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Abstract 
We propose a residual randomization procedure 
designed for robust Lasso-based inference in the 
high-dimensional setting. Compared to earlier 
work that focuses on sub-Gaussian errors, the pro-
posed procedure is designed to work robustly in 
settings that also include heavy-tailed covariates 
and errors. Moreover, our procedure can be valid 
under clustered errors, which is important in prac-
tice, but has been largely overlooked by earlier 
work. Through extensive simulations, we illus-
trate our method’s wider range of applicability as 
suggested by theory. In particular, we show that 
our method outperforms state-of-art methods in 
challenging, yet more realistic, settings where the 
distribution of covariates is heavy-tailed or the 
sample size is small, while it remains competitive 
in standard, “well behaved” settings previously 
studied in the literature. 

1. Introduction 
The Lasso (Tibshirani, 1996) and its variants are typically 
used to estimate the coefficients of a linear model in the 
high-dimensional setting where the number of covariates, 
p, is larger than the number of samples, n. The Lasso has 
been shown to possess many desirable theoretical proper-
ties and has proven fruitful in applications across nearly 
all scientific domains (Bühlmann & Van De Geer, 2011). 
This widespread use has recently generated much interest in 
procedures for performing inference using Lasso estimates. 

However, for parameters which are zero or nearly zero, 
the Lasso point estimates may have an irregular distribu-
tion, and naı̈vely constructing confidence intervals typically 
results in invalid inference. To overcome these difficul-
ties, various procedures have been proposed. Wasserman 
& Roeder (2009) and Meinshausen et al. (2009) both used 
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sample splitting procedures to form valid p-values. Zhang 
& Zhang (2014), Van de Geer et al. (2014), and Javanmard 
& Montanari (2014) proposed the desparsified and debiased 
Lasso, which adds a one step correction to the Lasso esti-
mate. The resulting estimate is not sparse, but under certain 
conditions, it has asymptotically negligible bias. The debi-
ased/desparsified estimate is asymptotically normal and can 
be used for inference. 

An alternative approach for inference in high-dimensional 
linear models is the bootstrap. Chatterjee & Lahiri (2011) 
proposed a residual bootstrap procedure for the adaptive 
Lasso (Zou, 2006). One crucial requirement with this ap-
proach is the “beta-min” condition, which requires the non-
zero parameters to be large enough in absolute value (i.e., 
much larger than n−1/2). This condition can be overly 
restrictive in cases where the primary aim is to test null 
hypotheses on the significance of regression coefficients of 
the form H0 : βj = 0. To circumvent this problem, Dezeure 
et al. (2017) and Zhang & Cheng (2017) both proposed boot-
strap procedures based on the desparsified Lasso (Van de 
Geer et al., 2014), which are capable of performing simulta-
neous inference over a set of parameters in the linear model; 
i.e., H0 : βj = 0 for all j ∈ J ⊆ [p] = {1, . . . , p}. Zhang 
& Cheng (2017) proposed bootstrapping the linearized part 
of the desparsified Lasso with a Gaussian multiplier boot-
strap, while Dezeure et al. (2017) proposed using either 
a wild bootstrap or a residual bootstrap procedure for the 
entire estimator. 

The above procedures are typically obtained under strong 
regularity conditions on covariates and require i.i.d. sub-
Gaussian errors. Therefore, they may perform poorly in 
more realistic settings where n is relatively small, the co-
variates and errors are non-Gaussian and/or heavy-tailed, or 
have complex structures, such as heterogeneity or clustering. 

In contrast, randomization methods (Fisher et al., 1935; 
Pitman, 1937; Kempthorne, 1952) are non-parametric and 
typically exact in finite samples, which makes them ro-
bust (Lehmann & Romano, 2006, Chapter 15). Randomiza-
tion procedures leverage structure in the data for testing and 
inference —e.g., permutation tests exploit exchangeability 
through permuting the data—and rely less on analytical 
assumptions or asymptotic arguments. 
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We show that a robust alternative for inference in high-
dimensional linear models is possible through the use of 
residual randomization, which was first proposed by Freed-
man & Lane (1983a;b) as an extension of Fisher’s random-
ization test. Residual randomization builds a test that is 
exact in the idealized case where the true errors are known, 
and remains asymptotically valid when using regression 
residuals in lieu of the true errors. Recently, Toulis (2019) 
extended the original residual randomization procedure to 
include complex error structures (e.g., clustered errors), and 
showed that the procedure is asymptotically valid and em-
pirically effective in the low-dimensional setting where p 
is fixed and n grows, including settings with heterogeneity 
and clustering. Toulis (2019) also proposed an extension 
to the high-dimensional setting (different than the one we 
propose), but did not give any theoretical guarantees. 

1.1. Contributions 

In this paper, we propose a novel residual randomization 
procedure for conducting hypothesis tests and computing 
confidence intervals for parameters in a high-dimensional 
linear model. In Section 2.3, we define a class of oracle 
tests that are exact for finite samples. However, these ora-
cle tests are infeasible, and so we develop an approximate 
implementation for each test in the class. Broadly speaking, 
our procedure selects a specific test from the class for which 
the approximate but feasible test is close to the oracle. Thus, 
we explicitly prioritize controlling the empirical size of the 
test. Our procedure is specifically designed to be robust to 
small sample sizes and non-Gaussianity in both covariates 
and errors. This is in contrast to previous procedures that 
prioritize testing power and shorter confidence intervals. 

We show theoretically that our procedure is valid even when 
the covariates and errors are sub-Weibull as opposed to the 
sub-Gaussian condition previously required in the literature. 
We also show that our procedure is sound when the errors 
have clustered dependence. Indeed, we see empirically 
that our residual randomization method is comparable to 
state-of-art methods in “well behaved” high-dimensional 
benchmarks and is superior in more complex settings, e.g., 
when n is small, the covariates are non-Gaussian, or the 
errors are heavy-tailed or heterogeneous. 

2. Methodology 
2.1. Setup 

Throughout we let | · |q and k · kq denote the vector q-norm 
and matrix q-norm, respectively. For any positive integer d, 
we let [d] = {1, . . . , d}. For X ∈ Rn×p, let Xi,: denote the 
ith row and X:,v denote the vth column. We let ej denote 
the jth standard basis; i.e., a vector whose jth element is 1 
and all other elements are 0. 

We assume that the data Y ∈ Rn are generated from the 
linear model 

Y = Xβ + ε, (1) 

where β ∈ Rp are the linear coefficients, X ∈ Rn×p are 
the covariates, and ε ∈ Rn is the vector of (unobservable) 
errors. Thus, Xi,: corresponds to the covariates for the ith 
observation and X:,v corresponds to the vth covariate. Let 
s denote the sparsity of β such that |β|0 ≤ s. 

In contrast to previous work which requires sub-Gaussian 
covariates and errors, we allow Xi,: and εi to follow sub-
Weibull(α) distributions. Sub-Weibull random variables are 
a class of distributions with tails of the form exp(−|x|α) 
(Kuchibhotla & Chakrabortty, 2018; Vladimirova et al., 
2020). The class of sub-Gaussian and sub-exponential dis-
tributions can be obtained as a subclass by setting α equal 
to 2 and 1, respectively. However, when α < 1, the tails can 
be heavier than sub-exponential. Finally, we also assume 
that Xi,: are drawn i.i.d., and Xi,: and εi are uncorrelated 
so that E(Xi,:εi) = 0. 

We propose a procedure to test linear hypotheses of the form 

H0 : a >β = a0, (2) 

for some a ∈ Rp and a0 ∈ R; we then invert the test to 
form confidence intervals. The form in (2) includes many 
hypotheses of interest; e.g., setting a = ej and a0 = 0 
implies H0 : βj = 0, setting a = ej − ek and a0 = 0 
implies H0 : βj = βk. In Remark 2 we briefly discuss how 
the procedure can be generalized to tests of the form H0 : 
A>β = a0 where A ∈ Rp×d and a0 ∈ Rd . This would 
allow for simultaneous inference as in Zhang & Cheng 
(2017) and Dezeure et al. (2017). 

2.2. Residual Randomization 

Following the framework of Toulis (2019), we require two 
key constructs: (1) A set G of linear maps G : Rn 7→ Rn 

dsuch that Gε = ε, conditional on X; and (2) An invariant 
: Rn d 

tn → R, where tn(ε) = tn(Gε) for all G ∈ G and 
any finite n. We emphasize that all the test we propose is 
conditional on X . 

Given these two definitions, if we can find a test statistic, 
Tn(Y, X), such that Tn(Y, X) = tn(ε) under H0, then 
we can compare the observed value of Tn with {tn(Gε) : 
G ∈ G} to test H0. Indeed, conditioned on X and ε (or 
alternatively X and Y ), the random variable X 

π = I{tn(Gε) ≥ Tn}/|G|, (3) 
G∈G 

is uniform over the set {0, . . . , |G|}/|G|. Thus, π can be 
used as a p-value and rejecting the null hypothesis when 
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π ≤ π0 yields a hypothesis test with exact size π0 
1 (save 

for the discreteness in π which can be easily remedied by 
adding uniform noise to π or increasing |G|). We consider 
the following three invariances for the distribution of ε. 
Exchangeability: If all elements of ε are exchangeable, 
then G could be all n × n permutation matrices. This in-
cludes the standard setting with i.i.d. errors. 

dSign Symmetry: If εi = −εi for all i ∈ [n], then G could 
be all n × n diagonal matrices with ±1 on the diagonal. 
This allows for heteroskedastic errors where εi may depend 
on Xi,:, but is symmetric around 0 conditional on Xi,:. 
Clustered Exchangeability: In many cases, the data can be 
partitioned into disjoint clusters, such that exchangeability 
is only reasonable within a cluster; e.g., to model country-
specific effects in users of an online platform; G should then 
be the set of within-cluster permutations. This generalizes 
exchangeability, but we will keep the two settings distinct. 

In the low-dimensional setting, where n � p, Toulis 
(2019) considered tests of the form a>β = a0 and used 

> ˆthe test statistic Tn = 
√ 
n(a β − a0), where β̂  is the 

least squares estimate of β, and set the invariant tn(u) = √ 
na>(X>X)−1X>u. Since β̂ = β + (X>X)−1X>ε, 

under the null hypothesis that a>β = a0, 
> ˆ >Tn = 

√ 
n(a β − a0) = 

√ 
na (β̂  − β) = tn(ε). (4) 

Thus, given the true errors ε, we could form an exact p-value 
as in Eq. (3). In practice, ε is unknown so one would instead 
use the residuals, ε̂ = Y − Xβ̂, or the restricted residuals, 
y − Xβ̂  

r, where β̂  
r is the restricted OLS estimates under 

H0. In this case, the test is approximate, but as shown in 
Toulis (2019), it can attain the correct size asymptotically. 

Remark 1 The robustness properties of residual random-
ization can be deduced from (3). Specifically, the perfor-
mance of the test does not depend on the distribution of the 
errors. Similarly, regularity conditions on X are not needed 
because the test is conditioned on X . Finally, the decision 
of the test remains invariant to monotone transformations of 
tn, and so the test remains robust to rescaling of the data. In 
our experiments, we demonstrate that the robustness proper-
ties of the exact test (using the true errors) are also inherited 
by the approximate procedure using the residuals. 

2.3. High-Dimensional Residual Randomization 

In the high-dimensional setting, where p > n, the OLS 
estimate β̂  is ill-defined and the low-dimensional residual 
randomization method cannot be directly applied. In this 
section, we propose adjustments appropriate for the high-
dimensional setting and show that this test can be further 
optimized for robustness. 

1We describe a one sided test, but a two-sided test could be 
similarly defined. 

Instead of the OLS estimator, we use a version of the debi-
ased Lasso (Javanmard & Montanari, 2014) which corrects 
for the regularization bias by adding a term proportional to 
the subgradient of the objective at the Lasso solution β̂l(λ1), 
where λ1 is the penalty parameter. When it is obvious, we 
will simply write β̂l instead of β̂l(λ1). Appropriate val-
ues of λ1 are problem dependent, and we give theoretically 
sufficient choices in Section 3. 

Specifically, for some M ∈ Rp×p, we use the estimator 

d,M l lβ̂ = β̂  +
1 
MX>(Y − Xβ̂ ). (5) 

n 

To form the high-dimensional test statistic, we replace β̂  in 
βd,M :(4) with ˆ 

√(M ) > ˆd,MTn = n(a β − a0). (6) 

1Setting S = X>X , this yields n 

(M ) > l >Tn = 
√ 
na (I − MS)(β̂  − β) + √ 

1 
a MX>ε 

n (7)√ 
+ n(a >β − a0). 

For some fixed β̂l and any M ∈ Rp×p, comparing Tn 
(M) to 

(M) > l > t (Gε) = 
√ 
na (I − MS)(β̂  − β)+ √ 

1 
a MX>Gε (8) 

n 

for all G ∈ G would yield an exact test as described in 
(3) under the null, since a>β − a0 = 0. When the null 
hypothesis does not hold such that a>β = a1 =6 a0, under 

1weak conditions, maxG √ a>MX>Gε will be bounded 
n 

at a rate of log(pn). However, Tn 
(M) contains an additional √ √ 

n√(a
>β − a0) = n(a1 − a0) term which will grow as 

O( n) leading to rejection of the null hypothesis. 

This procedure could be applied for any M .2 Thus, in con-
trast to the low-dimensional setting, in the high-dimensional 
setting, we have not just a single test, but a class of tests 
indexed by M , all of which are exact under the null hy-
pothesis. For any M , we call this the oracle randomization 
distribution. Since all oracle tests are exact, a good rule of 
thumb would be to select the matrix M , which gives the 
test with the most power, or alternatively, which—when 
inverted—yields the shortest confidence intervals. In some 
sense, this is the motivation behind Zhang & Cheng (2017) 
and Dezeure et al. (2017) setting M as an estimate of Σ−1 , 
albeit for a bootstrap procedure which is not exact. As sug-
gested by the Gauss-Markov theorem, this should asymptot-
ically give the shortest confidence intervals. 

>2If a MX> = 0, then the distribution over G would be 
a point mass. Nonetheless some randomization procedure for 
breaking ties could be used to maintain exact size. In (13), letting 
λ < 1 will prevent such an M from being feasible. 
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However, since we do not have access to β̂l − β or ε, we 
cannot directly use any of these oracle tests. Thus, we use 
the following invariant with ε̂ = Y − Xβ̂l = ε + X(β − β̂l) 
being the residuals from the Lasso regression: 

> > βl 
(M ) a MX>Gε̂  a MX>G(ε + X(β − ˆ ))
t̂ (Gε̂) = √ = √ 

n n 

= √ 
1 

a >MX>GX(β − β̂l) + √ 
1 

a >MX>Gε. 
n n 

(9) 

For any M , we refer to the resulting distribution—when se-
lecting G uniformly from G—as the attainable randomiza-
tion distribution, because it only involves quantities which 
we can directly access and compute. The oracle (8) and 
attainable (9) distributions share the same second term, but 
differ in their first terms (1/ 

√ 
n)a>MX>GX(β − β̂l) and√ 

na>(I −MS)(β̂l −β). Thus, each attainable distribution 
no longer retains the exact size that its corresponding oracle 
test enjoys. In particular, selecting an attainable test based 
on minimizing its oracle’s confidence interval length may 
result in poor finite sample performance. 

Instead of prioritizing short confidence intervals, we pri-
oritize the correct size of the test by selecting M to mini-
mize the distance between the attainable test and its corre-
sponding oracle test. Indeed, in Section 3 we show that the 
Wasserstein-1 distance between the oracle and attainable 
distributions is upper bounded by P > 

! 
√ a MX>GX/n l > G ∞ n|β̂  −β|1 |a (I − MS)|∞ + . |G| 

(10) 

Roughly speaking, |a>(I − MS)|∞ regulates the dif-
ference between the means of the attainable and ora-P 
cle distributions, while |a>MX>GX/n|∞/|G| is the G 
cost of using residuals instead of the true errors. Intu-
itively, one would expect (and we confirm empirically) 
that prioritizing the minimization of |a>(I − MS)|∞ over P 

|a>MX>GX/n|∞/|G| has a larger effect on the ac-G 
curacy of the attainable test’s p-value. Towards this end, we 
upweight the first term by setting δ ≥ 1 and select M which 
minimizes: P 

> G a >MX>GX/n ∞δ|a (I − MS)|∞ + . (11)
|G| 

While (11) can be solved using a linear program solver, 
for computational convenience, instead of directly optimiz-
ing (11) with respect to M , we instead solve P 

a >Mλ X>GX/n > G 1 ∞min δ|a (I − MλS)|∞ + , 
λ∈[0,1) |G| 

(12) 
where 

Mλ = arg min |a >M |1 

> 

M 
(13) 

s.t. a (I − MS) ≤ λ. 
∞ 

Algorithm 1 Test a>β = a0 

>Require: Y , X , a , a0, G, λ1, δ 
Compute Lasso estimate β̂l(λ1) and ε̂ = Y − Xβ̂l 

Compute λ? and Mλ? from (13) and (12) 
βd,Mλ? β̂l 1Compute ˆ = + Mλ? X>(Y − Xβ̂l)n√(Mλ? ) >β̂d,Mλ?Let Tn = n(a − a0) 

for G ∈ G do 
1Set t̂(Mλ? )(Gε̂) = √ a>Mλ? X>Gε̂  
n 

end for P (Mλ? ) 
G 

(Mλ? )I{t̂ (Gε̂)>Tn }Return |G| 

The problem in (13) is the CLIME (Cai et al., 2011) problem, 
and we solve it using the fastclime package (Pang et al., 
2014). In Section 3 we show that, for any δ ≥ 1, using Mλ? , 
where λ? is a minimizer of (12), ensures that the selected 
attainable and oracle distributions converge. 

To select M , Javanmard & Montanari (2014) solve a prob-
lem with the same constraint as (13), but instead minimize 
the Mi, 

> 
:SMi,: for all i ∈ [p], which—similar to Zhang & 

Cheng (2017) and Dezeure et al. (2017)—prioritizes shorter 
confidence intervals. When it is sparse, the inverse co-
variance of Xi,: can be consistently estimated by solving 
(13) (Cai et al., 2011). In that case the residual randomiza-
tion procedure should still produce asymptotically efficient 
confidence intervals and would be asymptotically equivalent 
to the other procedures. However, in finite samples, we see 
empirical improvements in robustness. We detail our proce-
dure in Algorithm 1, which produces a p-value for testing 
the null hypothesis that a>β = a0. 

Remark 2 Thus far, we have assumed a 1-dimensional hy-
pothesis test. However, similar to Zhang & Cheng (2017) 
and Dezeure et al. (2017), this can generalized be to testing 
several null-hypotheses simultaneously. In particular, one 
might instead use 

√ 
Tn = | n(A>β̂d − a0)|∞ (14) 

and the corresponding invariant 

tn(Gε̂) = √ 
1 

A>MX>Gε̂  . (15) 
n ∞ 

We focus on the 1-dimensional case for expositional clarity. 

2.4. Confidence Intervals 

To form a univariate confidence interval for βj , we invert 
the hypothesis test for βj = a0 (Rosenbaum, 2003). In 
particular, for a = ej we can compute the distribution of 
t(Gε̂) and set τπ0/2 and τ1−π0 /2 to the π0/2 and 1 − π0/2 
quantiles. Finally, to invert the level π0 two-sided test we 
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√ 
select a0 such that n(β̂d − a0) ∈ [τπ0/2, τ1−π0/2]. This 
is equivalent to the confidence interval for β: � � 

τ1−π0/2 τπ0/2β̂d β̂d− √ , − √ . (16) 
n n 

Note that as opposed to the multiplier bootstrap confidence 
intervals proposed by Zhang & Cheng (2017), the confi-
dence intervals in (16) may be asymmetric because they 
are produced from the attainable randomization distribution, 
which may be asymmetric. This is similar to the procedure 
proposed by Dezeure et al. (2017). 

3. Main Results 
Let Ft(X, ε) denote the oracle randomization distribution 
of tn in (8) conditional on X and ε when G is selected 
uniformly from G. Let F (̂X, ε) denote the attainable distri-t 
bution; i.e., the distribution of t̂  n in (9) when G is chosen 
uniformly from G. As the notation implies, both Ft(X, ε) 
and F (̂X, ε) depend on X, ε and are random distributions t 
with respect to X, ε. We give a finite sample characterization 
of the Wasserstein-1 distance between these two random 
distributions under certain assumptions, and we show that 
the distance goes to 0 with probability going to 1. All proofs 
are given in the supplement. 

We first state Lemma 1 which, as mentioned in Section 2.3 
shows that the distance between the oracle and attainable 
distributions can be decomposed into the estimation error of 
β̂l as well as two terms which, roughly speaking, regulate 
the difference in means and variance. 

Lemma 1 For any M ∈ Rp×p, let d1 (Ft(X, ε), F (̂X, ε))t 
denote the Wasserstein-1 distance between the oracle ran-
domization distribution and attainable randomization distri-
butions. Then, 

ˆd1 (Ft(X, ε), Ft̂(X, ε)) ≤ βl − β × h 1 � �i√ > > √ 
X> 

∞ 1 ∞ 
na (I − MS) + a M EQ GX/ n . 

(17) 
where Q is the uniform distribution over G in G. 

We now provide conditions under which the two terms in 
(17) can be controlled for the Mλ? selected by (13) and 
(12). Condition 1 requires that the tails of Xi,: and εi 
be sub-Weibull and bounds certain moments of the ob-
served covariates. In Condition 1, kεikΨα denotes the 
Orlicz norm of εi with Ψα(x) = exp(|x|α) − 1 and 
kX̃i,:kJ,Ψα = sup|θ|2=1 kX̃ > θkΨα is the joint Orlicz norm. i,: 

Condition 1 (Covariates) Suppose that Xi,: ∈ Rp are gen-
erated i.i.d. with mean 0 and covariance Σ. Let λmax 

and λmin denote the largest and smallest eigenvalues of 
Σ. Suppose each element of Xi,: is sub-Weibull(α) and 

the de-correlated covariates X̃ > = Σ−1/2X> are jointlyi,: i,: 
sub-Weibull(α) with � � 

max kX̃ 
i, 
> 
:kJ,Ψα , max kXi,v kΨα ≤ κ. (18) 

v 

We also define ( � � �h i2 
� 

2 > −1 >
Γ = max max E [Xi,uXi,v ] , max E a Σ Xi,:Xi,v , 

u,v∈[p]2 v∈[p] �h ��i2> −1 > 
max E a Σ Xi,:Xj,v . 
v∈[p] 

(19) 

We assume the high-dimensional regime where n and p 
both grow and p can be much larger than n. Condition 2 
also implicitly restricts the 2-norm of Σ and Σ−1 through 
κ? . In particular, we require n log(n)−4/α log(pn)1−4/α to 
scale linearly with the condition number of Σ. We will also p
require 8 Γ(log(pn) + 2 log(p))/n < 1 so that Σ−1 is in 
the feasible set of (13) for some λ < 1 with probability 
tending to 1. 

Condition 2 (Sample Size) Suppose � √ � 
? 2 λmax

κ = κ max |a|2 √ , 1 (20)
λmin 

and ( 
4/α 4/α−14Cα 

2 (κ?)2 [log(2n)] [3 log(pn)] 
n > max ,

Γ ) (21) 

64Γ(log(pn) + 2 log(p)) 

for some constant Cα which only depends on α. 

We now give conditions on the set of group actions, G. 

Condition 3 (Exchangeability) Let G ⊂ Gp where Gp is 
the set of all matrices corresponding to a permutation g 
of [n] such that (i) [n] = N1 ∪ N2 for some N1 and N2 

equal-sized disjoint sets, and (ii) for all j ∈ N1, g(j) ∈ N2 

and for all j ∈ N2, g(j) ∈ N1. 

Condition 4 (Sign Symmetry) Let G ⊂ Gs where Gs is 
the set of all diagonal matrices containing only ±1 such 
that there is an equal number of positive and negative 1’s. 

Condition 5 (Cluster Exchangeability) Suppose there ex-Sncist nc disjoint sets Lk with [n] = Lk and |Lk| = k 
n/nc = J such that {εi}i∈Lk are exchangeable, but may 
otherwise be dependent. That is, G ⊂ Gc, where Gc is the 
set of all block diagonal matrices where the GLk ,Lk block 
is a permutation matrix satisfying Condition 3. 

In Conditions 3, 4, and 5 we implicitly assume that n is even 
to simplify the analysis; when n is odd, the last observation 
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may be discarded. A more subtle requirement is that we do 
not assume the support of the randomization distribution is 
over all possible maps in either Gp, Gc, or Gs. These sets 
grow exponentially in n. Instead, we consider the more 
practical scenario where |G| is fixed with respect to n. This 
is similar to using the bootstrap or a Monte Carlo procedure 
with a number of draws that may be increased when a better 
approximation is desired, but in general stays fixed with 
n. Condition 5 also implicitly requires that |Lk| > 2 since 
|Gc| = 1 if all clusters have size 2 because there would be 
only 1 sub-matrix which satisfies Condition 3 for each Lk. 

Given the conditions on the covariates and group actions, 
we now state Lemma 2 and 3, which show that the two terms 
in Lemma 1 can be controlled. 

Lemma 2 Under Conditions 1 and 2 and either Condi-
tion 3, 4, or 5, we have 

⎛ s ⎞P ⎝ G −1|X>GX|∞ 2Γ(log(pn) + 2 log(p))
P ≥ 8 ⎠ ≤ 6|G|(np) . 

|G| n 

(22) 

Lemma 3 Under the Conditions 1 and 2, we have 
⎛ s ⎞ 

Γ(log(pn) + 2 log(p))> −1 −1
P ⎝|a (I − Σ S|∞ ≥ 8 ⎠ ≤ 3(np) . 

n 

(23) 

Thus, with probability at least 1 − 3(np)−1 the feasible set q 
Γ(log(pn)+2 log(p))of (13) is non-empty with λ = 8 and n 

|a >Mλ|1 ≤ |a >Σ−1|1. (24) 

Corollary 1 Assume the conditions of Lemma 3 and 
Lemma 2. Then with probability greater than 1−3(np)−1 − 
6|G|(np)−1 using M? selected from (13) and (11) yields 

ˆd1 (Ft(X, ε), Ft̂(X, ε)) ≤ βl − β × h � �p 1 i (25) 
8 δ + a >Σ−1 2Γ(log(pn) + 2 log(p)) . 

1 

Corollary 1 implies that using any procedure that can pro-
duce an estimate β̂l such that |β̂l − β|1 = Op((log p)−1/2) 
is sufficient for showing that the oracle and attainable distri-
butions converge in Wasserstein distance. For concreteness, 
we consider two settings and apply existing results on Lasso 
estimation. However, other estimators (i.e., SCAD or best 
subset selection) can also be used as long as |β̂  − β|1 attains 
the correct rate. First, we consider Lasso estimates when εi 
is sub-Weibull(α) as in Kuchibhotla & Chakrabortty (2018) 
who require some additional assumptions summarized in 
Condition 6 that follows. We also consider the setting of 
Belloni et al. (2016) who require sub-Gaussian covariates 
and errors, but allow for clustered error dependence. 

Condition 6 (Lasso with sub-Weibull errors) Suppose 
εi is sub-Weibull(α) with kεikΨα ≤ κ. Suppose that � � 

32kΞn,h
λmin ≥ 54 min Ξn,h + (26)

1≤h≤p h 

where r 
√  n,hh log(36np/h)

Ξn,h = 14 2 
n 

Cακ
2h(log(2n))2/α(h log(36np/h))2/α 

+ 
n (27) 

Θh = {θ ∈ Rp : |θ|0 ≤ h, |θ|2 ≤ 1}�� ��2 
X> 

θ∈Θh 

 n,h = sup var i,:θ . 

Furthermore, suppose that the Lasso penalty term λ1 is set 
such that s 

√ log(np) Cα/2κ
2(log(2n))2/α(2 log(np))2/α 

λ1 = 14 2σ + , (28) 
n n 

and in addition to Condition 2 

C2 κ4(log(pn))8/α−1 

n > 
α/2 

, (29)
σ2 

where σ = maxv∈[p] var(Xi,v εv) and Cα/2 is a constant 
only depending on α. 

Theorem 1 (Sub-Weibull Errors and Covariates) 
Suppose Conditions 1, 2, and 6 hold. Under ei-
ther Condition 3 or 4, with probability not less than 
1 − 6|G|+3 3 − 3− ,np np n � 

1360 δ + >a Σ−1 
� √ 
σs Γ log(np)1d1 (Ft (X, ε), Fˆ(X, ε)) ≤ √ .t λmin n 

(30) 

Recall in Condition 5 with clustered errors, nc denotes the 
number of clusters, where each cluster has size J . Then, 
Theorem 2, presented below, combines Corollary 1 with 
the results of Belloni et al. (2016) on Lasso estimates under 
clustered errors. In particular, they propose the Cluster-
Lasso procedure and show that its performance depends on 
a term which measures the within-cluster dependence: ⎛ ⎞ ⎛ ⎡ ⎤2⎞ 

J � JX X⎝ 1 2 2 ⎝ 1 2 2
ıJ = J min E X ¨ ε̈  ⎠ E ⎣ X ¨ ε̈  ⎦ ⎠ , (31)ijv ij ijv ij

1≤v≤p J J 
j=1 j=1 

¨where Xijv and ε̈  ij denotes the vth covariate and jth obser-
vation in the ith cluster which have been adjusted by their 
respective cluster means. Under complete independence 
ıJ = J , and the rate in Theorem 2 recovers the rate under 
independent errors. In the worst case, however, ıJ = 1, so 
that each cluster is essentially one observation. It is worth 
noting that Belloni et al. (2016) allow cluster dependence 
in both covariates and errors; however, we allow for depen-
dent errors but still require the covariates to be i.i.d. For 
completeness, we include the assumptions of Belloni et al. 
(2016) in the supplement. 
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Figure 1. Empirical coverage and confidence interval length for the active variables with n = 50, p = 100, 1000 replications and 
exchangeable errors. The top two panels are for s = 4 and the bottom two are for s = 15. The first and third panels show empirical 
coverage rates for each procedure; the sandwich coordinate is denoted by Δ, isolated is �, and adjacent is ◦. In the bottom panel, the line 
segment spans the .25 quantile and .75 quantile of the confidence interval lengths and the single point indicates the .99 quantile. Instead 
of showing the quantiles for each coordinate, we instead plot the maximum .25 (or .75, .99) quantile across the sandwich, isolated, and 
adjacent coordinates. The labels on the horizontal axis indicate a different simulation setting and are coded as “Covariate - Errors” where 
the different covariate and error settings are detailed in the main text. For some settings and procedures, the empirical coverage drops 
below .6 and is not shown. 

Theorem 2 (Clustered Errors) Suppose Conditions 1, 2, 
and 5 hold and |G| = O(1). Further assume the conditions 
of Theorem 1 of Belloni et al. (2016) and let β̂l be the 
Cluster-Lasso. Then d1 (Ft(X, ε), F (̂X, ε)) ist � �p ! 

>Σ−1 s δ + a Γp(log(pn) + log(p))
Op 

1 √ . (32) 
ncıJ 

In Theorems 1 and 2, we explicitly include the term 
|a>Σ−1|1, and for convergence, we require |a>Σ−1|1 = √ 
O( n/(s log(np))). 

Remark 3 Convergence in Wasserstein-1 implies weak con-
vergence, as well as L1 convergence of the quantile and 
distribution functions. Similar to Bickel & Freedman (1981), 
Bickel & Freedman (1983), and Lopes (2014), we use this 
to justify the procedure’s use for hypothesis tests and confi-
dence intervals. 

4. Numerical Experiments 
We compare nominal 95% confidence intervals (CIs) over 
1000 trials of BLPR (Liu et al., 2017), HDI (Dezeure 
et al., 2017), DLASSO (Javanmard & Montanari, 2014)3, 
SILM (Zhang & Cheng, 2017) and residual randomiza-
tion (RR) with (n = 50, p = 100) and (n = 100, p = 
300). We slightly modified SILM to output marginal 
confidence intervals and ensure that the modified vari-
ance estimator does divide by 0 if the support of the es-
timated β is n. Additional details are in the supplement, 
and the code is available at: https://github.com/ 
atechnicolorskye/rrHDI. 

In each setting, we sample random X ∈ Rn×p with rows 
drawn i.i.d. from either (N1) N(0, I); (G1) Gamma(1, 1)− 
1; (N2) N(µ, 1) with P (µ = −2) = P (µ = 2) = 0.5; 

3https://web.stanford.edu/ montanar/sslasso/code.html 

https://github.com/atechnicolorskye/rrHDI
https://github.com/atechnicolorskye/rrHDI
https://3https://web.stanford.edu
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Figure 2. Empirical coverage and confidence interval length for the active variables with n = 50, p = 100, 1000 replications and sign 
symmetric errors. The top two panels are for s = 4, the bottom two panels are for s = 15. All other elements remain the same as Figure 1. 

(NT) N(0, Σ) for Σij = .8|i−j|; (GT) Gamma(Σ) − 1 for 
Σij = .8|i−j|; or (WB) each element is a centered Weibull 
with scale = 1 and shape = 1/2. 

We sample the errors ε ∈ Rn from (N1) N(0, 1); (G1) 
Gamma(1, 1) − 1; (N2) N(µ, 1) with P (µ = −2) = 
P (µ = 2) = 0.5; (WB) a centered Weibull with scale = 1 
and shape = 1/2; (HN) normal with N(0, 2kXik22/p); or 
(HM) N(µ, 2kXik22/p) with P (µ = −2) = P (µ = 2) = 
0.5. The exchangeable settings exclude the heteroskedastic 
cases of HN and HM; the symmetric settings exclude G1 
and WB. 

For a fair comparison, we have HDI use wild bootstrap for 
the symmetric settings. Also, apart from SILM, empirical 
performance is generally not affected by the scale of the co-
variates; however, in certain settings SILM performed very 
poorly when the covariates were not standardized. Thus, we 
standardize the covariates to benefit SILM. 

For each setting, we draw β ∈ Rp with s = 4 or 15 active 
(i.e., non-zero) coordinates drawn from the Rademacher 
distribution and set the remaining p − s inactive coordi-
nates to 0. We arrange entries in β in such that there is 
one active entry between two inactive entries (isolated), one 

active between an active entry and an inactive entry (adja-
cent), and one active entry between two other active entries 
(sandwiched). We also use the same scheme for the inactive 
variables. We then set Y = Xβ + ε. 

To obtain Mλ? , we solve (13) to up to 500 iterations using 
fastclime (Pang et al., 2014) which starts with λ = 1 
and uses warm starts to progressively shrink λ. We further 
select λ? via (12) by using a grid search over the λ values 
used by fastclime with δ = 10, 000. Empirically, a 
larger value of δ generally results in better coverage, but 
comes at the expense of confidence interval length; broadly 
speaking though, we see that for δ ≥ 1, 000, the perfor-
mance of the proposed procedure is fairly insensitive to the 
value of δ. 

Since in practice we do not know the appropriate Lasso 
tuning parameter λ1 a priori, for the residual randomiza-
tion procedure we employ the Square-Root Lasso (Belloni 
et al., 2011) implemented in RPtests (Shah & Buhlmann, 
2017) to obtain estimates for β̂l . We follow (Zhang &q 
Cheng, 2017) and rescale ε̂  by n/(n − |β̂l|0) as a finite-
sample correction. For all settings, we use 1, 000 group 
actions/bootstrap resamples. 
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In Figures 1 and 2 we show the empirical coverage and 
the confidence interval length for the active variables when 
(n = 50, p = 100) for exchangeable and symmetric errors 
respectively. In the supplement, we provide corresponding 
figures for the inactive variables as well as results for (n = 
100, p = 300). 

Among the competing methods, SILM performs the best, 
and has generally satisfactory performance across all set-
tings except the Toeplitz case and the setting with Weibull 
covariates for s = 4. For s = 4, HDI generally outper-
forms DLASSO, but when s = 15, HDI’s performance de-
creases drastically. Generally, BLPR performs the worst and 
when s = 15 has coverage less than .6. All the competing 
methods perform poorly when the covariates have Toeplitz 
covariance. The sandwich coordinates typically have the 
lowest coverage and the isolated coordinates typically have 
empirical coverage closest to the nominal rate. 

In contrast, we see that RR nearly obtains the nominal 95% 
coverage regardless of exchangeability or sign symmetry, 
and across all experimental configurations. This remarkable 
stability can be explained by our selection procedure for 
M and the general properties of randomization tests (see 
Introduction and Remark 1). At the same time, RR typically 
yields larger interval lengths. While the interval length from 
RR is generally longer than the competing methods, this is 
especially true when the covariates have Toeplitz covariance. 
We posit that this is because solving (13) for poorly condi-
tioned sample covariances can yield large |a>M |1 and thus 
results in larger confidence intervals. 

In the supplement, we show the empirical coverage for 
the inactive coordinates with (n = 50, p = 100) as 
well as all coordinates when (n = 100, p = 300). For 
(n = 100, p = 300), the results are qualitatively similar 
to the results for (n = 50, p = 100); RR almost always 
has the best empirical coverage followed by SILM, HDI, 
DLASSO, and then BLPR. However, all methods (including 
RR) generally perform less well; in particular, in contrast to 
the (n = 50, p = 100) case, there are some settings where 
RR does not attain nominal coverage. For the inactive vari-
ables when (n = 50, p = 100) and (n = 100, p = 300), 
all procedures except BLPR typically achieve (or exceed) 
nominal coverage. 

Table 1 gives the average computation time (in seconds) 
required for each of the procedures with n = 100, p = 300. 
We form a confidence interval for each of the 300 coordi-
nates using 1, 000 group actions/bootstrap resamples. Un-
surprisingly, RR requires more computational effort than 
competing procedures that appeal to asymptotic limiting 
distributions (BLPR and DLASSO). However, the computa-
tional effort is comparable to the resampling-based methods 
in our experiments (HDI and SILM). 

Table 1. Mean Computation Time in Seconds. 
Method BLPR HDI DLASSO SILM RR 

Time (s) 18.9 374.2 11.2 61.1 135.1 

5. Discussion 
The theoretical guarantees coupled with the excellent empiri-
cal performance suggest that residual randomization is an ap-
pealing alternative for robust inference in high-dimensional 
linear models. Across a wide range of settings, it attains 
nominal coverage even when n is small or the errors are 
heavy tailed. Of course, this does not come for free, as 
we observe that the confidence intervals produced are gen-
erally larger than those produced by competing methods— 
especially when there is strong cross-correlation in covari-
ates. Nonetheless, we believe that in most practical applica-
tions slightly larger confidence intervals is a small price to 
pay in exchange for better, more robust coverage. 

While the procedure is asymptotically valid for any fixed 
δ ≥ 1, one practical concern is specifying a tuning parame-
ter δ when selecting M? . If δ is too small, this may result in 
degraded empirical performance; however, the simulations 
show that there is a threshold of δ for which our procedure 
performs well across all settings. This threshold seems to 
coincide with a point at which the length of our confidence 
intervals become insensitive to increasing δ. Thus, this 
threshold can be well approximated—at least via heuristics. 

Nonetheless, in Section 3 of the supplement, we describe an 
alternative procedure which also performs well empirically 
and is also asymptotically valid when an upper bound on Γ 
in (19) is known. 

Several questions may be fruitful to pursue in the future. 
First, to form confidence intervals, we require control of 
|β̂l − β|1. However, it would be interesting to investigate 
residual randomization procedures which only require small 
in-sample prediction error; i.e., 1 |X(β̂l − β)|. This would n 
allow testing individual coordinates of β without assuming 
stringent restricted eigenvalue or irrepresentability condi-
tions. There are additional advantages of the residual ran-
domization framework which could be further exploited 
methodologically. For example, we primarily focused on se-
lecting M , but one could also use the observed covariates X 
to select specific invariances G ∈ G which optimize certain 
test properties. 

Acknowledgments 
This work was completed in part with resources provided 
by the University of Chicago Research Computing Center. 



Robust Inference for Lasso 

References 
Belloni, A., Chernozhukov, V., and Wang, L. Square-root 

lasso: pivotal recovery of sparse signals via conic pro-
gramming. Biometrika, 98(4):791–806, 2011. ISSN 
0006-3444. doi: 10.1093/biomet/asr043. URL https: 
//doi.org/10.1093/biomet/asr043. 

Belloni, A., Chernozhukov, V., Hansen, C., and Kozbur, 
D. Inference in high-dimensional panel models with 
an application to gun control. Journal of Business & 
Economic Statistics, 34(4):590–605, 2016. 

Bickel, P. J. and Freedman, D. A. Some asymptotic theory 
for the bootstrap. The annals of statistics, pp. 1196–1217, 
1981. 

Bickel, P. J. and Freedman, D. A. Bootstrapping regression 
models with many parameters. Festschrift for Erich L. 
Lehmann, pp. 28–48, 1983. 

B¨ Statistics for high-uhlmann, P. and Van De Geer, S. 
dimensional data: methods, theory and applications. 
Springer Science & Business Media, 2011. 

Cai, T., Liu, W., and Luo, X. A constrained ` 1 minimization 
approach to sparse precision matrix estimation. J. Amer. 
Statist. Assoc., 106(494):594–607, 2011. ISSN 0162-
1459. doi: 10.1198/jasa.2011.tm10155. URL https: 
//doi.org/10.1198/jasa.2011.tm10155. 

Chatterjee, A. and Lahiri, S. N. Bootstrapping lasso es-
timators. J. Amer. Statist. Assoc., 106(494):608–625, 
2011. ISSN 0162-1459. doi: 10.1198/jasa.2011.tm10159. 
URL https://doi.org/10.1198/jasa.2011. 
tm10159. 

Dezeure, R., B¨ High-uhlmann, P., and Zhang, C.-H. 
dimensional simultaneous inference with the bootstrap. 
TEST, 26(4):685–719, 2017. ISSN 1133-0686. doi: 
10.1007/s11749-017-0554-2. URL https://doi. 
org/10.1007/s11749-017-0554-2. 

Fisher, R. A. et al. The design of experiments. The design 
of experiments., (2nd Ed), 1935. 

Freedman, D. and Lane, D. A nonstochastic interpretation 
of reported significance levels. Journal of Business & 
Economic Statistics, 1(4):292–298, 1983a. 

Freedman, D. A. and Lane, D. Significance testing in a non-
stochastic setting. In A Festschrift for Erich L. Lehmann, 
Wadsworth Statist./Probab. Ser., pp. 185–208. Wadsworth, 
Belmont, CA, 1983b. 

Javanmard, A. and Montanari, A. Confidence intervals and 
hypothesis testing for high-dimensional regression. The 
Journal of Machine Learning Research, 15(1):2869–2909, 
2014. 

Kempthorne, O. The design and analysis of experiments. 
1952. 

Kuchibhotla, A. K. and Chakrabortty, A. Moving beyond 
sub-gaussianity in high-dimensional statistics: Applica-
tions in covariance estimation and linear regression. arXiv 
preprint arXiv:1804.02605, 2018. 

Lehmann, E. L. and Romano, J. P. Testing statistical hy-
potheses. Springer Science & Business Media, 2006. 

Liu, H., Xu, X., and Li, J. J. A bootstrap lasso+ partial ridge 
method to construct confidence intervals for parameters 
in high-dimensional sparse linear models. arXiv preprint 
arXiv:1706.02150, 2017. 

Lopes, M. E. A residual bootstrap for high-dimensional 
regression with near low-rank designs. In Proceedings of 
the 27th International Conference on Neural Information 
Processing Systems - Volume 2, NIPS’14, pp. 3239–3247, 
Cambridge, MA, USA, 2014. MIT Press. 

Meinshausen, N., Meier, L., and B¨ p-values uhlmann, P. 
for high-dimensional regression. J. Amer. Statist. Assoc., 
104(488):1671–1681, 2009. ISSN 0162-1459. doi: 10. 
1198/jasa.2009.tm08647. URL https://doi.org/ 
10.1198/jasa.2009.tm08647. 

Pang, H., Liu, H., and Vanderbei, R. The fastclime pack-
age for linear programming and large-scale precision 
matrix estimation in r. Journal of Machine Learning Re-
search, 15(14):489–493, 2014. URL http://jmlr. 
org/papers/v15/pang14a.html. 

Pitman, E. J. Significance tests which may be applied to 
samples from any populations. Supplement to the Journal 
of the Royal Statistical Society, 4(1):119–130, 1937. 

Rosenbaum, P. R. Exact confidence intervals for noncon-
stant effects by inverting the signed rank test. The Ameri-
can Statistician, 57(2):132–138, 2003. 

Shah, R. and Buhlmann, P. RPtests: Goodness of Fit 
Tests for High-Dimensional Linear Regression Mod-
els, 2017. URL https://CRAN.R-project.org/ 
package=RPtests. R package version 0.1.4. 

Tibshirani, R. Regression shrinkage and selection via the 
lasso. J. Roy. Statist. Soc. Ser. B, 58(1):267–288, 1996. 
ISSN 0035-9246. URL http://links.jstor. 
org/sici?sici=0035-9246(1996)58: 
1<267:RSASVT>2.0.CO;2-G&origin=MSN. 

Toulis, P. Life after bootstrap: Residual randomiza-
tion inference in regression models. arXiv preprint 
arXiv:1908.04218, 2019. 

https://doi.org/10.1093/biomet/asr043
https://doi.org/10.1093/biomet/asr043
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1198/jasa.2011.tm10159
https://doi.org/10.1198/jasa.2011.tm10159
https://doi.org/10.1007/s11749-017-0554-2
https://doi.org/10.1007/s11749-017-0554-2
https://doi.org/10.1198/jasa.2009.tm08647
https://doi.org/10.1198/jasa.2009.tm08647
http://jmlr.org/papers/v15/pang14a.html
http://jmlr.org/papers/v15/pang14a.html
https://CRAN.R-project.org/package=RPtests
https://CRAN.R-project.org/package=RPtests
http://links.jstor.org/sici?sici=0035-9246(1996)58:1<267:RSASVT>2.0.CO;2-G&origin=MSN
http://links.jstor.org/sici?sici=0035-9246(1996)58:1<267:RSASVT>2.0.CO;2-G&origin=MSN
http://links.jstor.org/sici?sici=0035-9246(1996)58:1<267:RSASVT>2.0.CO;2-G&origin=MSN


Robust Inference for Lasso 
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