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Abstract
We propose a new graphical model inference pro-
cedure, called SG-PALM, for learning conditional
dependency structure of high-dimensional tensor-
variate data. Unlike most other tensor graphical
models the proposed model is interpretable and
computationally scalable to high dimension. Phys-
ical interpretability follows from the Sylvester
generative (SG) model on which SG-PALM is
based: the model is exact for any observation
process that is a solution of a partial differen-
tial equation of Poisson type. Scalability follows
from the fast proximal alternating linearized min-
imization (PALM) procedure that SG-PALM uses
during training. We establish that SG-PALM con-
verges linearly (i.e., geometric convergence rate)
to a global optimum of its objective function. We
demonstrate the scalability and accuracy of SG-
PALM for an important but challenging climate
prediction problem: spatio-temporal forecasting
of solar flares from multimodal imaging data.

1. Introduction
High-dimensional tensor-variate data arise in computer vi-
sion (video data containing multiple frames of color images),
neuroscience (EEG measurements taken from different sen-
sors over time under various experimental conditions), and
recommending system (user preferences over time). Due
to the non-homogeneous nature of these data, second-order
information that encodes (conditional) dependency structure
within the data is of interest. Assuming the data are drawn
from a tensor normal distribution, a straightforward way to
estimate this structure is to vectorize the tensor and estimate
the underlying Gaussian graphical model associated with
the vector. However, such an approach ignores the tensor
structure and requires estimating a rather high dimensional
precision matrix, often with insufficient sample size. For
instance, in the aforementioned EEG application the sample
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size is one if we aim to estimate the dependency structure
across different sensors, time and experimental conditions
for a single subject. To address such sample complexity
challenges, sparsity is often imposed on the covariance Σ or
the inverse covariance Ω, e.g., by using a sparse Kronecker
product (KP) or Kronecker sum (KS) decomposition of Σ
or Ω. The earliest and most popular form of sparse struc-
tured precision matrix estimation approaches represent Ω,
equivalently Σ, as the KP of smaller precision/covariance
matrices (Allen & Tibshirani, 2010; Leng & Tang, 2012; Yin
& Li, 2012; Tsiligkaridis et al., 2013; Zhou, 2014; Lyu et al.,
2019). The KP structure induces a generative representation
for the tensor-variate data via a separable covariance/inverse
covariance model. Alternatively, Kalaitzis et al. (2013);
Greenewald et al. (2019) proposed to model inverse co-
variance matrices using a KS representation. Rudelson &
Zhou (2017); Park et al. (2017) proposed KS-structured co-
variance model which corresponds to an errors-in-variables
model. The KS (inverse) covariance structure corresponds
to the Cartesian product of graphs (Kalaitzis et al., 2013;
Greenewald et al., 2019), which leads to more parsimonious
representations of (conditional) dependency than the KP.
However, unlike the KP model, KS lacks an interpretable
generative representation for the data. Recently, Wang et al.
(2020) proposed a new class of structured graphical mod-
els, called the Sylvester graphical models, for tensor-variate
data. The resulting inverse covariance matrix has the KS
structure in its square-root factors. This square-root KS
structure is hinted in the paper to have a connection with
certain physical processes, but no illustration is provided.

A common challenge for structured tensor graphical models
is the efficient estimation of the underlying (conditional)
dependency structures. KP-structured models are gener-
ally estimated via extension of GLasso (Friedman et al.,
2008) that iteratively minimize the `1-penalized negative
likelihood function for the matrix-normal data with KP co-
variance. This procedure was shown to converge to some
local optimum of the penalized likelihood function (Yin &
Li, 2012; Tsiligkaridis et al., 2013). Similarly, Kalaitzis et al.
(2013) further extended GLasso to the KS-structured case
for 2-way tensor data. Greenewald et al. (2019) extended
this to multiway tensors, exploiting the linearity of the space
of KS-structured matrices and developing a projected prox-
imal gradient algorithm for KS-structured inverse covari-
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ance matrix estimation, which achieves linear convergence
(i.e., geometric convergence rate) to the global optimum.
In Wang et al. (2020), the Sylvester-structured graphical
model is estimated via a nodewise regression approach in-
spired by algorithms for estimating a class of vector-variate
graphical models (Meinshausen et al., 2006; Khare et al.,
2015). However, no theoretical convergence result for the
algorithm was established nor did they study the computa-
tional efficiency of the algorithm.

In the modern era of big data, both computational and statis-
tical learning accuracy are required of algorithms. Further-
more, when the objective is to learn representations for phys-
ical processes, interpretablility is crucial. In this paper, we
bridge this “Statistical-to-Computational-to-Interpretable
gap” for Sylvester graphical models. We develop a sim-
ple yet powerful first-order optimization method, based on
the Proximal Alternating Linearized Minimization (PALM)
algorithm, for recovering the conditional dependency struc-
ture of such models. Moreover, we provide the link between
the Sylvester graphical models and physical processes obey-
ing differential equations and illustrate the link with a real-
data example. The following are our principal contributions:

1. A fast algorithm that efficiently recovers the generat-
ing factors of a representation for high-dimensional
multiway data, significantly improving on Wang et al.
(2020).

2. A comprehensive convergence analysis showing lin-
ear convergence of the objective function to its global
optimum and providing insights for choices of hyper-
parameters.

3. A novel application of the algorithm to an important
multi-modal solar flare prediction problem from solar
magnetic field sequences. For such problems, SG-
PALM is physically interpretable in terms of the partial
differential equations governing solar activities pro-
posed by heliophysicists.

2. Background and Notation
2.1. Notations

In this paper, scalar, vector and matrix quantities are
denoted by lowercase letters, boldface lowercase letters
and boldface capital letters, respectively. For a matrix
A = (Ai,j) ∈ Rd×d, we denote ‖A‖2, ‖A‖F as its
spectral and Frobenius norm, respectively. We define
‖A‖1,off :=

∑
i 6=j |Ai,j | as its off-diagonal `1 norm. For

tensor algebra, we adopt the notations used by Kolda &
Bader (2009). A K-th order tensor is denoted by boldface
Euler script letters, e.g, X ∈ Rd1×···×dK . The (i1, . . . , iK)-
th element of X is denoted by X i1,...,iK , and the
vectorization of X is the d-dimensional vector vec(X ) :=

(X 1,1,...,1,X 2,1,...,1, . . . ,X d1,1,...,1, . . . ,X d1,d2,...,dk)T

with d =
∏K
k=1 dk. A fiber is the higher order analogue of

the row and column of matrices. It is obtained by fixing
all but one of the indices of the tensor. Matricization,
also known as unfolding, is the process of transforming
a tensor into a matrix. The mode-k matricization of
a tensor X , denoted by X (k), arranges the mode-k
fibers to be the columns of the resulting matrix. The
k-mode product of a tensor X ∈ Rd1×···×dK and a
matrix A ∈ RJ×dk , denoted as X ×k A, is of size
d1×· · ·×dk−1×J×dk+1× . . . dK . Its entry is defined as
(X ×k A)i1,...,ik−1,j,ik+1,...,iK :=

∑dk
ik=1 X i1,...,iKAj,ik .

For a list of matrices {Ak}Kk=1 with Ak ∈ Rdk×dk , we
define X × {A1, . . . ,AK} := X ×1 A1 ×2 · · · ×K AK .
Lastly, we define the K-way Kronecker product as⊗K

k=1 Ak = A1 ⊗ · · · ⊗ AK , and the equivalent
notation for the Kronecker sum as

⊕K
k=1 Ak =

A1 ⊕ · · · ⊕ AK =
∑K
k=1 I[dk+1:K ] ⊗ Ak ⊗ I[d1:k−1],

where I[dk:`] = Idk ⊗ · · · ⊗ Id` . For the case of K = 2,
A1 ⊕A2 = Id2 ⊗A1 + A2 ⊗ Id1 .

2.2. Tensor Graphical Models

A random tensor X ∈ Rd1×···×dK follows the tensor nor-
mal distribution with zero mean when vec(X ) follows a
normal distribution with mean 0 ∈ Rd and precision ma-
trix Ω := Ω(Ψ1, . . . ,ΨK), where d =

∏K
k=1 dk. Here,

Ω(Ψ1, . . . ,ΨK) is parameterized by Ψk ∈ Rdk×dk via
either Kronecker product, Kronecker sum, or the Sylvester
structure, and the corresponding negative log-likelihood
function (assuming N independent observations X i, i =
1, . . . , N )

−N
2

log |Ω|+ N

2
tr(SΩ), (1)

where Ω =
⊗K

k=1 Ψk,
⊕K

k=1 Ψk, or
(⊕K

k=1 Ψk

)2

for
KP, KS, and Sylvester models, respectively; and S =
1
N

∑N
i=1 vec(X i) vec(X i)T . To encourage sparsity, penal-

ized negative log-likelihood function is proposed

−N
2

log |Ω|+ N

2
tr(SΩ) +

K∑
k=1

Pλk(Ψk),

where Pλk(·) is a penalty function indexed by the tuning pa-
rameter λk and is applied elementwise to the off-diagonal el-
ements of Ψk. Popular choices for Pλk(·) include the lasso
penalty (Tibshirani, 1996), the adaptive lasso penalty (Zou,
2006), the SCAD penalty (Fan & Li, 2001), and the MCP
penalty (Zhang et al., 2010).

2.3. The Sylvester Generating Equation

Wang et al. (2020) proposed a Sylvester graphical model
that uses the Sylvester tensor equation to define a generative
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process for the underlying multivariate tensor data. The
Sylvester tensor equation has been studied in the context of
finite-difference discretization of high-dimensional elliptical
partial differential equations (Grasedyck, 2004; Kressner &
Tobler, 2010). Any solution X to such a PDE must have the
(discretized) form:

K∑
k=1

X ×k Ψk = T ⇐⇒
( K⊕
k=1

Ψk

)
vec(X ) = vec(T ).

(2)
where T is the driving source on the domain, and

⊕K
k=1 Ψk

is a Kronecker sum of Ψk’s representing the discretized
differential operators for the PDE, e.g., Laplacian, Euler-
Lagrange operators, and associated coefficients. These op-
erators are often sparse and structured.

For example, consider a physical process characterized as a
function u that satisfies:

Du = f in Ω, u(Γ) = 0, Γ = ∂Ω.

where f is a driving process, e.g., a Wiener process (white
Gaussian noise); D is a differential operator, e.g, Laplacian,
Euler-Lagrange; Ω is the domain; and Γ is the boundary
of Ω. After discretization, this is equivalent to (ignoring
discretization error) the matrix equation

Du = f .

Here, D is a sparse matrix since D is an infinitesimal op-
erator. Additionally, D admits Kronecker structure as a
mixture of Kronecker sums and Kronecker products.

The matrix D reduces to a Kronecker sum when D involves
no mixed derivatives. For instance, consider the Poisson
equation in 2D, where u(x, y) on [0, 1]2 satisfies the ellipti-
cal PDE

Du = (∂2
x + ∂2

y)u = f.

The Poisson equation governs many physical processes,
e.g., electromagnetic induction, heat transfer, convection,
etc. A simple Euler discretization yields U = (u(i, j))i,j ,
where u(i, j) satisfies the local equation (up to a constant
discretization scale factor)

4u(i, j) = u(i+ 1, j) + u(i− 1, j) + u(i, j + 1)

+ u(i, j − 1)− f(i, j).

Defining u = vec(U) and A (a tridiagonal matrix)

A =


−1 2 −1

. . . . . . . . .
. . . . . . . . .

−1 2 −1

 ,
then (A⊕A)u = f , which is the Sylvester equation (K =
2).

For the Poisson example, if the source f is a white noise
random variable, i.e., its covariance matrix is proportional
to the identity matrix, then the inverse covariance matrix
of u has sparse square-root factors, since Cov−1(u) =
(A⊕A)(A⊕A)T . Other physical processes that are gener-
ated from differential equations will also have sparse inverse
covariance matrices, as a result of the sparsity of general
discretized differential operators. Note that similar con-
nections between continuous state physical processes and
sparse “discretized” statistical models have been established
by Lindgren et al. (2011), who elucidated a link between
Gaussian fields and Gaussian Markov Random Fields via
stochastic partial differential equations.

The Sylvester generative (SG) model (2) leads to a tensor-
valued random variable X with a precision matrix Ω =(⊕K

k=1 Ψk

)2

, given that T is white Gaussian. The
Sylvester generating factors Ψk’s can be obtained via min-
imization of the penalized negative log-pseudolikelihood

Lλ(Ψ) =− N

2
log |(

K⊕
k=1

diag(Ψk))2|

+
N

2
tr(S · (

K⊕
k=1

Ψk)2) +

K∑
k=1

λk‖Ψk‖1,off.

(3)
This differs from the true penalized Gaussian negative log-
likelihood in the exclusion of off-diagonals of Ψk’s in the
log-determinant term. (3) is motivated and derived directly
using the Sylvester equation defined in (2), from the per-
spective of solving a sparse linear system. This maximum
pseudolikelihood estimation procedure has been applied to
vector-variate Gaussian graphical models (see Khare et al.
(2015) and references therein). Detailed derivations and
further discussions are provided in Appendix A.

3. The SG-PALM Algorithm
Estimation of the generating parameters Ψk’s of the SG
model is challenging since the sparsity penalty applies to
the square root factors of the precision matrix, which leads
to a highly coupled likelihood function. Wang et al. (2020)
proposed an estimation procedure called SyGlasso, that re-
covers only the off-diagonal elements of each Sylvester
factor. This is a deficiency in many applications where the
factor-wise variances are desired. Moreover, the conver-
gence rate of the cyclic coordinate-wise algorithm used in
SyGlasso is unknown and the computational complexity
of the algorithm is higher than other sparse Glasso-type
procedures. To overcome these deficiencies, we propose a
proximal alternating linearized minimization method that
is more flexible and versatile, called SG-PALM, for find-
ing the minimizer of (3). SG-PALM is designed to exploit
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structures of the coupled objective function and yields si-
multaneous estimates for both off-diagonal and diagonal
entries.

The PALM algorithm was originally proposed to solve non-
convex optimization problems with separable structures,
such as those arising in nonnegative matrix factorization (Xu
& Yin, 2013; Bolte et al., 2014). Its efficacy in solving con-
vex problems has also been established, for example, in
regularized linear regression problems (Shefi & Teboulle,
2016), it was proposed as an attractive alternative to iter-
ative soft-thresholding algorithms (ISTA). The SG-PALM
procedure is summarized in Algorithm 1.

For clarity of notation we write

Lλ(Ψ1, . . . ,ΨK) = H(Ψ1, . . . ,ΨK) +

K∑
k=1

Gk(Ψk),

(4)
where H : Rd1×d1 × · · · × RdK×dK → R represents the
log-determinant plus trace terms in (3) and Gk : Rdk×dk →
(−∞,+∞] represents the penalty term in (3) for each axis
k = 1, . . . ,K. For notational simplicity we use Ψ (i.e.,
omitting the subscript) to denote the set {Ψk}Kk=1 or the K-
tuple (Ψ1, . . . ,ΨK) whenever there is no risk of confusion.
The gradient of the smooth function H with respect to Ψk,
∇kH(Ψ), is given by

diag
({

tr[(diag((Ψk)ii) +
⊕
j 6=k

diag(Ψj))
−1]
}dk
i=1

)
+ SkΨk + ΨkSk + 2

∑
j 6=k

Sj,k.
(5)

Here, the first “diag” maps a dk-vector to a dk × dk diag-
onal matrix, the second one maps a scalar (i.e., (Ψk)ii) to
a (
∏
j 6=k dj) × (

∏
j 6=k dj) diagonal matrix with the same

elements, and the third operator maps a symmetric matrix to
a matrix containing only its diagonal elements. In addition,
we define:

Sk =
1

N

N∑
i=1

X i
(k)(X

i
(k))

T ,

Sj,k =
1

N

N∑
i=1

Vi
j,k(Vi

j,k)T ,

Vi
j,k = X i

(k)

(
Id1:j−1

⊗Ψj ⊗ Idj:K

)T
, j 6= k.

(6)

A key ingredient of the PALM algorithm is a proximal opera-
tor associated with the non-smooth part of the objective, i.e.,
Gk’s. In general, the proximal operator of a proper, lower
semi-continuous convex function f from a Hilbert spaceH
to the extended reals (−∞,+∞] is defined by (Parikh &
Boyd, 2014)

proxf (v) = argmin
x∈H

f(x) +
1

2
‖x− v‖22

for any v ∈ H. The proximal operator well-defined as
the expression on the right-hand side above has a unique
minimizer for any function in this class. For `1-regularized
cases, the proximal operator for the function Gk is given by

proxλkGk(Ψk) = diag(Ψk)+soft(Ψk−diag(Ψk), λk), (7)

where the soft-thresholding operator softλ(x) =
sign(x) max(|x| − λ, 0) has been applied element-
wise. For popular choices of non-convex Gk, the proximal
operators are derived in Appendix D.

Algorithm 1 SG-PALM

Input: Data tensor X , mode-k Gram matrix Sk, regulariz-
ing parameter λk, backtracking constant c ∈ (0, 1), initial
step size η0, initial iterate Ψk for each k = 1, . . . ,K.
while not converged do

for k = 1, . . . ,K do
Line search:
Let ηtk be the largest element of {cjηtk,0}j=1,... such
that condition (8) is satisfied.
Update:
Ψt+1
k ← proxGk

ηtkλk

(
Ψt
k − ηtk∇kH(Ψt+1

i<k,Ψ
t
i≥k)

)
.

end for
Update initial step size: Compute Barzilai-Borwein
step size ηt+1

0 = mink η
t+1
k,0 , where ηt+1

k,0 is computed
via (9).

end while
Output: Final iterates {Ψk}Kk=1.

3.1. Choice of Step Size

In the absence of a good estimate of the blockwise Lipchitz
constant, the step size of each iteration of SG-PALM is
chosen using backtracking line search, which, at iteration t,
starts with an initial step size ηt0 and reduces the size with a
constant factor c ∈ (0, 1) until the new iterate satisfies the
sufficient descent condition:

H(Ψt+1
i≤k,Ψ

t
i>k) ≤ Qηt(Ψt+1

i≤k,Ψ
t
i>k; Ψt+1

i<k,Ψ
t
i≥k). (8)

Here,

Qη(Ψi<k,Ψk,Ψi>k; Ψi<k,Ψ
′
k,Ψi>k)

= H(Ψi<k,Ψk,Ψi>k)

+ tr
(

(Ψ′k −Ψk)T∇kH(Ψi<k,Ψk,Ψi>k)
)

+
1

2η
‖Ψ′k −Ψk‖2F .

The sufficient descent condition is satisfied with any 1
η =

Mk and Mk ≥ Lk, for any function that has a block-wise
Lipschitz gradient with constant Lk for k = 1, . . . ,K. In
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other words, so long as the function H has block-wise gra-
dient that is Lipschitz continuous with some block Lipschitz
constant Lk > 0 for each k, then at each iteration t, we can
always find an ηt such that the inequality in (8) is satisfied.
Indeed, we proved in Lemma C.1 in the Appendix that H
has the desired properties. Additionally, in the proof of
Theorem 4.2 we also showed that the step size found at each
iteration t satisfies 1

η0k
≤ Lk ≤ 1

ηtk
≤ cLk.

In terms of the initialization, a safe step size (i.e., very small
ηt0) often leads to slower convergence. Thus, we use the
more aggressive Barzilai-Borwein (BB) step (Barzilai &
Borwein, 1988) to set a starting ηt0 at each iteration (see
Appendix B for justifications of the BB method). In our
case, for each k, the step size is given by

ηtk,0 =
‖Ψt+1

k −Ψt
k‖2F

tr(A)
, (9)

where

A = (Ψt+1
k −Ψt

k)T×
(∇kH(Ψt+1

i≤k,Ψ
t
i>k)−∇kH(Ψt+1

i<k,Ψ
t
i≥k)).

3.2. Computational Complexity

After pre-computing Sk, the most significant computa-
tion for each iteration in the SG-PALM algorithm is the
sparse matrix-matrix multiplications SkΨk and Sj,k in
the gradient calculation. In terms of computational com-
plexity, if sk is the number of non-zeros per column in
Ψk, then the former and latter can be computed using
O(skd

2
k) and O(N

∑
j 6=k sjd

2
j ) operations, respectively.

Thus, each iteration of SG-PALM can be computed us-
ingO

(∑K
k=1(skd

2
k+N

∑
j 6=k sjd

2
j )
)

floating point opera-
tions, which is significantly lower than competing methods.

For instance, other popular algorithms for tensor-variate
graphical models, such as the TG-ISTA presented in Gree-
newald et al. (2019) and the Tlasso proposed in Lyu et al.
(2019) both require inversion of dk × dk matrices, which is
non-parallelizable and requires O(d3

k) operations for each
k. In particular, TeraLasso’s TG-ISTA algorithm requires
O
(
Kd +

∑K
k=1 d

3
k

)
operations. The TG-ISTA algorithm

requires matrix inversions that cannot easily exploit the
sparsity of Ψk’s. In the sample-starved ultra-sparse setting
(N � d and sk � dk), the O(N

∑
j 6=k sjd

2
j ) terms in

SG-PALM are comparable to O(Kd) in TG-ISTA, mak-
ing it more appealing. The cyclic coordinate-wise method
proposed in (Wang et al., 2020) does not allow for paral-
lelization since it requires cycling through entries of each
Ψk in specified order. In contrast, SG-PALM can be im-
plemented in parallel to distribute the sparse matrix-matrix
multiplications because at no step do the algorithms require
storing all dense matrices on a single machine.

4. Convergence Analysis
In this section, we present the main convergence theorems.
Detailed proofs are included in the supplement. Here, we
study the statistical convergence behavior for the Sylvester
graphical model with an `1 penalty function. The conver-
gence behavior of the SG-PALM iterates is presented for
convex cases but similar convergence rate can be established
for non-convex penalties (see Appendix D).

We first establish statistical convergence of a global mini-
mizer Ψ̂ of (3) to its true value, denoted as Ψ̄, under the
correct statistical model.

Theorem 4.1. LetAk := {(i, j) : (Ψ̄k)i,j 6= 0, i 6= j} and
qk := |Ak| for k = 1, . . . ,K. If N > O(maxk qkdk log d)
and d := dN = O(Nκ) for some κ ≥ 0, and further, if

the penalty parameter satisfies λk := λN,k = O(
√

dk log d
N )

for all k = 1, . . . ,K, then under conditions (A1-A3) in
Appendix C.1, there exists a constant C > 0 such that for
any η > 0 the following events hold with probability at least
1−O(exp(−η log d)):

K∑
k=1

‖offdiag(Ψ̂k)− offdiag(Ψ̄k)‖F

≤ C
√
K max

k

√
qkλk.

Here offdiag(Ψk) contains only the off-diagonal elements
of Ψk. If further min(i,j)∈Ak |(Ψ̄k)i,j | ≥ 2C maxk

√
qkλk

for each k, then sign(Ψ̂k)=sign(Ψ̄k).

Theorem 4.1 means that under regularity conditions on
the true generative model, and with appropriately chosen
penalty parameters λk’s guided by the theorem, one is
guaranteed to recover the true structures of the underlying
Sylvester generating parameters Ψk for k = 1, . . . ,K with
probability one, as the sample size and dimension grow.

We next turn to convergence of the iterates {Ψt} from SG-
PALM to a global optimum of (3).

Theorem 4.2. The Let {Ψ(t)}t≥0 be generated by SG-
PALM. Then, SG-PALM converges in the sense that

Lλ(Ψ(t+1))−minLλ
Lλ(Ψ(t))−minLλ

≤

(
α2Lmin

4Kc2(
∑K
j=1 Lj)

2 + 4c2Lmax

+ 1

)−1

,

where α, Lk, k = 1, . . . ,K are positive constants, Lmin =
minj Lj , Lmax = maxj Lj , and c ∈ (0, 1) is the backtrack-
ing constant defined in Algorithm 1.

Note that the term on the right hand side of the inequality
above is strictly less than 1. This means that the SG-PALM
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algorithm converges linearly, which is a strong results for a
non-strongly convex objective (i.e., Lλ). Although similar
convergence behaviors of the PALM-type algorithms have
been studied for other problems (Xu & Yin, 2013; Bolte
et al., 2014), such as nonnegative matrix/tensor factoriza-
tion, the analysis of this paper works for non-strongly block
multi-convex objectives, leveraging more recent analyses of
multi-block PALM and a class of functions satisfying the the
Kurdyka - Łojasiewicz (KL) property (defined in Section C
of the Appendix). To the best of our knowledge, for first-
order optimization methods, our rate is faster than any other
Gaussian graphical models having non-strongly convex ob-
jectives (see Khare et al. (2015); Oh et al. (2014) and refer-
ences therein) and comparable with those having strongly-
convex objectives (see, for example, Guillot et al. (2012);
Dalal & Rajaratnam (2017); Greenewald et al. (2019)).

5. Experiments
Experiments in this section were performed in a sys-
tem with 8-core Intel Xeon CPU E5-2687W v2
3.40GHz equipped with 64GB RAM. Both SG-PALM and
SyGlasso were implemented in Julia v1.5 (https:
//github.com/ywa136/sg-palm). For real data
analyses, we used the Tlasso package implementa-
tion in R (Sun et al., 2016) and the TeraLasso im-
plementation in MATLAB (https://github.com/
kgreenewald/teralasso).

5.1. Synthetic Data

We first validate the convergence theorems discussed in the
previous section via simulation studies. Synthetic datasets
were generated from true sparse Sylvester factors {Ψk}Kk=1

where K = {2, 3} and dk = {16, 32, 64, 128} for all k.
Instances of the random matrices used here have uniformly
random sparsity patterns with edge densities (i.e., the pro-
portion of non-zero entries) ranging from 0.1%− 30% on
average over all Ψk’s. For each d and edge density combi-
nation, random samples of size N = {10, 100, 1000} were
tested. For comparison, the initial iterates, convergence
criteria were matched between SyGlasso and SG-PALM.
Highlights of the results in run times are summarized in
Table 1.

Convergence behavior of SG-PALM is shown in Figure 1
(a) for the datasets with dk = 32, N = {10, 100}, and edge
densities roughly around 5% and 20%, respectively. Geo-
metric convergence rate of the function value gaps under
Theorem 4.2 can be verified from the plot. Note an accel-
eration in the convergence rate (i.e., a steeper slope) near
the optimum, which is suggested by the “localness” of the
KL property of the objective function close to its global
optimum. Further for the same datasets, in Figure 1 (b), SG-
PALM graph recovery performances is illustrated, where

Table 1. Run time comparisons (in seconds with N/As indicating
those exceeding 24 hour) between SyGlasso and SG-PALM on
synthetic datasets with different dimensions, sample sizes, and
densities of the generating Sylvester factors. Note that the proposed
SG-PALM has average speed-up ratios ranging from 1.5 to 10 over
SyGlasso.

d N NZ% SyGlasso SG-PALM
iter sec iter sec

1282

101 1.20 17 138.5 46 5.8
24.0 20 169.3 48 6.2

102 1.30 21 211.3 50 12.6
27.0 30 303.6 47 21.9

103 1.30 21 2045.8 50 80.1
25.0 47 4782.7 51 373.1

163

101 0.11 9 4.6 11 4.5
4.10 9 5.1 32 5.1

102 0.21 8 8.8 11 5.4
2.60 8 10.8 35 7.2

103 0.26 8 82.4 12 14.3
3.40 10 99.2 37 33.5

323

101 0.13 10 191.2 19 7.3
7.50 17 304.8 42 10.2

102 0.46 9 222.4 24 28.9
7.00 17 395.2 41 48.5

103 0.10 9 1764.8 22 226.4
6.90 19 3789.4 41 473.9

643

101 0.65 10 583.7 42 91.3
14.5 22 952.2 47 119.0

102 0.62 9 6683.7 41 713.9
14.4 21 15607.2 48 1450.9

103 0.85 N/A 39 6984.4
14.0 N/A 48 12968.7

the Matthew’s Correlation Coefficients (MCC) is plotted
against run time. Here, MCC is defined by

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP is the number of true positives, TN the number
of true negatives, FP the number of false positives, and FN
the number of false negatives of the estimated edges (i.e.,
non-zero elements of Ψk’s). An MCC of 1 represents a
perfect prediction, 0 no better than random prediction and
−1 indicates total disagreement between prediction and ob-
servation. The results validate the statistical accuracy under
Theorem 4.1. It also shows that SG-PALM outperforms
SyGlasso (indicated by blue/red solid dots) within the same
time budget.

https://github.com/ywa136/sg-palm
https://github.com/ywa136/sg-palm
https://github.com/kgreenewald/teralasso
https://github.com/kgreenewald/teralasso
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(a) Cost gap vs. Iteration (b) MCC vs. Run time

Figure 1. Convergence of SG-PALM algorithm under datasets with varying sample sizes (solid and dashed) generated via matrices with
different sparsity (red and blue). The function value gaps on log-scale (left) verifies the geometric convergence rate in all cases and the
MCC over time (right) demonstrates the algorithm’s accuracy and efficiency. Note that the SG-PALM reached almost perfect recoveries
(i.e., MCC of 1) within 20 seconds in all cases. In comparison, SyGlasso (big solid dots with line-range) was only able to achieve at lower
MCCs for lower sample-size cases within 30 seconds.

5.2. Solar Flare Imaging Data

A solar flare occurs when magnetic energy that has built up
in the solar atmosphere is suddenly released. Such events
strongly influence space weather near the Earth. Therefore,
reliable predictions of these flaring events are of great inter-
est. Recent work (Chen et al., 2019; Jiao et al., 2019; Sun
et al., 2019) has shown the promise of machine learning
methods for early forecasting of these events using imaging
data from the solar atmosphere. In this work, we illustrate
the viability of the SG-PALM algorithm for solar flare pre-
diction using data acquired by multiple instruments: the
Solar Dynamics Observatory (SDO)/Helioseismic and Mag-
netic Imager (HMI) and SDO/Atmospheric Imaging Assem-
bly (AIA). It is evident that these data contain information
about the physical processes that govern solar activities (see
Appendix E for detailed data descriptions).

The data samples are summarized in d1 × d2 × d3 × d4

tensors with q = d1 · d2 · d3 = 50 · 100 · 7 = 35000
and p = d4 = 13. The first two modes represent the im-
ages’ heights and widths, the third mode represents the
HMI/AIA components/channels, and the last mode repre-
sents the length of the temporal window. Previous stud-
ies (Chen et al., 2019; Jiao et al., 2019) found that the time
series of solar images from the SDO/HMI data provide
useful information for distinguishing strong solar flares of
M/X class from weak flares of A/B class roughly 24 to 12
hours prior to the flare event. Thus, in this study we use
a 13-hour temporal window recorded with 1-hour cadence,
prior to the occurrence of a solar flare. The task is to pre-
dict the pth frame using the frames in each of the p − 1
previous hours (i.e., one hour ahead prediction). Each ob-

servation is a video with full dimension d = pq, and each p-
dimensional observation vector is formed by concatenating
the p time-consecutive q-dimensional vectors (vectorization
of the matrices representing pixels of the multichannel im-
ages) without overlapping the time segments. The training
set contains two types (B- and MX-class flares) of active re-
gions producing flares. Each is distinguished by the flaring
intensities, and there are a total of 186 B flares and 48 MX
flares. Forward linear predictors were constructed using
estimated precision matrices in a multi-output least squares
regression setting. Specifically, we constructed the linear
predictor of a frame from the p− 1 previous frames in the
same video:

ŷt = −Ω−1
2,2Ω2,1yt−1:t−(p−1), (10)

where yt−1:t−(p−1) ∈ R(p−1)q is the stacked set of pixel
values from the previous p− 1 time instances and Ω2,1 ∈
Rq×(p−1)q and Ω2,2 ∈ Rq×q are submatrices of the pq×pq
estimated precision matrix:

Ω̂ =

(
Ω1,1 Ω1,2

Ω2,1 Ω2,2

)
.

The predictors were tested on the data containing flares ob-
served from different active regions than those in training
set, so that the predictor has never “seen” the frames that
it attempts to predict, corresponding to 117 observations
of which 93 are B-class flares and 24 are MX-class flares.
Figure 2 shows the root mean squared error normalized
by the difference between maximum and minimum pixels
(NRMSE) over the testing samples, for the forecasts based
on the SG-PALM estimator, TeraLasso estimator (Gree-
newald et al., 2019), Tlasso estimator (Lyu et al., 2019),
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and IndLasso estimator. Here, the TeraLasso and the Tlasso
are estimation algorithms for a KS and a KP tensor pre-
cision matrix model, respectively; the IndLasso denotes
an estimator obtained by applying independent and sep-
arate `1-penalized regressions to each pixel in yt. The
SG-PALM estimator was implemented using a regulariza-

tion parameter λN = C1

√
min(dk) log(d)

N for all k with the
constant C1 chosen by optimizing the prediction NRMSE
on the training set over a range of λ values parameterized
by C1. The TeraLasso estimator and the Tlasso estima-
tor were implemented using λN,k = C2

√
log(d)

N
∏
i6=k di

and

λN,k = C3

√
log(dk)
Nd for k = 1, 2, 3, respectively, with

C2, C3 optimized in a similar manner. Each sparse regres-
sion in the IndLasso estimator was implemented and tuned
independently with regularization parameters chosen from
a grid via cross-validation.

We observe that SG-PALM outperforms all three other meth-
ods, indicated by NRMSEs across pixels. Figure 3 depicts
examples of predicted images, comparing with the ground
truth. The SG-PALM estimates produced most realistic im-
age predictions that capture the spatially varying structures
and closely approximate the pixel values (i.e., maintain-
ing contrast ratios). The latter is important as the flares
are being classified into weak (B-class) and strong (MX-
class) categories based on the brightness of the images, and
stronger flares are more likely to lead to catastrophic events,
such as those damaging spacecrafts. Lastly, we compare
run times of the SG-PALM algorithm for estimating the
precision matrix from the solar flare data with SyGlasso.
Table 2 in Appendix E illustrates that the SG-PALM algo-
rithm converges faster in wallclock time. Note that in this
real dataset, which is potentially non-Gaussian, the con-
vergence behavior of the algorithms is different compare
to synthetic examples. Nonetheless, SG-PALM enjoys an
order of magnitude speed-up over SyGlasso.

5.3. Physical Interpretability

To explain the advantages of the proposed model over
other similar models (e.g., Tlasso, TeraLasso), we pro-
vide further discussions here on the connection between
the Sylvester generating model and PDEs. Consider the 2D
spatio-temporal process u(x, t):

∂u/∂t = θ

2∑
i=1

∂2u/∂x2
i + ε

2∑
i=1

∂u/∂xi, (11)

where θ, ε are positive real (unknown) coefficients. This
is the basic form of a class of parabolic and hyperbolic
PDEs, the Convection-Diffusion equation that generalizes
the Poisson equation presented in Section 2 by incorporating
temporal evolution. These equations are closely related to
the Navier-Stokes equation commonly used in stochastic

modelling for weather and climate prediction. Coupled with
Maxwell’s equations, they can be used to model and study
magneto-hydrodynamics (Roberts, 2006), which character-
ize solar activities including flares.

After finite-difference discretization, Equation (11) is equiv-
alent to the Sylvester matrix equation Aθ,εUt + UtAθ,ε =
Ut−1, where Ut = (u((i, j), t))ij and Aθ,ε is a tridiagonal
matrix with values that depend on the coefficients θ, ε and
discretization step sizes. Assuming a linear Gaussian state-
space model for some observed process Xt governed by the
Convection-Diffusion dynamics:

Aθ,εUt + UtAθ,ε = Ut−1,

Xt = Ut + Vt,

where Vt ∼ N (0, σ2I) is some time-invariant white noise.
Then the precision matrix of the true process Ut evolves as
Ωt = (Aθ,ε⊕Aθ,ε)Ωt−1(Aθ,ε⊕Aθ,ε)

T +σ−2I. Note that
this is not necessarily sparse as assumed by the Sylvester
graphical model, but the steady-state precision matrix sat-
isfies Ω∞ = (Aθ,ε ⊕ Aθ,ε)Ω∞(Aθ,ε ⊕ Aθ,ε)

T + σ−2I,
which is indeed sparse because Aθ,ε is tridiagonal. This
strong connection between the Sylvester graphical model
and the underlying physical processes governing solar activ-
ities make the proposed approach particularly suitable for
the case study presented in the previous section.

Additionally, the learned generating factors Aθ,ε could be
further used to interpret physical processes that involve both
unknown structure and unknown parameters. Particularly,
in Equation (11), the coefficients θ (diffusion constant) and
ε (convective constant) affect the dynamics. Similarly, with
the estimated Sylvester generating factors (Ψk’s), we are not
only able to extract the sparsity patterns of the discretized
differential operators but also estimate the coefficients of
the underlying magneto-hydrodynamics equation for solar
flares. Therefore, the SG-PALM can be used as a data-
driven method for PDE parameter estimation from physical
observations.

6. Conclusion
We proposed SG-PALM, a proximal alternating linearized
minimization method for solving a pseudo-likelihood based
sparse tensor-variate Gaussian precision matrix estimation
problem. Geometric rate of convergence of the proposed
algorithm is established building upon recent advances in
the theory of PALM-type algorithms. We demonstrated that
SG-PALM outperforms the coordinate-wise minimization
method in general, and in ultra-high dimensional settings
SG-PALM can be faster by at least an order of magnitude. A
link between the Sylvester generating equation underlying
the graphical model and the Convection-Diffusion type of
PDEs governing certain physical processes was established.
This connection was illustrated on a novel astrophysics ap-
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Avg. NRMSE = 0.0379, 0.0386, 0.0579, 0.1628 (from left to right)

A
R

B

Avg. NRMSE = 0.0620, 0.0790, 0.0913, 0.1172 (from left to right)

A
R

M
/X

Figure 2. Comparison of the SG-PALM, Tlasso, TeraLasso, IndLasso performances measured by NRMSE in predicting the last frame of
13-frame video sequences leading to B- and MX-class solar flares. The NRMSEs are computed by averaging across testing samples and
AIA channels for each pixel. 2D images of NRMSEs are shown to indicate that certain areas on the images (usually associated with
the most abrupt changes of the magnetic field/solar atmosphere) are harder to predict than the rest. SG-PALM achieves the best overall
NRMSEs across pixels. B flares are generally easier to predict due to both a larger number of samples in the training set and smoother
transitions from frame to frame within a video (see the supplemental material for details).

Predicted examples - B vs. M/X

A
R

B
A

R
B

A
R

M
/X

A
R

M
/X

Figure 3. Examples of one-hour ahead prediction of the first two AIA channels of last frames of 13-frame videos, leading to B- (first
two rows) and MX-class (last two rows) flares, produced by the SG-PALM, Tlasso, TeraLasso, IndLasso algorithms, comparing to the
real image (far left column). Note that in general linear forward predictors tend to underestimate the contrast ratio of the images. The
proposed SG-PALM produced the best-quality images in terms of both the spatial structures and contrast ratios.See the supplemental
material for examples of predicted images from the HMI instrument.

plication, where multi-instrument imaging datasets charac-
terizing solar flare events were used. The proposed method-
ology was able to robustly forward predict both the patterns
and intensities of the solar atmosphere, yielding potential
insights to the underlying physical processes that govern the
flaring events.
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