Supplement

Robust Inference for High-Dimensional Linear Models via Residual Randomization

In the supplement, we give proofs for statements in the main manuscript, propose an alternative procedure
for selecting M™*, and give additional simulation details.

1 Proofs

Recall the conditions required in the main text.

Condition 1 (Covariates). Suppose that X,;. € RP are generated i.i.d. with mean 0 and covariance 3.
Let Amax and Amin denote the largest and smallest eigenvalues of 3. Suppose each element of X, . is sub-
Weibull(c) and the de-correlated covariates X', = E’l/QXiT: are jointly sub-Weibull(a) with

max (11X .0 max | X v, ) é k. (1)

Moreover,

I = max (5@51& ([c(“le;Xi,v]’Z) ,gﬁﬁE ([f(rElXiT;Xj,v]Q) e E (%UX]ZD ( (2)

Condition 2 (Sample Size). Suppose k* = r? max <| g Lomax 1) ,<and

VAmin
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for some constant C,, which only depends on «.

Condition 3 (Exchangeability). Let G C G, where G, is the set of all matrices corresponding to a permuta-
tion g of [n] such that (i) [n] = N1 U N3 for some Ny and No equal-sized disjoint sets, and (ii) for all j € Ny,
9(j) € N2 and for all j € Na, g(j) € Ny.

Condition 4 (Sign Symmetry). Let G C G5 where G is the set of all diagonal matrices containing only +1
such that there is an equal number of positive and negative 1’s.

Condition 5 (Cluster Exchangeability). Suppose there exist n. disjoint sets Ly with [n] = U.° L and
|Li| = n/n. = J such that {&;}icr, are exchangeable, but may otherwise be dependent. That is, G C G,
where G, is the set of all block diagonal matrices where the Gr,, 1, block is a permutation matriz satisfying
Condition 3.

Condition 6 (Lasso with sub-Weibull errors). Suppose ¢; is sub-Weibull(a) with ||&;||lw, < k. Suppose that

2k=,,
Amin > 54 min {:n h+ 3”}( (4)
1<h<p ’ h



where
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A1 is set such that

Furthermore, suppose that the Lasso penalty ter

At = 14v20 \g;np) . Cajar®(log(2n))*/* (2 log(np))”“’ “
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and in addition to Condition 2 5 4( 8/a—1
Cy /ot (log(pn))™/ =
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where 0 = max, e[y var(X; ,&,) and Cqy /3 is a constant only depending on c.

n >

g

Lemma 1

Lemma 1. For any M € RP*P let dy (Fy(X,¢), F;(X,€)) denote the Wasserstein-1 distance between the
oracle randomization distribution and attainable randomization distributions. Then,

d (Fi(X,e), Fy(X,e)) < ’Bl —6’1 x
H\/ﬁcﬁ([ - MS)’OO n ‘aTM‘l Eq (‘XTGX/\/ELO)] .

where Q) is the uniform distribution over G in G.

(®)

Proof. The debiased Lasso %M is defined as

B = B+ SMXT(Y - XA ©)
so that ] 1 ]
M =3 — g+ ﬁMXT(Y - XpBY) + ﬁMXT(Y —Xf) - EMXT(Y — XB)
=B B4 T MXTX (B~ B+ MK Te (10)

- < - 1MXU() Bl —B)+ LuxTe,
n n
So that for any M, under the null hypothesis that a5 = ag, we have
T, = Vn(a" B*M — ag)
= naT(Bd’M ) (11)
= na' (I - MS)(B' - 3) + inaTMXTs.

vn

Thus, the oracle randomization distribution which has access to the realization of ¢ would be

t(Ge) = vna" KI - 1MXTX> (Bl —B) + 1MXTG5} ( (12)
n n
where G is drawn uniformly from G. The attainable randomization distribution which we actually use is
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For any () which is a joint distribution over (G1, G3) where, marginally, G; and Go, are uniform from G, we

have
di (Fy (X, e), Fi(X,€)) < Eq ([t(Gre) — 1(G2£)]) (14)

a"MXTGe

Setting @ to the distribution where G; = G4 are drawn uniformly from G, and using (11) and (13), we have:
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Lemma 2

Lemma 2. Under Conditions 1 and 2 and either Condition 3, 4, or 5, we have

Z(XTGXIOO > 8\/?F log(pn) + 2log(p ))) % 6/G1(np) . (16)

n
Geg

[
Proof. We bound | X "G X, for each G € G, and then the final result follows from a union bound.

Exchangeability For some fixed G € G, letting ¢(i) = {j : G;; # 0} and y; = Vec(XiT;Xg(q;),:) where the

vec operator vectorizes the p X p matrix so that y; € RP". Note that E(v;) = E (Yee(X,. Xg(1),:)) (£ O since
i # g(i). Furthermore,

10X gi),0llwa e < 1K ullwa [ Kooy 0llw, < 6% < 8" (17)

Thus, each element of v; is sub-Weibull(e/2) with Orlicz-norm bounded by x*. Now,

Z(& ) iZ(‘ (18)

(]
but the ;’s are not 1ndepen€ent of e;Ch other because X; fappe(rs bothtn vi and y4-1(;). However, by
construction, each X;. only appears in one term of {’Yz}zeNl and one term in {~v;};en,. Thus, we can
decompose the entire sum with possibly dependent terms into two separate sums of independent terms.

e
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We apply Kuchibhotla & Chakrabortty (2018, Theorem 3.4) to each term with ¢ > 0 so that

' /? t+2log 2C’ x*log(n)?/®(t + 2log(p))?/@
* 2/a 2/a
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Note that when applying the concentration inequality to each term, the sample size is n/2 rather than n.
Letting ¢ = log(pn) and using Condition 2 implies that the

M L (05(pn) +210g(p)) | 2Can" log(n)?/* (log(pn) +2log())*'* _ ¢ \/ #(log(pn) + 2108 (1))

n \ n

(21)
and using a union bound over all G € G completes the proof.

Cluster Exchangeability Because G. C G,, then the proof for exchangeability directly implies that the
statement holds for cluster exchangeability as well.

Symmetry We repeat the same arguments with a slight modification due to sign-flipping. For some fixed
Geg,lety = vec(G”Xiy:XiT’:) so that v; € RP”. Note that ]E(%) = GE (X X,") # 0, so we instead pair
together each i € Ny = {i : G;; = 1} with some j € No = {i : G;; = —1}. i/Eeciﬁca{; assume that N; and
Ny are ordered and let Ny (i) and Nz (i) denote the ith element of N; and Ny respectively. We then define

.1
'Yi—§(

(z‘vl (i) = INa(0) ( (22)
so that E (7;) = 0. Each element of 4; is sub-Weibull(a/2) with Orlicz-norm bounded by x*. Now,
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Now we again apply Kuchibhotla & Chakrabortty (2(18, Theore@Q 3.4) to each term with ¢ > 0 so that

L(t+2log(p)) | 2Car” log(n)* (¢ + 2log(p))*/*

P i > T

Zezn; \ n < (24)
< Yexp(-t). f

Again, letting ¢ = log(pn) and using Condition 2 implies that the

7\/ T (log(pn) + 210g(p)) | 2Car"log(n)*/“ (log(pn) + 2log(p)*/” _ ¢ f0(1og(pn) + 210g(p))

n n n

(25)

Taking a union bound over all G € G completes the proof. Note that for sign-flips, we actually get a
tighter upper bound on the probability, but we use looser leading term of 6 from the permutation setting for
simplicity. O



Lemma 3

Suppose we select M* = M3 by solving

a’ M| XTGX

A =ar minéaTI—MSoo+| Y ‘ , 26
gAE[O,l) ‘ ( A )‘ |g| sz: n ( )

where DC

M), = arg min |aTM|1
M (27)
st o (I = MS)| 4, <A\
Lemma 3. Under the Conditions 1 and 2, we have f

P |CLT(I _ 2715|oo > 8\/((10g(pn)n+ 210g(p))> % 3(Tlp)71. (28)

Thus, with probability at least 1 —3(np)~! the feasible set of (27) is non-empty with A = 84/ w

and
la" MyJy < a" 2711 (29)

Proof. We show that (28) holds which then trivially implies that ¥ ~! is in the feasible set for A = 8 w
and that |a” My |; < |a"$71|; by the optimality of M.

Let v, =a' (I — E_IX;';X“) such that ~; € RP. Note that E(y;) = a E(I — E_IXZT:X“) = 0. Furthermore,

||’7i,v||wa/2 = H(aTzile‘T:Xi )ol

5

Va2
= "= XL (£ 22) (Il

(30)
v )\max
< Na™= 72X | (£i3"2) (e < lala V22202 < 7,
B ’ )\min
Thus, each ; is sub-Weibull(c/2) with Orlicz-norm bounded by x*. Now, a' (I — X715) = L 3" A; so we
again apply Kuchibhotla & Chakrabortty (2018, Theorem 3.4) which implies that for any ¢ > 0,
1 t+21 Cor* log(2n)?/(t + 21 2/
p |1 Z( > (t +2log(p)) | Can” log( n)*/(t + 2log(p)) < 3exp(—t). (31)
- k n n
Letting ¢ = log(pn) andtssuming Condition 2, we have
Car*log(2n)* “(log(pn) + 2log(p))*/* _ \/ I (log(pn) + 2log(p)) Car* log(2n)* *(log(pn) + 2log(p))*/*~*/2
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Thus, the first term in the lower bound of (31) dominates. Again, since a’ (I — 711X TX) = L% A; we
then have
1 1 21
n n
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Corollary 1. Assume the conditions of Lemma 8 and Lemma 2. Then with probability greater than 1 —
3(np)~t — 6|G|(np)~! using M* selected from (27) and (26) yields

a1 (Fi(X,2), Fi(X.9) < |8 = ] x

[s(( +]aT=7],) 2 (ogn) + 21og(p))] (

(34)

Proof. Let b = 84/ w and suppose that ¥ ! is in the feasible set for A = b. Note, that by
Condition 2, b < 1. By the optimality of \*, M*, and M, we have

Sla’ (I — M*S)|oo + |la" M*1Eq (| X TGX/n| ) £ 6la™ (I = MyS|oo + la" My|1Eq (| X TGX/n| 4) (35)
t Sb+]a" X7 Eq (|XTGX/n|t)( t

Lemma 2 and 3 imply that with probability greater than 1 — 3(np)~! — 6|G|(np)~! that £ 7! is feasible for

A = b and that Eq (’XTGX/n’ﬁ V/2b. Applying Lemma 1 then implies that

dl tX7€)7Ff(X7€))S’Bl_B‘ X

[5((5(+ !aTE‘W( V2L log (k) +210g 7)) (

Theorem 1 (Sub-Weibull Errors and Covariates). Suppose Conditions 1, 2, and 6 hold. Under either
61G1+3 3 3
np np n’

Condition 3 or 4, with probability no less than 1 —

< 10752sv/ 310

(0 + oz )2 (37)

Proof. We combine Corollary 1 with results from Kuchibhotla & Chakrabortty (2018). Specifically, to bound
|3" — B|1, we apply Kuchibhotla & Chakrabortty (2018, Theorem 4.5), which states that with probability at
least 1 — 3(np)~! — 3n~1, letting the Lasso penalty parameter be:

di (Fy(X,¢e), F3(X,¢))

)\min

A = 14v/204/ P802) | . k2 (log(2n)) /(2 log(np)) 2/ -

( (39)

We require the corresponding bound on | oy |1. As part of proving Theorem 4.5 (Appendix E.4), Kuchibolta
and Chakroborty show that with the probability stated above,

yields Bl such that

)\min n n

8" — B2 < /2 [{ \log(np) + Cajok®V/5(log(np))*/*

XTe

n

An > 2 ’ (40)

This allows us to apply Hastie et al. (2015, Lemma 11(1) WECh states that when (40) holds, the estimation
error belongs to the cone set:

v=p—peC(S,3)={v: |vsch <3lush}, (41)
where S = {j : B; # 0} and 8¢ is its complement. Thus, we have

|B — Bl < |(B —B)sli + |(Bl)50|1

R N ) (42)
< 4|(B - B)sl < 4Vs[(B = B)slz < 4v/s|B — B2



Thus, we have under the same conditions and stated probability that

. 3363\/ g(np) | Caar®(log(np))*/
18- 8h < l \(p) 2
mm n n
(43)
6725\[ g(np)
o Il'lln \ n
Combining with Corollary 1, we then have with probability no less than 1 — % — n% — %,
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2 Assumptions of Belloni et al. (2016) for Cluster Dependence

The proof of Theorem 2 follow directly from Corollary 1 and Theorem 1 of Belloni et al. (2016).

Using our notation, we restate the relevant portion of Theorem 1 of Belloni et al. (2016) as well as the
conditions required. Recall that we assume that clusters are indexed by i = 1,...,n. and observations
within each cluster are indexed by j = 1,...,J so that n = n.J. To accommodate this notation, we let
X;; € RP be the covariates of the jth observation from the ith cluster. Furthermore, let X;;, € R denote
the vth covariate of the jth observation from the ith cluster. Similarly, let Y;; denote the jth outcome from
the ¢th cluster.

Belloni et al. (2016) begin with a more general additive fixed effects model where:
Y;'j = f(w”) + €; + Eij where E(Eij | Wiy - - .wu) =0. (45)

However, the Approximately Sparse Model condition stated below requires that f is well approximated by a
linear model so that f(w;;) = Xi—';ﬁ—l—r(wij) for some sparse § and r(w;;) term which vanishes as p increases.
We require the stronger assumption of a linear model; i.e., r(w;;) = 0.

Belloni et al. (2016) define the “demeaned observations”

J J

Xij :XU — j;XU7 }/1 1] JX_:( and —51] - J;( (46)

The Cluster-Lasso estimate is then defined as
Be argmln—zz — X;b)? b ZP: |by| (47)

CJ 6?) Uy
i=1 j=1 v=1
where

A = 2cy/n.JOH1 —v/2p) (48)

with ¢ > 1 being is a constant slack parameter, v = o(1), and ® is the CDF of the standard Gaussian.
Furthermore, ¢? are estimates of

Ne

2
o 1 & [(GKs .
¢v = ] Z %Ciy‘ugij . (49)
- a=1 =1

Since we do not have access to £;;, we instead use

bl
= T 2 %6 (50)

where é;; are preliminary estimates of &;;. Belloni et al. (2016) give a procedure for calculating gbq,, but
ultimately only require with probability 1 — o(1) for all v € [p] that

16y < Gy < udhy (51)

for some [ — 1 and u < C < oo.

The Sparse Eigenvalues condition concerns the empirical Gram matrix of the re-centered data

ijv zgua (52)

M = {Mjk}u,ve[p]z’
=1 j=1

and requires its minimum and maximum m-sparse eigenvalues to be bounded. Specifically, they require
conditions on the quantities

nin M)= min &' Mé d e M) = STMS§ 53
Pmin(m) (M) s an Pmax(m) (M) sl (53)



where A(M) = {5 € RP : |§]p < m,|d|2 = 1}.

Finally, the regularity conditions require two additional quantities. The first, w,, involves the third moment
of the vth covariate and error:

3 1/3
1 &,
Wy = [( 72 ijvéij . (54)
7=

They additionally require a measure of dependehice within clustér, % ;%

15 2 2
J min E(J = 1X”U ZJ)
1y =

1<v<p 1 ) 2\’
]E<7 [Z] IX'LJU ZJ] )

With no intra-cluster dependence, 1y = J, but in the worst case, 15 = 1.

(55)

Theorem 1 of Belloni et al. (2016)

Let {P,.;} be a sequence of probability laws, such that {( ”,wij,Xij)};]:l ~ P, j, ii.d. across i for which
Ne,J — 0o jointly or n, — oo, J fixed. Suppose that Conditions ASM, SE, and R hold for probability
measure PP = Pp, , induced by P, ;. Consider a feasible Cluster-Lasso estimator with penalty level set by

(48) and penalty loadings obeying (51). Then

18- 81 =0

Condition ASM (Approximately Sparse Model) The function f(w;;) is well approximated by a linear
combination of a dictionary of transformations, X;; = X, s(w;;) where X;; is a p x 1 vector with p > n
allowed, and X, s is a measureable map. That is, for each ¢ and j,

fwig) = X584+ r(wyy), (57)

where the coefficient 5 and the remainder term r(w;;) satisfy
1
[Blo < s =o0(ncy) and % F(w” < As = 0p(Vs/ncry). (58)
eJ i=1 =1

Condition SE (Sparse Eigenvalues). For any C' > 0, there exists constants 0 < & < k" < oo,
which do not depend on n but may depend on C, such that with probability approaching one, as n — oo
K < Pmin(C8) (M) < Pmax(Cs)(M) < £".

Condition R (Regularity Conditions). Assume that for data {y;;, w;;} that are i.i.d. across ¢, the
following conditions hold with X;; defined as in Condition ASM with probability 1 — o(1):

-1
L. J Zg 1 ( zgu‘é?]) + |: Z E(XZQJU””) = O(l)
2. 1 < max,epp) ¢/ minyep) ¢n = O(1)

1< maXyep] (Dv/ V E((b%) =

logg(p) = o(n.J) and slog(p V n.J) = o(neey)

maxy,e[p] |¢v — E(¢%)|/\/E( 12;) = 0(1)'

oo @



3 Alternative Procedure for Selecting M

Recall that
My = argmj\/i[n la” M|,

st. " (1= MS)| 4, <A
Define tr

-
d(\) = \aT(I—MAS)Ioo+iZ @ MX GX
9] % n
T (60)
1 XTG
o ol |

such that d(A) < d’'(A\). When I' (or some reasonable upper bound) i known,telect 61 so that &; > 8VT
and 1 > 614/ (log(pn) + 2log(p))/n. Condition 2 ensures that such a d; exists. Then, an alternative way to
select M™ is

(59)

d(\) =la" (I = MxS)|oo + |a" M1

A" = min \a (I — MxS)|oo
X€(0,1) (61)
s.t. (59) has non-empty feasible set for A and d()\) < d’(81+/(log(pn) + 21log(p))/n).

Similar to the procedure described in the main text, (61) selects a A* which minimizes |a (I —M)S)|so-

This procedure, which we refer to as RR Tuning Free, may be preferable to the one (RR) presented in the
main manuscript since it involves selecting a tuning parameter d; which is tied to a population quantity,
T", rather than picking & which may be hard to interpret. However, when ¢; is not large enough to satisfy
61 > 8T, the procedure may not be asymptotically valid. This is in contrast to the original procedure
which is asymptotically valid for any §, though the empirical performance may be affected by selecting § too
small.

We show that this alternative selection procedure is also valid by slightly modifying the proof of Corol-
lary 1.

Corollary 2. Assume the conditions of Lemma 3 and Lemma 2. Suppose in (61) that 6, > 8T and 1 >
611/ (log(pn) + 2log(p))/n. Let 52 = 61/(8VT). Then with probability greater than 1 — 3(np)~! — 6|G|(np)
using M* selected from (61) yields

di (F(X.2), F(X.2)) < |8 = 3
[E((% +]aT=!|,) V2 logfpn) + 2log(v))| <

Proof. Let b = 614/(log(pn) + 2log(p))/n. Suppose that ! is in the feasible set for A = b. By the
optimality of \*, M*, and M, we have

(62)

la"(I = M*S)| +Eq (Ja" M*XTGX/n| 4) £ la™ (I — MyS|oo + la" Myl Eq (| X TGX/n| 4) (63)
b+la"27Eg (}XTGX/n\i) ( t
t

Lemma 2 and 3 imply that with probability greater than 1 — 3(np)~! — 6|G|(np) "\ that X1 is feasible for

A = b and that IEQ XTGX/n i\fb Applying Lemma 1 then implies that
t X,2) < |3 - |

[‘(f(ﬁwg ],) V2T (log{pn) +2log(p ))}(
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4 Experiment Details

We compare the empirical coverage of 95% confidence intervals produced by BLPR (Liu et al., 2017), HDI
(Dezeure et al., 2015), SSLASSO (Javanmard & Montanari, 2014)!, SILM (Zhang et al., 2019) (non-studentized
confidence intervals) and residual randomization (RR). For each setting, we replicate the experiment 1000
times for for (n = 50,p = 100) and again for (n = 100, p = 300).

In each setting, we sample random X € R"*P with rows drawn i.i.d. from either
e N1: X,.~ N(0,I)
e G1: X;, ~ Gamma(l,1) — 1; i.e., a centered gamma with shape = 1 and rate = 1
o N2: X, ~ N(p,1) with P(u=—-2)=P(p=2)=0.5
o NT: X;. ~ (0,%) for ¥;; = .8l

e GT: X;. ~ Gamma(X) — 1 for ¥;; = .8/77l; i.e., each X, is marginally a centered gamma with shape
=1 and rate = 1, but the covariance is Topelitz.

e WB: X, ~ Weibull(1,0.5) — I'(2); i.e., a centered Weibull with scale = 1 and shape = 1/2.
We sample the errors € € R™ from

o N1: ¢; ~ N(0,1)

e N2: ¢; ~ N(u,1) with P(u=—2) = P(u=2) =0.5;

e HN: ¢; ~ N(0,2|X;..

e HM: ¢; ~ N(u,2||X;.||3/p) with P(u = —2) = P(u = 2) = 0.5; i.e., the errors are heteroskedastic and
drawn from a mixture of normal distributions.

e WB ¢; ~ Weibull(1,0.5) — I'(2); i.e., a centered Weibull with scale = 1 and shape = 1/2.

|2/p); i.e., the errors are heteroskedastic and drawn from a normal distribution.

For each setting, we draw 8 € RP with s = 4 or 15 active (i.e., non-zero) coordinates drawn from the
Rademacher distribution and set the remaining p — s inactive coordinates to 0. We arrange entries in (8
in such a way that there is one active entry between two inactive entries (isolated) so that §; = 1 and
Bj—1 = Bj+1 = 0, one active between an active entry and an inactive entry (adjacent) so that 5, = 8;_1 =1
and ;41 = 0, and one active entry between two other active entries (sandwiched) 5; = 8;_1 = Bj41 = 1.
We also use the same scheme for the inactive variables. We then set Y = X3 +¢.

Since in practice we do not know the appropriate tuning parameter A; a priori, for the residual randomiza-
tion procedure we employ the Square-Root Lasso (Belloni et al., 2011) implemented in RPtests (Shah &

Buhlmann, 2017) to obtain estimates for 3. We follow Zhang & Cheng (2017) and rescale & by \/n/(n — |3'o)
as a finite-sample correction.

Empirically, a larger value of § generally results in RR producing better coverage at the expense of confidence
interval length. We set § = 10000 for all settings; broadly speaking though, we see that for § > 1000, the
performance of the proposed procedure is fairly insensitive to the value of 4.

Given Corollary 2 requires Ay = a/(log(pn) + log(p))/n for some a > 8v/T. In practice, we may not know
the value of I, but can provide a reasonable upper bound. Since we assumed that 8\/ T(log(pn) + log(p))/n <
1 and require that A* < 1, in the implementation of RR Tuning Free used for the simulations, we set A = .99.
For added interpretability, we parameterize A with ay/log(p))/n and use R’s optimize function to find the

smallest « € [0.001,0.99/+/log(p))/n] whose d(A*) < d(0.99).

Throughout our simulations, we use 1,000 draws for the bootstrap-based methods, and 1,000 group actions
for our method.

Thttps://web.stanford.edu/ montanar/sslasso/code.html
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5 Additional Experiments

5.1 Inactive variables: (n = 50,p = 100)

In Figures 1 and 2, we show empirical coverage and confidence interval length for the inactive variables
over 1000 trials when the errors and covariates are all sub-exponential with (n = 50,p = 100) assuming
exchangeable and sign symmetric errors. The same plots for the active variables are shown in the main
document.

Generally, all DLASSO, SILM, and RR achieve (or exceed) nominal coverage. HDI performs well under ex-
changeable errors, but generally undercovers in the symmetric setting. BLPR generally performs poorly in all
settings.
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Figure 1: Empirical coverage and confidence interval length for the inactive variables with n = 50, p = 100,
1000 replications and exchangeable errors. The top two panels are for s = 4 and the bottom two are for
s = 15. The first and third panels show empirical coverage rates for each procedure; the sandwich coordinate
is denoted by A, isolated is [, and adjacent is o. In the bottom panel, the line segment spans the .25 quantile
and .75 quantile of the confidence interval lengths and the single point indicates the .99 quantile. Instead of
showing the quantiles for each coordinate, we instead plot the maximum .25 (or .75, .99) quantile across the
sandwich, isolated, and adjacent coordinates. The labels on the horizontal axis indicate a different simulation
setting and are coded as “Covariate - Errors” where the different covariate and error settings are detailed in
the main text. For some settings and procedures, the empirical coverage drops below .6 and is not shown.
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Figure 2: Empirical coverage and confidence interval length for inactive variables when n = 50 and p = 100
for sign symmetric errors. All other elements remain the same as Figure 1.
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5.2 All variables: (n = 100,p = 300)

In Figures 3 and 4, we show empirical coverage and confidence interval length for the active variables over
1000 trials when the errors and covariates are sub-exponential with (n = 100, p = 300) assuming exchangeable
and sign symmetric errors. Figures 5 and 6 show the analogous plots for inactive variables.

The conclusions are qualitatively similar to the (n = 50,p = 100) experiments for both active and inactive
variables. However, we note that in this case the confidence intervals produced by the residual randomization
procedure have lengths comparable to the competing methods in most settings.
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Figure 3: Empirical coverage and confidence interval length for the active variables with n = 100, p = 300,
1000 replications and exchangeable errors. The top two panels are for s = 4 and the bottom two are for
s = 15. The first and third panels show empirical coverage rates for each procedure; the sandwich coordinate
is denoted by A, isolated is [, and adjacent is o. In the bottom panel, the line segment spans the .25 quantile
and .75 quantile of the confidence interval lengths and the single point indicates the .99 quantile. Instead of
showing the quantiles for each coordinate, we instead plot the maximum .25 (or .75, .99) quantile across the
sandwich, isolated, and adjacent coordinates. The labels on the horizontal axis indicate a different simulation
setting and are coded as “Covariate - Errors” where the different covariate and error settings are detailed in
the main text. For some settings and procedures, the empirical coverage drops below .6 and is not shown.
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Figure 4: Empirical coverage and confidence interval length for active variables when n = 100 and p = 300
for sign symmetric errors. All other elements remain the same as Figure 3.
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Figure 5: Empirical coverage and confidence interval length for inactive variables when n = 100 and p = 300
for ezchangeable errors. In the top two and bottom two panels, the true support of 5 are 4 and 15 respectively.
The first and third panels show empirical coverage rates for each procedure. In the bottom panels, the line
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate
and error settings are detailed in the main text.
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Figure 6: Empirical coverage and confidence interval length for inactive variables when n = 100 and p = 300
for sign symmetric errors. All other elements remain the same as Figure 5.
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5.3 Comparison of RR to RR Tuning Free

In the following set of figures, we compare the performance of RR to RR Tuning Free. We note that when
s = 4, RR Tuning Free generally performs slightly worse compared to RR. However, when s = 15 , RR
Tuning Free performs comparably. In both cases, RR Tuning Free yields shorter CI lengths compared to
RR, especially with covariates with Toeplitz covariances. With 4 = 10000, we would expect the solution from
the selection procedure of the original method to be very close to what is obtained via that of RR Tuning
Free albeit with a less precise grid search. The two main sources of discrepancies comes from 1) the second
term in d(\) (60) being a tighter upper bound compared to that in eq. 12 in the main text and 2) fastclime
symmetrizing M.

n=50;p=100;s = (4, 15)

1.00 -
o [ a A
[} a8 8 R a -] Py ] a 6. & ol o o = ] o o
0.95 o
g - S ug g 2 % 'a g Tar 18, DA, o0, of AE b ao: o, Ba 5 85T R,
o 8 a9 A ag a8 a0 2 e
3090 — © Ao ﬁg f o
INEEIN N
0.85 —
28 3 s %
- 24 4
> 20 3
= =
& 16 3 s o
= 12 3 P
S g3 oo o6 o l : i ll
4 3 oo O L4 [ | 4 Py
s g0l T Moot 601 991 M1 g0 4ol G0l v M0l Te v o Te 7 do! ol 90 T 4.
1.00 =
A A Q a8 é 8
eg ﬁé 89 ac° ge ol g af 4" 6a ) ] 8
o) An A L) f o 8 (=R~ LT P « - ef ' pa’ p,' B a 2] 8
3095 o=—8 RS o0 q
@ A AL A A éé
° Ao
>
8 0.90
0.85 —
_ 3
28 — e
- 24 =
> 20 3
S g o <
3 123 ° ¢ $
5 - s o sitie I o . o
8 — 3 %o
= 123 ° ° | | lo %o, 90, %o
3_?? AR EEERTEEE SR S A IR SR SRR SN R & S L R ? 120 19 ' | TR R R N
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
[aY] o — - o o — - o o - = o o — - o om — - o o
P28 0z 2 g 8 2 % 2 83 2 2 2§ 3z ¥ g § 2 % 8
b3 5 z z z = 2 2 z g j e < o © o © 5 2 2 S B
® RR Tuned ® RR Tuning Free

Figure 7: Empirical coverage and confidence interval length for active variables when n = 50 and p = 100 for
exchangeable errors. In the top two and bottom two panels, the true support of 8 are 4 and 15 respectively.
The first and third panels show empirical coverage rates for each procedure. In the bottom panels, the line
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate
and error settings are detailed in the main text.
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Figure 8: Empirical coverage and confidence interval length for active variables when n = 50 and p = 100

for sign symmetric errors. All other elements remain the same as Figure 7.
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n=>50;p=100;s =(4, 15)
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Figure 9: Empirical coverage and confidence interval length for inactive variables when n = 50 and p = 100
for ezchangeable errors. In the top two and bottom two panels, the true support of 5 are 4 and 15 respectively.
The first and third panels show empirical coverage rates for each procedure. In the bottom panels, the line
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate
and error settings are detailed in the main text.
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Figure 10: Empirical coverage and confidence interval length for inactive variables when n = 50 and p = 100
for sign symmetric errors. All other elements remain the same as Figure 9.
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Figure 11: Empirical coverage and confidence interval length for active variables when n = 100 and p = 300
for ezchangeable errors. In the top two and bottom two panels, the true support of 5 are 3 and 10 respectively.
The first and third panels show empirical coverage rates for each procedure. In the bottom panels, the line
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate
and error settings are detailed in the main text.

22




n=100;p =300;s = (4, 15)

1.00
095 —f8 —_ A s B b
S 8; T/ gﬁ "B RE, &, 85, @ 8, 0. B85 B, 0, o, G0, gg. S0, T@, 90, OF | ] B
© A A ﬂ S é x a2 &, A A ° a
g 090 3 R & 62 I}
o ) A
© .85 a B
0.80 —
4 —_—
o 184 o
< o o @
= | <>| ° | I
3 27060 o o OT | RS T I oot |1 00 00
= °
S ! L ' o | I | I
SR ¢ SRR LR URRPe ' ' 1 99
0 - ¢ L'a% o6
1.00
g 8 8
o 095 -A--g-— —E—gﬂ-“gﬂ--s‘ FRISE aem —E——H%— _g_ —-n-“-—-“n-—'u-——-‘:‘%-—-ﬂn- -Eﬁ-————-‘a'——'cr—-‘e'—
© A
© 0.90 ] IS 5 Py 6 ()
Q ! !
© .85
0.80 -
4 S < RS
< °<> o s
22 0% o
< <
=) ¢ &0 S o ° ll o il II o | .
§ ° o1 @ ¢ ° I o | 0% ©
- 2gle LR ISR LR SRR LR SERC IR RPN | | I | || ||
G | il R A RER ERER S |
0 = &6
T T T T T T T T T T T T T T T T T T T T T T
5 & z =z =z g g g g2 ¢ o £ P F 5 &b 6 2 g g ¢
® RR Tuned ® RR Tuning Free

Figure 12: Empirical coverage and confidence interval length for active variables when n = 100 and p = 300
for sign symmetric errors errors. All other elements remain the same as Figure 11.
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Figure 13: Empirical coverage and confidence interval length for inactive variables when n = 100 and p = 300
for ezchangeable errors. In the top two and bottom two panels, the true support of 5 are 4 and 15 respectively.
The first and third panels show empirical coverage rates for each procedure. In the bottom panel, the line
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate
and error settings are detailed in the main text.
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Figure 14: Empirical coverage and confidence interval length for inactive variables when n = 100 and p = 300
for sign symmetric errors. All other elements remain the same as Figure 13.
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