffi-
ciently small tolerance 0 < ε < 1, we choose the number of
iterations S in Algorithm 1 such that

S ≥ log(2‖µ0 − µ∗‖2 · ε−1)

log(1/L0)
.

For any s = 0, 1, . . . , S − 1, define

εs = min
{

2−2‖B‖−2
2 ‖(A−BK∗)−1‖−2

2 , Cb(µs)
−2ε2,

2−2s−4(L3Cb(µs) + 2CK(µ2))−2ε2, ε2
}

× σmin(R)σmin(DD>) ,

where

Cb(µs) = ‖Q−1A>(AQ−1A> +BR−1B>)−1ãµs‖2 ,

CK(µs) =
(
‖α̃µs

‖2 + (1 + L1‖µs‖2)‖B‖2
)

×
(

(1 + ‖K∗‖2)‖(A−BK∗)−1‖22‖B‖2

+ ‖(A−BK∗)−1‖2
)
.

Assume A−BKπ0
is stable. In the s-th policy update, we

choose η as in Theorem 3 and number of iterations

Ns ≥
‖ΣK∗‖

ησ2
min(DD>)σmin(R)

log
Jµs,1(Kπs

)− Jµs,1(K∗)

εs
,
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Figure 1. Linear Convergence of Policy Gradient for the MFC
and the MFG. The orange curve for the MFC uses the ini-
tial values K = 0, L = 0, the learning rate η = 0.01 and
plots log(J(K,L) − J(K∗, L∗)) against the iterations n =
1, 2, . . . , 200. The blue curve for the MFG runs Algorithm 1 with
the initial values K = 0, b = 0, µx = 0.5(1, 1, 1)>, µu = 0.5,
the learning rate η = 0.005, the total number of iterations S = 10
for the outer loop, and for each s = 1, . . . , 10, the number of
iterations Ns = 20 for the inner policy gradient updates. It plots
log(Jµs(Kπs , bπs)− Jµ∗(K∗, b∗)) against s = 1, 2, . . . , 10.

such that Jµs
(Kπs+1

, bπs+1
) − Jµs

(K∗, b∗µs
) ≤ εs where

K∗, b∗µs
are parameters of the optimal policy π∗µs

=
Λ1(µs) generated from the mean-field state/action µs,
Jµs(Kπ, bπ) = Jµs(π) is defined in the drifted MFG prob-
lem (17), and Jµs,1(Kπ) is defined in (14) corresponding
to Jµs

(Kπ, bπ). Then it holds that

‖µS − µ∗‖2 ≤ ε, ‖KπS
−K∗‖F ≤ ε,

‖bπS
− b∗‖2 ≤ (1 + L1)ε.

Here µ∗ is the Nash mean-field state/action, KπS
, bπS

are
parameters of the final output policy πS , and K∗, b∗ are the
parameteris of the Nash policy π∗ = Λ1(µ∗).

Theorem 9 shows the linear convergence of the proposed Al-
gorithm 1. This confirms that for the continuous-time MFG,
policy gradient can achieve the ideal linear convergence
performance in finding the Nash equilibrium. This lays an
important theoretical foundation for applying modern re-
inforcement learning techniques to the general continuous
mean-field game.

6. Simulation for Mean-Field Control / Game
In this section, we provide numerical results to demonstrate
the linear convergence of the policy gradient algorithms for
the mean-field control and game, and make an empirical

comparison of them. We consider the following setting:

A =

 −1 0.1 −0.05
0.05 −1 −0.05

0 0 −1

 , B =

−0.5
−0.5

0.8

 ,

and Ā = −0.5A, B̄ = −0.5B,D = D̄ = I3, Q =
0.1I3, Q̄ = 0.05I3, R = 1, R̄ = 2. We can manually
check that the conditions in Assumption 7 hold. Firstly,
the continuous-time Riccati equation indeed has the follow-
ing unique solution

P ∗ =

 0.049798 0.003367 −0.000802
0.003367 0.049963 −0.000824
−0.000802 −0.000824 0.049272

 .

The second condition also holds with L1 = 0.0458, L2 =
0.8752, L3 = 2.0201 and L0 = 0.9678 < 1.

For the MFC, we start iterations from K = 0, L = 0, which
are indeed stabilizing. We chose η = 0.01 and let the PG
run for N = 200 updates. The linear convergence can be
clearly seen from the orange curve of Figure 1, where we
plot log(J(K,L) − J(K∗, L∗)) against n = 1, 2, . . . , N .
For the MFG, we start iterations from K = 0, b = 0, µx =
0.5(1, 1, 1)>, µu = 0.5, and set η = 0.005, the total num-
ber of iterations S = 10 for the outer loop, and for each
s = 1, . . . , 10 the number of iterations Ns = 20 for the
inner policy gradient updates. The blue curve of Figure 1
shows log(Jµs

(Kπs
, bπs

)− Jµ∗(K∗, b∗)) against total iter-
ations sNs for s = 1, 2, . . . , 10. The linear convergence
of the algorithm matches well with our theoretical results.
Note that here J(K,L) is the cost of the MFC problem (10),
while Jµs

(Kπs
, bπs

) is the cost of the drifted LQR problem
(17) corresponding to the MFG. It is not hard to calcu-
late that J(K∗, L∗) = 0.5986 and Jµ∗(K∗, b∗) = 0.2981,
where Jµ∗ is smaller as it ignores the dynamics of the con-
ditional mean E0[Xt],E0[ut].

Since the mean-field control and game share the same model
dynamics and cost function, we compare the total cost they
achieve in Figure 2. As the target of the MFC is indeed
minimizing the total cost, the effective control of policy
gradient guarantees that the cost of the MFC (orange curve)
converges to the optimal level at a linear rate. However, each
agent of the MFG only cares about minimizing the cost with
a given estimate of the mean-field state/action, i.e. solving
the drifted LQR problem. Even when the estimate µs gets
very close to the optimal µ∗ and the Nash equilibrium is
approximately obtained, the total cost of the MFG (blue
curve) is still much larger than the optimal level. This is
expected in MFG; obviously, agents have no control over
the mean-field state and do not have access to Q̄, R̄ at all.

Last but not least, we empirically study the impact of L0

on the convergence rate. Let us now take Ā = θA, B̄ =
θB. From Algorithm 1, it is not hard to calculate ãµs+1 =
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Figure 2. Total Cost of the MFC and the MFG. The cost of the
MFC (orange curve) converges to the optimal level (green line)
at a linear rate, while the cost of the MFG (blue curve) fails to
converge to the optimal level, although Nash equilibrium has been
reached (Figure 1 shows the convergence). For the MFG, we get
the cost every Ns = 20 inner policy gradient iterations.

Āµs+1,x + B̄µs+1,u = θ(Aµs+1,x + Bµs+1,u) = −θãµs
.

So in order for the algorithm to converge, we require θ ∈
(−1, 1), where L0 can be as large as 1.9 > 1. This tells
us L0 < 1 in Assumption 7 is only a sufficient condition
to guarantee linear convergence of PG for MFG and may
be further relaxed; however, we cannot expect arbitrarily
large L0 for the convergence theory to hold. In Figure 3,
we plot the same cost curves of MFC/MFG as Figure 1
for θ ∈ {−0.95,−0.35, 0.25, 0.85}, correspondingly L0 ∈
{1.84, 0.68, 0.48, 1.65}. As expected, the convergence of
MFC almost has no change with different θ’s or L0’s. For
MFG, smaller L0 (and L1) leads to faster convergence (both
smaller intercept and steeper slope) as Theorem 9 reveals.

7. Discussions and Conclusions
The paper aims to study the policy gradient method for the
continuous-time MFC and MFG problems under the same
framework. Specifically, we provided the linear conver-
gence of PG algorithm for each problem setting. Although
the paper is theory-oriented, we demonstrated the theory
through a simple simulation, and made the comparison be-
tween the mean-field control and game. The key observation
is that the MFG accumulates a larger total cost compared to
the MFC, although the Nash equilibrium has been reached.

We hope to comment on the limitations of the current work.

• Firstly, our paper focuses on model-based PG for clear-
ness of theoretical analysis. Extension to model-free is
rather standard by zeroth-order optimization. Similar
to Algorithm 1 of (Fazel et al., 2018) and Algorithm 2

Figure 3. Impact of L0 on Linear Convergence of Policy Gra-
dient for MFC and MFG. We consider Ā = θA, B̄ = θB
where θ ∈ {−0.95,−0.35, 0.25, 0.85}, correspondingly L0 ∈
{1.84, 0.68, 0.48, 1.65}. For each θ, the same cost curves as Fig-
ure 1 are plotted.

of (Carmona et al., 2019), we can estimate ∇KJ(K)

by m−1
∑m
i=1 Ĵ(K + Ui) · Ui, where Ui is a random

matrix and Ĵ(K + Ui) is an estimator of J(K + Ui).
Since the trajectory of the perturbed policy K + Ui
mixes exponentially fast, J(K + Ui) can be well esti-
mated using the time-averaged cost. See (Fazel et al.,
2018; Fu et al., 2019) for more details.

• Secondly, We focus on the LQ setting as an initial
step towards understanding PG for continuous-time
control. The advantage of LQ setting is that we can
derive PG in closed form. However, the analysis can be
generalized beyond LQ setting. See discussions under
Lemma 2 for gradient dominated cost function. In
addition, other variations of the MFC and the MFG can
be considered for future research, including the risk-
sensitive mean-field setting (Tembine et al., 2013), the
robust mean-field games (Bauso et al., 2012) and the
mean-field models with partially observed information
(Saldi et al., 2019).

• Thirdly, in mean-field approximation, we do need to as-
sume permutation invariance among the agents. When
permutation invariance fails, we have to deal with a
multi-agent problem, whose complexity grows expo-
nentially as the number of agents grows. Mean-field
approximation is a common tool for alleviating such
a curse of dimensionality, and is widely applied to
problems in traffic control and finance. Such an as-
sumption may be relaxed when the agents are divided
into multiple groups and within each group the agents
are identical, see e.g. (Bensoussan et al., 2018).
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Finally, we emphasize again that directly studying continu-
ous control is indeed a practical need, especially for appli-
cations in robotics and physics, where naive discretization
could lead to exponentially large discretization error. Our
contribution is to show for the first time PG works well
with the continuous-time control, which fills the theoretical
gap, at least for the most basic setting of LQR, MFC and
MFG. Our analysis of PG convergence could be generalized
to other continuous-time control problems whose objective
functions satisfy benign properties.
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