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Abstract
Incorporating a so-called “momentum” dynamic
in gradient descent methods is widely used in
neural net training as it has been broadly ob-
served that, at least empirically, it often leads
to significantly faster convergence. At the same
time, there are very few theoretical guarantees
in the literature to explain this apparent accel-
eration effect. Even for the classical strongly
convex quadratic problems, several existing re-
sults only show Polyak’s momentum has an ac-
celerated linear rate asymptotically. In this pa-
per, we first revisit the quadratic problems and
show a non-asymptotic accelerated linear rate of
Polyak’s momentum. Then, we provably show
that Polyak’s momentum achieves acceleration
for training a one-layer wide ReLU network and
a deep linear network, which are perhaps the
two most popular canonical models for studying
optimization and deep learning in the literature.
Prior work (Du et al., 2019b; Wu et al., 2019c)
showed that using vanilla gradient descent, and
with an use of over-parameterization, the error
decays as (1 − Θ( 1

κ′ ))
t after t iterations, where

κ′ is the condition number of a Gram Matrix.
Our result shows that with the appropriate choice
of parameters Polyak’s momentum has a rate of
(1−Θ( 1√

κ′ ))
t. For the deep linear network, prior

work (Hu et al., 2020b) showed that vanilla gra-
dient descent has a rate of (1 − Θ( 1κ ))

t, where
κ is the condition number of a data matrix. Our
result shows an acceleration rate (1 − Θ( 1√

κ
))t

is achievable by Polyak’s momentum. This work
establishes that momentum does indeed speed up
neural net training.
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1. Introduction
Momentum methods are very popular for training neural
networks in various applications (e.g. He et al. (2016);
Vaswani et al. (2017); Krizhevsky et al. (2012)). It has been
widely observed that the use of momentum helps faster
training in deep learning (e.g. Loshchilov & Hutter (2019);
Wilson et al. (2017); Cutkosky & Orabona (2019)). Among
all the momentum methods, the most popular one seems
to be Polyak’s momentum (a.k.a. Heavy Ball momentum)
(Polyak, 1964), which is the default choice of momentum
in PyTorch and Tensorflow. The success of Polyak’s mo-
mentum in deep learning is widely appreciated and almost
all of the recently developed adaptive gradient methods
like Adam (Kingma & Ba, 2015), AMSGrad (Reddi et al.,
2018), and AdaBound (Luo et al., 2019) adopt the use of
Polyak’s momentum, instead of Nesterov’s momentum.

However, despite its popularity, little is known in theory
about why Polyak’s momentum helps to accelerate train-
ing neural networks. Even for convex optimization, prob-
lems like strongly convex quadratic problems seem to be
one of the few cases that discrete-time Polyak’s momentum
method provably achieves faster convergence than standard
gradient descent (e.g. Lessard et al. (2016); Goh (2017);
Ghadimi et al. (2015); Gitman et al. (2019); Loizou &
Richtárik (2017; 2018); Can et al. (2019); Scieur & Pe-
dregosa (2020); Flammarion & Bach (2015); Wilson et al.
(2021); Franca et al. (2020); Diakonikolas & Jordan (2019);
Shi et al. (2018); Hu (2020)). On the other hand, the theo-
retical guarantees of Adam, AMSGrad , or AdaBound are
only worse if the momentum parameter β is non-zero and
the guarantees deteriorate as the momentum parameter in-
creases, which do not show any advantage of the use of
momentum (Alacaoglu et al., 2020). Moreover, the conver-
gence rates that have been established for Polyak’s momen-
tum in several related works (Gadat et al., 2016; Sun et al.,
2019; Yang et al., 2018; Liu et al., 2020c; Mai & Johans-
son, 2020) do not improve upon those for vanilla gradient
descent or vanilla SGD in the worst case. Lessard et al.
(2016); Ghadimi et al. (2015) even show negative cases in
convex optimization that the use of Polyak’s momentum re-
sults in divergence. Furthermore, Kidambi et al. (2018)
construct a problem instance for which the momentum
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Algorithm 1 Gradient descent with Polyak’s momentum
(Polyak, 1964) (Equivalent Version 1)

1: Required: Step size η and momentum parameter β.
2: Init: w0 ∈ Rd and M−1 = 0 ∈ Rd.
3: for t = 0 to T do
4: Given current iterate wt, obtain gradient ∇ℓ(wt).
5: Update momentum Mt = βMt−1 +∇ℓ(wt).
6: Update iterate wt+1 = wt − ηMt.
7: end for

method under its optimal tuning is outperformed by other
algorithms. Wang et al. (2020) show that Polyak’s momen-
tum helps escape saddle points faster compared with the
case without momentum, which is the only provable advan-
tage of Polyak’s momentum in non-convex optimization
that we are aware of. A solid understanding of the empir-
ical success of Polyak’s momentum in deep learning has
eluded researchers for some time.

We begin this paper by first revisiting the use of Polyak’s
momentum for the class of strongly convex quadratic prob-
lems,

minw∈Rd
1
2w

⊤Γw + b⊤w, (1)

where Γ ∈ Rd×d is a PSD matrix such that λmax(Γ) = α,
λmin(Γ) = µ > 0. This is one of the few1 known ex-
amples that Polyak’s momentum has a provable globally
accelerated linear rate in the discrete-time setting. Yet
even for this class of problems existing results only es-
tablish an accelerated linear rate in an asymptotic sense
and several of them do not have an explicit rate in the
non-asymptotic regime (e.g. Polyak (1964); Lessard et al.
(2016); Mitliagkas (2019); Recht (2018)). Is it possible to
prove a non-asymptotic accelerated linear rate in this case?
We will return to this question soon.

For general µ-strongly convex, α-smooth, and twice differ-
entiable functions (not necessarily quadratic), denoted as
F 2
µ,α, Theorem 9 in Polyak (1964) shows an asymptotic ac-

celerated linear rate when the iterate is sufficiently close to
the minimizer so that the landscape can be well approxi-
mated by that of a quadratic function. However, the defini-
tion of the neighborhood was not very precise in the paper.
In this work, we show a locally accelerated linear rate under
a quantifiable definition of the neighborhood.

Furthermore, we provably show that Polyak’s momentum
helps to achieve a faster convergence for training two neu-
ral networks, compared to vanilla GD. The first is training
a one-layer ReLU network. Over the past few years there
have appeared an enormous number of works considering
training a one-layer ReLU network, provably showing con-
vergence results for vanilla (stochastic) gradient descent
(e.g. Li & Liang (2018); Ji & Telgarsky (2020); Li & Yuan

1In Section 2 and Appendix A, we will provide more discus-
sions about this point.

Algorithm 2 Gradient descent with Polyak’s momentum
(Polyak, 1964) (Equivalent Version 2)

1: Required: step size η and momentum parameter β.
2: Init: w0 = w−1 ∈ Rd

3: for t = 0 to T do
4: Given current iterate wt, obtain gradient ∇ℓ(wt).
5: Update iterate wt+1 = wt − η∇ℓ(wt) + β(wt − wt−1).
6: end for

(2017); Du et al. (2019b;a); Allen-Zhu et al. (2019); Song
& Yang (2019); Zou et al. (2019); Arora et al. (2019c); Ja-
cot et al. (2018); Lee et al. (2019); Chizat et al. (2019);
Oymak & Soltanolkotabi (2019); Brutzkus & Globerson
(2017); Chen et al. (2020a); Tian (2017); Soltanolkotabi
(2017); Bai & Lee (2020); Ghorbani et al. (2019); Li et al.
(2020); Hanin & Nica (2020); Daniely (2017); Zou & Gu
(2019); Dukler et al. (2020); Daniely (2020); Wei et al.
(2019); Yehudai & Shamir (2020); Fang et al. (2019); Su
& Yang (2019); Chen et al. (2020b)), as well as for other
algorithms (e.g. Zhang et al. (2019); Wu et al. (2019b);
Cai et al. (2019); Zhong et al. (2017); Ge et al. (2019);
van den Brand et al. (2020); Lee et al. (2020); Pilanci & Er-
gen (2020)). However, we are not aware of any theoretical
works that study the momentum method in neural net train-
ing except the work Krichene et al. (2020). These authors
show that SGD with Polyak’s momentum (a.k.a. stochastic
Heavy Ball) with infinitesimal step size, i.e. η → 0, for
training a one-hidden-layer network with an infinite num-
ber of neurons, i.e. m → ∞, converges to a stationary
solution. However, the theoretical result does not show a
faster convergence by momentum. In this paper we con-
sider the discrete-time setting and nets with finitely many
neurons. We provide a non-asymptotic convergence rate of
Polyak’s momentum, establishing a concrete improvement
relative to the best-known rates for vanilla gradient descent.

Our setting of training a ReLU network follows the same
framework as previous results, including Du et al. (2019b);
Arora et al. (2019c); Song & Yang (2019). Specifically, we
study training a one-hidden-layer ReLU neural net of the
form,

N ReLU
W (x) := 1√

m

∑m
r=1 arσ(⟨w(r), x⟩), (2)

where σ(z) := z · 1{z ≥ 0} is the ReLU activation,
w(1), . . . , w(m) ∈ Rd are the weights of m neurons on
the first layer, a1, . . . , am ∈ R are weights on the second
layer, and N ReLU

W (x) ∈ R is the output predicted on input
x. Assume n number of samples {xi ∈ Rd}ni=1 is given.
Following Du et al. (2019b); Arora et al. (2019c); Song &
Yang (2019), we define a Gram matrix H ∈ Rn×n for the
weightsW and its expectation H̄ ∈ Rn×n over the random
draws of w(r) ∼ N(0, Id) ∈ Rd whose (i, j) entries are
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defined as follows,

H(W )i,j =

m∑
r=1

x⊤i xj
m

1{⟨w(r), xi⟩ ≥ 0 & ⟨w(r), xj⟩ ≥ 0}

H̄i,j := E
w(r)

[x⊤i xj1{⟨w(r), xi⟩ ≥ 0 & ⟨w(r), xj⟩ ≥ 0}].
(3)

The matrix H̄ is also called a neural tangent kernel (NTK)
matrix in the literature (e.g. Jacot et al. (2018); Yang
(2019); Bietti & Mairal (2019)). Assume that the small-
est eigenvalue λmin(H̄) is strictly positive and certain con-
ditions about the step size and the number of neurons are
satisfied. Previous works (Du et al., 2019b; Song & Yang,
2019) show a linear rate of vanilla gradient descent, while
we show an accelerated linear rate 2 of gradient descent
with Polyak’s momentum. As far as we are aware, our
result is the first acceleration result of training an over-
parametrized ReLU network.

The second result is training a deep linear network. The
deep linear network is a canonical model for studying op-
timization and deep learning, and in particular for under-
standing gradient descent (e.g. Shamir (2019); Saxe et al.
(2014); Hu et al. (2020b)), studying the optimization land-
scape (e.g. Kawaguchi (2016); Laurent & von Brecht
(2018)), and establishing the effect of implicit regulariza-
tion (e.g. Moroshko et al. (2020); Ji & Telgarsky (2019); Li
et al. (2018); Razin & Cohen (2020); Arora et al. (2019b);
Gidel et al. (2019); Gunasekar et al. (2017); Lyu & Li
(2020)). In this paper, following (Du & Hu, 2019; Hu et al.,
2020b), we study training a L-layer linear network of the
form,

NL-linear
W (x) := 1√

mL−1dy

W (L)W (L−1) · · ·W (1)x, (4)

where W (l) ∈ Rdl×dl−1 is the weight matrix of the layer
l ∈ [L], and d0 = d, dL = dy and dl = m for l ̸= 1, L.
Therefore, except the first layer W (1) ∈ Rm×d and the
last layer W (L) ∈ Rdy×m, all the intermediate layers are
m × m square matrices. The scaling 1√

mL−1dy

is neces-

sary to ensure that the network’s output at the initialization
NL-linear

W0
(x) has the same size as that of the input x, in the

sense that E[∥NL-linear
W0

(x)∥2] = ∥x∥2, where the expecta-
tion is taken over some appropriate random initialization of
the network (see e.g. Du & Hu (2019); Hu et al. (2020b)).
Hu et al. (2020b) show vanilla gradient descent with orthog-
onal initialization converges linearly and the required width
of the network m is independent of the depth L, while we
show an accelerated linear rate of Polyak’s momentum and
the width m is also independent of L. To our knowledge,

2We borrow the term “accelerated linear rate” from the convex
optimization literature (Nesterov, 2013), because the result here
has a resemblance to those results in convex optimization, even
though the neural network training is a non-convex problem.

this is the first acceleration result of training a deep linear
network.

A careful reader may be tempted by the following line of
reasoning: a deep linear network (without activation) is ef-
fectively a simple linear model, and we already know that
a linear model with the squared loss gives a quadratic ob-
jective for which Polyak’s momentum exhibits an acceler-
ated convergence rate. But this intuition, while natural, is
not quite right: it is indeed nontrivial even to show that
vanilla gradient descent provides a linear rate on deep lin-
ear networks (Hu et al., 2020b; Du & Hu, 2019; Shamir,
2019; Arora et al., 2019a; Hardt & Ma, 2016; Wu et al.,
2019a; Zou et al., 2020), as the optimization landscape is
non-convex. Existing works show that under certain as-
sumptions, all the local minimum are global (Kawaguchi,
2016; Laurent & von Brecht, 2018; Yun et al., 2018; Lu
& Kawaguchi, 2017; Zhou & Liang, 2018; Hardt & Ma,
2016). These results are not sufficient to explain the linear
convergence of momentum, let alone the acceleration; see
Section H in the appendix for an empirical result.

Similarly, it is known that under the NTK regime the
output of the ReLU network trained by gradient descent
can be approximated by a linear model (e.g. Hu et al.
(2020a)). However, this result alone neither implies a
global convergence of any algorithm nor characterizes
the optimization landscape. While (Liu et al., 2020a)
attempt to derive an algorithm-independent equivalence
of a class of linear models and a family of wide net-
works, their result requires the activation function to be
differentiable which does not hold for the most prevalent
networks like ReLU. Also, their work heavily depends
on the regularity of Hessian, making it hard to general-
ize beyond differentiable networks. Hence, while there
has been some progress understanding training of wide
networks through linear models, there remains a signifi-
cant gap in applying this to the momentum dynamics of
a non-differentiable networks. Liu et al. (2020b) estab-
lish an interesting connection between solving an over-
parametrized non-linear system of equations and solving
the classical linear system. They show that for smooth
and twice differentiable activation, the optimization land-
scape of an over-parametrized network satisfies a (non-
convex) notion called the Polyak-Lokasiewicz (PL) condi-
tion (Polyak, 1963), i.e. 1

2∥∇ℓ(w)∥
2 ≥ µ (ℓ(w)− ℓ(w∗)),

where w∗ is a global minimizer and µ > 0. It is not clear
whether their result can be extended to ReLU activation,
however, and the existing result of Danilova et al. (2018)
for the discrete-time Polyak’s momentum under the PL con-
dition does not give an accelerated rate nor is it better than
that of vanilla GD. Aujol et al. (2020) show a variant of
Polyak’s momentum method having an accelerated rate in
a continuous-time limit for a problem that satisfies PL and
has a unique global minimizer. It is unclear if their result
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is applicable to our problem. Therefore, showing the ad-
vantage of training the ReLU network and the deep linear
network by using existing results of Polyak’s momentum
can be difficult.

To summarize, our contributions in the present work in-
clude

• In convex optimization, we show an accelerated lin-
ear rate in the non-asymptotic sense for solving the
class of the strongly convex quadratic problems via
Polyak’s momentum (Theorem 7). We also provide
an analysis of the accelerated local convergence for
the class of functions in F 2

µ,α (Theorem 8). We estab-
lish a technical result (Theorem 5) that helps to obtain
these non-asymptotic rates.

• In non-convex optimization, we show accelerated lin-
ear rates of the discrete-time Polyak’s momentum for
training an over-parametrized ReLU network and a
deep linear network (Theorems 9 and 10).

Furthermore, we will develop a modular analysis to show
all the results in this paper. We identify conditions and pro-
pose a meta theorem of acceleration when the momentum
method exhibits a certain dynamic, which can be of inde-
pendent interest. We show that when applying Polyak’s mo-
mentum for these problems, the induced dynamics exhibit
a form where we can directly apply our meta theorem.

2. Preliminaries
Throughout this paper, ∥·∥F represents the Frobenius norm
and ∥ · ∥2 represents the spectral norm of a matrix, while
∥ · ∥ represents l2 norm of a vector. We also denote ⊗ the
Kronecker product, σmax(·) = ∥·∥2 and σmin(·) the largest
and the smallest singular value of a matrix respectively.

For the case of training neural networks, we will consider
minimizing the squared loss

ℓ(W ) := 1
2

∑n
i=1

(
yi −NW (xi)

)2
, (5)

where xi ∈ Rd is the feature vector, yi ∈ Rdy is the label of
sample i, and there are n number of samples. For training
the ReLU network, we have NW (·) := N ReLU

W (·), dy = 1,
and W := {w(r)}mr=1, while for the deep linear network,
we have NW (·) := NL-linear

W (·), and W represents the set
of all the weight matrices, i.e. W := {W (l)}Ll=1. The
notation Ak represents the kth matrix power of A.

2.1. Prior result of Polyak’s momentum

Algorithm 1 and Algorithm 2 show two equivalent presenta-
tions of gradient descent with Polyak’s momentum. Given
the same initialization, one can show that Algorithm 1 and

Algorithm 2 generate exactly the same iterates during opti-
mization.

Let us briefly describe a prior acceleration result of
Polyak’s momentum. The recursive dynamics of Poylak’s
momentum for solving the strongly convex quadratic prob-
lems (1) can be written as[
wt+1 − w∗
wt − w∗

]
=

[
Id − ηΓ + βId −βId

Id 0d

]
︸ ︷︷ ︸

:=A

·
[
wt − w∗
wt−1 − w∗

]
,

(6)
where w∗ is the unique minimizer. By a recursive expan-
sion, one can get

∥
[
wt − w∗
wt−1 − w∗

]
∥ ≤ ∥At∥2∥

[
w0 − w∗
w−1 − w∗

]
∥. (7)

Hence, it suffices to control the spectral norm of the ma-
trix power ∥At∥2 for obtaining a convergence rate. In the
literature, this is achieved by using Gelfand’s formula.

Theorem 1. (Gelfand (1941); see also Foucart (2018))
(Gelfand’s formula) Let A be a d × d matrix. Define
the spectral radius ρ(A) := maxi∈[d] |λi(A)|, where
λi(·) is the ith eigenvalue. Then, there exists a non-
negative sequence {ϵt} such that ∥At∥2 = (ρ(A) + ϵt)

t

and limt→∞ ϵt = 0.

We remark that there is a lack of the convergence rate of ϵt
in Gelfand’s formula in general.

Denote κ := α/µ the condition number. One can control
the spectral radius ρ(A) as ρ(A) ≤ 1− 2√

κ+1
by choosing

η and β appropriately, which leads to the following result.

Theorem 2. (Polyak (1964); see also Lessard et al. (2016);
Recht (2018); Mitliagkas (2019)) Gradient descent with
Polyak’s momentum with the step size η = 4

(
√
µ+

√
α)2

and

the momentum parameter β =
(
1− 2√

κ+1

)2

has

∥
[
wt+1 − w∗
wt − w∗

]
∥ ≤

(
1− 2√

κ+ 1
+ ϵt

)t+1 [
w0 − w∗
w−1 − w∗

]
∥,

where ϵt is a non-negative sequence that goes to zero.

That is, when t → ∞, Polyak’s momentum has the
(1− 2√

κ+1
) rate, which has a better dependency on the con-

dition number κ than the 1−Θ( 1κ ) rate of vanilla gradient
descent. A concern is that the bound is not quantifiable
for a finite t. On the other hand, we are aware of a differ-
ent analysis that leverages Chebyshev polynomials instead
of Gelfand’s formula (e.g. Liu & Belkin (2018)), which
manages to obtain a t(1 − Θ( 1√

κ
))t convergence rate. So

the accelerated linear rate is still obtained in an asymp-
totic sense. Theorem 9 in Can et al. (2019) shows a rate
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Figure 1. Empirical risk ℓ(Wt) vs. iteration t. Polyak’s mo-
mentum accelerates the optimization process of training an over-
parametrized one-layer ReLU network. Experimental details are
available in Appendix H.

max{C̄1, tC̄2}(1 − Θ( 1√
κ
)t) for some constants C̄1 and

C̄2 under the same choice of the momentum parameter and
the step size as Theorem 2. However, for a large t, the dom-
inant term could be t(1 − Θ( 1√

κ
)t). In this paper, we aim

at obtaining a bound that (I) holds for a wide range of val-
ues of the parameters, (II) has a dependency on the squared
root of the condition number

√
κ, (III) is quantifiable in

each iteration and is better than the rate t(1−Θ( 1√
κ
))t.

2.2. (One-layer ReLU network) Settings and
Assumptions

The ReLU activation is not differentiable at zero. So
for solving (5), we will replace the notion of gradi-
ent in Algorithm 1 and 2 with subgradient ∂ℓ(Wt)

∂w
(r)
t

:=

1√
m

∑n
i=1

(
NWt(xi)− yi

)
ar · 1[⟨w(r)

t , xi⟩ ≥ 0]xi and up-

date the neuron r as w(r)
t+1 = w

(r)
t − η ∂ℓ(Wt)

∂w
(r)
t

+ β
(
w

(r)
t −

w
(r)
t−1

)
. As described in the introduction, we assume that

the smallest eigenvalue of the Gram matrix H̄ ∈ Rn×n is
strictly positive, i.e. λmin(H̄) > 0. We will also denote
the largest eigenvalue of the Gram matrix H̄ as λmax(H̄)
and denote the condition number of the Gram matrix as
κ := λmax(H̄)

λmin(H̄)
. Du et al. (2019b) show that the strict posi-

tiveness assumption is indeed mild. Specifically, they show
that if no two inputs are parallel, then the least eigenvalue
is strictly positive. Panigrahi et al. (2020) were able to pro-
vide a quantitative lower bound under certain conditions.
Following the same framework of Du et al. (2019b), we
consider that each weight vector w(r) ∈ Rd is initialized
according to the normal distribution, i.e. w(r) ∼ N(0, Id),
and each ar ∈ R is sampled from the Rademacher distri-
bution, i.e. ar = 1 with probability 0.5; and ar = −1
with probability 0.5. We also assume ∥xi∥ ≤ 1 for all sam-

ples i. As the previous works (e.g. Li & Liang (2018); Ji
& Telgarsky (2020); Du et al. (2019b)), we consider only
training the first layer {w(r)} and the second layer {ar} is
fixed throughout the iterations. We will denote ut ∈ Rn

whose ith entry is the network’s prediction for sample i,
i.e. ut[i] := N ReLU

Wt
(xi) in iteration t and denote y ∈ Rn

the vector whose ith element is the label of sample i. The
following theorem is a prior result due to Du et al. (2019b).
Theorem 3. (Theorem 4.1 in Du et al. (2019b)) Assume
that λ := λmin(H̄)/2 > 0 and that w(r)

0 ∼ N(0, Id)
and ar uniformly sampled from {−1, 1}. Set the number
of nodes m = Ω(λ−4n6δ−3) and the constant step size
η = O( λ

n2 ). Then, with probability at least 1 − δ over the
random initialization, vanilla gradient descent, i.e. Algo-
rithm 1& 2 with β = 0, has ∥ut− y∥2 ≤ (1− ηλ)

t · ∥u0−
y∥2.

Later Song & Yang (2019) improve the network size m
to m = Ω(λ−4n4 log3(n/δ)). Wu et al. (2019c) provide
an improved analysis over Du et al. (2019b), which shows
that the step size η of vanilla gradient descent can be set
as η = 1

c1λmax(H̄)
for some quantity c1 > 0. The result in

turn leads to a convergence rate (1− 1
c2κ

) for some quantity
c2 > 0. However, the quantities c1 and c2 are not universal
constants and actually depend on the problem parameters
λmin(H̄), n, and δ. A question that we will answer in this
paper is “Can Polyak’s momentum achieve an accelerated
linear rate

(
1−Θ( 1√

κ
)
)

, where the factor Θ( 1√
κ
) does

not depend on any other problem parameter?”.

2.3. (Deep Linear network) Settings and Assumptions

For the case of deep linear networks, we will denote
X := [x1, . . . , xn] ∈ Rd×n the data matrix and Y :=
[y1, . . . , yn] ∈ Rdy×n the corresponding label matrix. We
will also denote r̄ := rank(X) and the condition num-
ber κ := λmax(X

⊤X)
λr̄(X⊤X)

. Following Hu et al. (2020b),
we will assume that the linear network is initialized by
the orthogonal initialization, which is conducted by sam-
pling uniformly from (scaled) orthogonal matrices such
that (W (1)

0 )⊤W
(1)
0 = mId, W (L)

0 (W
(L)
0 )⊤ = mIdy

, and
(W

(l)
0 )⊤W

(l)
0 = W

(l)
0 (W

(l)
0 )⊤ = mIm for layer 2 ≤ l ≤

L − 1. We will denote W (j:i) := WjWj−1 · · ·Wi =

Πj
l=iWl, where 1 ≤ i ≤ j ≤ L and W (i−1:i) = I . We also

denote the network’s output U := 1√
mL−1dy

W (L:1)X ∈

Rdy×n.

In our analysis, following Du & Hu (2019); Hu et al.
(2020b), we will further assume that (A1) there exists a
W ∗ such that Y = W ∗X , X ∈ Rd×r̄, and r̄ = rank(X),
which is actually without loss of generality (see e.g. the
discussion in Appendix B of Du & Hu (2019)).
Theorem 4. (Theorem 4.1 in Hu et al. (2020b)) As-
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sume (A1) and the use of the orthogonal initialization.
Suppose the width of the deep linear network satisfies
m ≥ C

∥X∥2
F

σ2
max(X)κ

2
(
dy(1 + ∥W∗∥22) + log(r̄/δ)

)
and m ≥

max{dx, dy} for some δ ∈ (0, 1) and a sufficiently large
constant C > 0. Set the constant step size η =

dy

2Lσ2
max(X) .

Then, with probability at least 1−δ over the random initial-
ization, vanilla gradient descent, i.e. Algorithm 1& 2 with
β = 0, has ∥Ut − Y ∥2F ≤

(
1−Θ( 1κ )

)t · ∥U0 − Y ∥2F .

3. Modular Analysis
In this section, we will provide a meta theorem for the fol-
lowing dynamics of the residual vector ξt ∈ Rn0 ,[
ξt+1

ξt

]
=

[
In0 − ηH + βIn0 −βIn0

In0 0n0

] [
ξt
ξt−1

]
+

[
φt

0n0

]
,

(8)

where η is the step size, β is the momentum parameter,H ∈
Rn0×n0 is a PSD matrix, φt ∈ Rn0 is some vector, and In0

is the n0 × n0-dimensional identity matrix. Note that ξt
and φt depend on the underlying model learned at iteration
t, i.e. depend on Wt.

We first show that the residual dynamics of Polyak’s mo-
mentum for solving all the four problems in this paper are
in the form of (8). The proof of the following lemmas
(Lemma 2, 3, and 4) are available in Appendix B.

3.1. Realization: Strongly convex quadratic problems

One can easily see that the dynamics of Polyak’s momen-
tum (6) for solving the strongly convex quadratic problem
(1) is in the form of (8). We thus have the following lemma.
Lemma 1. Applying Algorithm 1 or Algorithm 2 to solving
the class of strongly convex quadratic problems (1) induces
a residual dynamics in the form of (8), where ξt = wt −
w∗(and hence n0 = d),H = Γ, φt = 0d.

3.2. Realization: Solving F 2
µ,α

A similar result holds for optimizing functions in F 2
µ,α.

Lemma 2. Applying Algorithm 1 or Algorithm 2 to min-
imizing a function f(w) ∈ F 2

µ,α induces a residual dy-
namics in the form of (8), where ξt = wt − w∗, H =∫ 1

0
∇2f

(
(1−τ)w0+τw∗

)
dτ , φt = η

( ∫ 1

0
∇2f

(
(1−τ)w0+

τw∗
)
dτ −

∫ 1

0
∇2f

(
(1−τ)wt+τw∗

)
dτ

)
(wt−w∗), where

w∗ := argminw f(w).

3.3. Realization: One-layer ReLU network

More notations: For the analysis, let us define the event
Air := {∃w ∈ Rd : ∥w − w

(r)
0 ∥ ≤ RReLU,1{x⊤i w

(r)
0 } ̸=

1{x⊤i w ≥ 0}}, where RReLU > 0 is a number to be de-
termined later. The event Air means that there exists a

w ∈ Rd which is within the RReLU-ball centered at the
initial point w(r)

0 such that its activation pattern of sample i
is different from that of w(r)

0 . We also denote a random set
Si := {r ∈ [m] : 1{Air} = 0} and its complementary set
S⊥
i := [m] \ Si.

Lemma 3 below shows that training the ReLU network
N -ReLU

W (·) via momentum induces the residual dynamics in
the form of (8).
Lemma 3. (Residual dynamics of training the ReLU net-
work N ReLU

W (·)) Denote

(Ht)i,j := H(Wt)i,j =
1
m

∑m
r=1 x

⊤
i xj

× 1{⟨w(r)
t , xi⟩ ≥ 0 & ⟨w(r)

t , xj⟩ ≥ 0}.

Applying Algorithm 1 or Algorithm 2 to (5) for training
the ReLU network N ReLU

W (x) induces a residual dynam-
ics in the form of (8) such that ξt[i] = N ReLU

Wt
(xi) −

yi(and hence n0 = d),H = H0, and φt = ϕt + ιt, where
each element i of ξt ∈ Rn is the residual error of the sam-
ple i, and the ith-element of ϕt ∈ Rn satisfies

|ϕt[i]| ≤ 2η
√
n|S⊥

i |
m

(
∥ut − y∥+β

∑t−1
s=0 β

t−1−s∥us − y∥
)
,

and ιt = η (H0 −Ht) ξt ∈ Rn.

3.4. Realization: Deep Linear network

Lemma 4 below shows that the residual dynamics due to
Polyak’s momentum for training the deep linear network is
indeed in the form of (8). In the lemma, “vec” stands for
the vectorization of the underlying matrix in column-first
order.
Lemma 4. (Residual dynamics of training NL-linear

W (·)) De-
noteMt,l the momentum term of layer l at iteration t, which

is recursively defined as Mt,l = βMt,l−1+
∂ℓ(W

(L:1)
t )

∂W
(l)
t

. De-
note

Ht :=
1

mL−1dy

∑L
l=1[(W

(l−1:1)
t X)⊤(W

(l−1:1)
t X)

⊗W
(L:l+1)
t (W

(L:l+1)
t )⊤] ∈ Rdyn×dyn.

Applying Algorithm 1 or Algorithm 2 to (5) for training
the deep linear network NL-linear

W (x) induces a residual dy-
namics in the form of (8) such that ξt = vec(Ut − Y ) ∈
Rdyn(and hence n0 = dyn),H = H0, and φt = ϕt+ψt+
ιt ∈ Rdyn, where the vector ϕt = 1√

mL−1dy

vec (ΦtX)

with

Φt = Πl

(
W

(l)
t − ηMt,l

)
−W

(L:1)
t

+ η
∑L

l=1W
(L:l+1)
t Mt,lW

(l−1:1)
t ,

and the vector ψt is

ψt =
1√

mL−1dy

vec
(
(L− 1)βW

(L:1)
t X + βW

(L:1)
t−1 X

− β
∑L

l=1W
(L:l+1)
t W

(l)
t−1W

(l−1:1)
t X

)
,
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and ιt = η(H0 −Ht)ξt.

3.5. A key theorem of bounding a matrix-vector
product

Our meta theorem of acceleration will be based on Theo-
rem 5 in the following, which upper-bounds the size of the
matrix-vector product of a matrix power Ak and a vector
v0. Compared to Gelfand’s formula (Theorem 1), Theo-
rem 5 below provides a better control of the size of the
matrix-vector product, since it avoids the dependency on
the unknown sequence {ϵt}. The result can be of indepen-
dent interest and might be useful for analyzing Polyak’s
momentum for other problems in future research.

Theorem 5. Let A :=

[
(1 + β)In − ηH −βIn

In 0

]
∈

R2n×2n. Suppose thatH ∈ Rn×n is a positive semidefinite
matrix. Fix a vector v0 ∈ Rn. If β is chosen to satisfy 1 ≥
β > max{

(
1−

√
ηλmin(H)

)2

,
(
1−

√
ηλmax(H)

)2

},
then

∥Akv0∥ ≤
(√

β
)k
C0∥v0∥, (9)

where the constant

C0 :=

√
2(β + 1)√

min{h(β, ηλmin(H)), h(β, ηλmax(H))}
≥ 1,

(10)
and the function h(β, z) is defined as h(β, z) :=

−
(
β − (1−

√
z)

2
)(

β − (1 +
√
z)

2
)
.

Note that the constant C0 in Theorem 5 depends on β and
ηH . It should be written as C0(β, ηH) to be precise. How-
ever, for the brevity, we will simply denote it as C0 when
the underlying choice of β and ηH is clear from the con-
text. The proof of Theorem 5 is available in Appendix C.
Theorem 5 allows us to derive a concrete upper bound of
the residual errors in each iteration of momentum, and con-
sequently allows us to show an accelerated linear rate in the
non-asymptotic sense. The favorable property of the bound
will also help to analyze Polyak’s momentum for training
the neural networks. As shown later in this paper, we will
need to guarantee the progress of Polyak’s momentum in
each iteration, which is not possible if we only have a quan-
tifiable bound in the limit. Based on Theorem 5, we have
the following corollary. The proof is in Appendix C.1.

Corollary 1. Assume that λmin(H) > 0. Denote κ :=
λmax(H)/λmin(H). Set η = 1/λmax(H) and set β =(
1− 1

2

√
ηλmin(H)

)2

=
(
1− 1

2
√
κ

)2

. Then, C0 ≤ 4
√
κ.

3.6. Meta theorem

Let λ > 0 be the smallest eigenvalue of the matrix H that
appears on the residual dynamics (8). Our goal is to show

that the residual errors satisfy∥∥∥∥[ ξs
ξs−1

]∥∥∥∥ ≤
(√
β + 1φC2

)s
(C0 + 1φC1)

∥∥∥∥[ ξ0ξ−1

]∥∥∥∥ ,
(11)

where C0 is the constant defined on (10), and C1, C2 ≥
0 are some constants, 1φ is an indicator if any φt on the
residual dynamics (8) is a non-zero vector. For the case of
training the neural networks, we have 1φ = 1.

Theorem 6. (Meta theorem for the residual dy-
namics (8)) Assume that the step size η and the
momentum parameter β satisfying 1 ≥ β >

max{
(
1−

√
ηλmin(H)

)2

,
(
1−

√
ηλmax(H)

)2

},
are set appropriately so that (11) holds at iteration
s = 0, 1, . . . , t− 1 implies that

∥
∑t−1

s=0A
t−s−1

[
φs

0

]
∥ ≤

(√
β + 1φC2

)t
C3

∥∥∥∥[ ξ0ξ−1

]∥∥∥∥ .
(12)

Then, we have∥∥∥∥[ ξt
ξt−1

]∥∥∥∥ ≤
(√
β + 1φC2

)t
(C0 + 1φC1)

∥∥∥∥[ ξ0ξ−1

]∥∥∥∥ ,
(13)

holds for all t, where C0 is defined on (10) and
C1, C2, C3 ≥ 0 are some constants satisfying:(√

β
)t
C0 +

(√
β + 1φC2

)t
1φC3 ≤(√

β + 1φC2

)t
(C0 + 1φC1).

(14)

Proof. The proof is by induction. At s = 0, (11) holds
since C0 ≥ 1 by Theorem 5. Now assume that the in-
equality holds at s = 0, 1, . . . , t − 1. Consider iteration
t. Recursively expanding the dynamics (8), we have[

ξt
ξt−1

]
= At

[
ξ0
ξ−1

]
+

t−1∑
s=0

At−s−1

[
φs

0

]
. (15)

By Theorem 5, the first term on the r.h.s. of (15) can be
bounded by

∥At

[
ξ0
ξ−1

]
∥ ≤

(√
β
)t

C0∥
[
ξ0
ξ−1

]
∥ (16)

By assumption, given (11) holds at s = 0, 1, . . . , t− 1, we
have (12). Combining (12), (14), (15), and (16), we have
(13) and hence the proof is completed.

Remark: As shown in the proof, we need the residual er-
rors be tightly bounded as (11) in each iteration. Theorem 5
is critical for establishing the desired result. On the other
hand, it would become tricky if instead we use Gelfand’s
formula or other techniques in the related works that lead
to a convergence rate in the form of O(tθt).
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4. Main results
The important lemmas and theorems in the previous section
help to show our main results in the following subsections.
The high-level idea to obtain the results is by using the meta
theorem (i.e. Theorem 6). Specifically, we will need to
show that if the underlying residual dynamics satisfy (11)
for all the previous iterations, then the terms {φs} in the
dynamics satisfy (12). This condition trivially holds for the
case of the quadratic problems, since there is no such term.
On the other hand, for solving the other problems, we need
to carefully show that the condition holds. For example,
according to Lemma 3, showing acceleration for the ReLU
network will require bounding terms like ∥(H0 − Hs)ξs∥
(and other terms as well), whereH0−Hs corresponds to the
difference of the kernel matrix at two different time steps.
By controlling the width of the network, we can guarantee
that the change is not too much. A similar result can be
obtained for the problem of the deep linear network. The
high-level idea is simple but the analysis of the problems
of the neural networks can be tedious.

4.1. Non-asymptotic accelerated linear rate for solving
strongly convex quadratic problems

Theorem 7. Assume the momentum parameter β satisfies
1 ≥ β > max{

(
1−√

ηµ
)2
,
(
1−√

ηα
)2}. Gradient de-

scent with Polyak’s momentum for solving (1) has

∥
[
wt − w∗
wt−1 − w∗

]
∥ ≤

(√
β
)t

C0∥
[
w0 − w∗
w−1 − w∗

]
∥, (17)

where the constant C0 is defined as

C0 :=
√
2(β+1)√

min{h(β,ηλmin(Γ)),h(β,ηλmax(Γ))}
≥ 1, (18)

and h(β, z) = −
(
β − (1−

√
z)

2
)(

β − (1 +
√
z)

2
)
.

Consequently, if the step size η = 1
α and the momentum

parameter β =
(
1− 1

2
√
κ

)2

, then it has

∥
[
wt − w∗
wt−1 − w∗

]
∥ ≤

(
1− 1

2
√
κ

)t

4
√
κ∥

[
w0 − w∗
w−1 − w∗

]
∥.

(19)
Furthermore, if η = 4

(
√
µ+

√
α)2

and β approaches β →(
1− 2√

κ+1

)2

from above, then it has a convergence rate

approximately
(
1− 2√

κ+1

)
as t→ ∞.

The convergence rates shown in the above theorem do not
depend on the unknown sequence {ϵt}. Moreover, the rates
depend on the squared root of the condition number

√
κ.

We have hence established a non-asymptotic accelerated
linear rate of Polyak’s momentum, which helps to show the

advantage of Polyak’s momentum over vanilla gradient de-
scent in the finite t regime. Our result also recovers the
rate

(
1− 2√

κ+1

)
asymptotically under the same choices

of the parameters as the previous works. The detailed proof
can be found in Appendix D, which is actually a trivial ap-
plication of Lemma 1, Theorem 6, and Corollary 1 with
C1 = C2 = C3 = 0.

4.2. Non-asymptotic accelerated linear rate of the local
convergence for solving f(·) ∈ F 2

µ,α

Here we provide a local acceleration result of the discrete-
time Polyak’s momentum for general smooth strongly con-
vex and twice differentiable function F 2

µ,α. Compared to
Theorem 9 of (Polyak, 1964), Theorem 8 clearly indicates
the required distance that ensures an acceleration when the
iterate is in the neighborhood of the global minimizer. Fur-
thermore, the rate is in the non-asymptotic sense instead of
the asymptotic one. We defer the proof of Theorem 8 to
Appendix E.

Theorem 8. Assume that the function f(·) ∈ F 2
µ,α and

its Hessian is α-Lipschitz. Denote the condition num-
ber κ := α

µ . Suppose that the initial point satisfies

∥
[
w0 − w∗
w−1 − w∗

]
∥ ≤ 1

683κ3/2 . Then, Gradient descent

with Polyak’s momentum with the step size η = 1
α and

the momentum parameter β =
(
1− 1

2
√
κ

)2

for solving

minw f(w) has

∥
[
wt+1 − w∗
wt − w∗

]
∥ ≤

(
1− 1

4
√
κ

)t+1

8
√
κ∥

[
w0 − w∗
w−1 − w∗

]
∥,

(20)
where w∗ = argminw f(w).

4.3. Acceleration for training NReLU
W (x)

Before introducing our result of training the ReLU network,
we need the following lemma.

Lemma 5. [Lemma 3.1 in Du et al. (2019b) and Song &
Yang (2019)] Set m = Ω(λ−2n2 log(n/δ)). Suppose that
the neuronsw(1)

0 , . . . , w
(m)
0 are i.i.d. generated byN(0, Id)

initially. Then, with probability at least 1− δ, it holds that

∥H0 − H̄∥F ≤ λmin(H̄)

4
, λmin

(
H0

)
≥ 3

4
λmin(H̄),

and λmax

(
H0

)
≤ λmax(H̄) +

λmin(H̄)

4
.

Lemma 5 shows that by the random initialization, with
probability 1 − δ, the least eigenvalue of the Gram ma-
trix H := H0 defined in Lemma 3 is lower-bounded and
the largest eigenvalue is close to λmax(H̄). Furthermore,
Lemma 5 implies that the condition number of the Gram
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matrix H0 at the initialization κ̂ := λmax(H0)
λmin(H0)

satisfies

κ̂ ≤ 4
3κ+ 1

3 , where κ := λmax(H̄)
λmin(H̄)

.

Theorem 9. (One-layer ReLU network N ReLU
W (x)) Assume

that λ := 3λmin(H̄)
4 > 0 and that w(r)

0 ∼ N(0, Id) and
ar uniformly sampled from {−1, 1}. Denote λmax :=

λmax(H̄) + λmin(H̄)
4 and denote κ̂ := λmax/λ = (4κ +

1)/3. Set a constant step size η = 1
λmax

, fix momentum

parameter β =
(
1 − 1

2κ̂

)2
, and finally set the number of

network nodes m = Ω(λ−4n4κ2 log3(n/δ)). Then, with
probability at least 1 − δ over the random initialization,
gradient descent with Polyak’s momentum satisfies for any
t, ∥∥∥∥[ ξt

ξt−1

]∥∥∥∥ ≤
(
1− 1

4
√
κ̂

)t

· 8
√
κ̂

∥∥∥∥[ ξ0ξ−1

]∥∥∥∥ . (21)

We remark that κ̂, which is the condition number of the
Gram matrix H0, is within a constant factor of the condi-
tion number of H̄ . Therefore, Theorem 9 essentially shows
an accelerated linear rate

(
1−Θ( 1√

κ
)
)

. The rate has an

improved dependency on the condition number, i.e.
√
κ in-

stead of κ, which shows the advantage of Polyak’s momen-
tum over vanilla GD when the condition number is large.
We believe this is an interesting result, as the acceleration
is akin to that in convex optimization, e.g. Nesterov (2013);
Shi et al. (2018).

Our result also implies that over-parametrization helps ac-
celeration in optimization. To our knowledge, in the lit-
erature, there is little theory of understanding why over-
parametrization can help training a neural network faster.
The only exception that we are aware of is Arora et al.
(2018), which shows that the dynamic of vanilla gradi-
ent descent for an over-parametrized objective function ex-
hibits some momentum terms, although their message is
very different from ours. The proof of Theorem 9 is in Ap-
pendix F.

4.4. Acceleration for training NL-linear
W (x)

Theorem 10. (Deep linear network NL-linear
W (x)) Denote

λ :=
Lσ2

min(X)
dy

and κ :=
σ2
max(X)

σ2
min(X)

. Set a constant step

size η =
dy

Lσ2
max(X) , fix momentum parameter β =

(
1 −

1
2
√
κ

)2
, and finally set a parameter m that controls the

width m ≥ C κ5

σ2
max(X)

(
dy(1 + ∥W ∗∥22) + log(r̄/δ)

)
and

m ≥ max{dx, dy} for some constant C > 0. Then, with
probability at least 1−δ over the random orthogonal initial-
ization, gradient descent with Polyak’s momentum satisfies
for any t,∥∥∥∥[ ξt

ξt−1

]∥∥∥∥ ≤
(
1− 1

4
√
κ

)t

· 8
√
κ

∥∥∥∥[ ξ0ξ−1

]∥∥∥∥ . (22)

Compared with Theorem 4 of Hu et al. (2020b) for vanilla
GD, our result clearly shows the acceleration via Polyak’s
momentum. Furthermore, the result suggests that the depth
does not hurt optimization. Acceleration is achieved for
any depth L and the required widthm is independent of the
depth L as Hu et al. (2020b); Zou et al. (2020) (of vanilla
GD). The proof of Theorem 10 is in Appendix G.

5. Conclusion
We show some non-asymptotic acceleration results of the
discrete-time Polyak’s momentum in this paper. The re-
sults not only improve the previous results in convex opti-
mization but also establish the first time that Polyak’s mo-
mentum has provable acceleration for training certain neu-
ral networks. We analyze all the acceleration results from a
modular framework. We hope the framework can serve as a
building block towards understanding Polyak’s momentum
in a more unified way.
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Loizou, N. and Richtárik, P. Accelerated gossip via stochas-
tic heavy ball method. Allerton, 2018.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. ICLR, 2019.

Lu, H. and Kawaguchi, K. Depth creates no bad local min-
ima. arXiv:1702.08580, 2017.

Luo, L., Xiong, Y., Liu, Y., and Sun, X. Adaptive gradient
methods with dynamic bound of learning rate. ICLR,
2019.

Lyu, K. and Li, J. Gradient descent maximizes the margin
of homogeneous neural networks. ICLR, 2020.

Mai, V. V. and Johansson, M. Convergence of a stochastic
gradient method with momentum for non-smooth non-
convex optimization. ICML, 2020.

Mitliagkas, I. Accelerated methods - polyaks momentum
(heavy ball method). Online Lecture Note, 2019.

Moroshko, E., Gunasekar, S., Woodworth, B., Lee, J. D.,
Srebro, N., and Soudry, D. Implicit bias in deep linear
classification: Initialization scale vs training accuracy.
NeurIPS, 2020.



A Modular Analysis of Provable Acceleration via Polyak’s Momentum

Nesterov, Y. Introductory lectures on convex optimization:
a basic course. Springer, 2013.

Oymak, S. and Soltanolkotabi, M. Towards moderate
overparameterization: global convergence guarantees
for training shallow neural networks. arXiv:1902.04674,
2019.

Panigrahi, A., Shetty, A., and Goyal, N. Effect of activation
functions on the training of overparametrized neural nets.
ICLR, 2020.

Pilanci, M. and Ergen, T. Neural networks are convex regu-
larizers: Exact polynomial-time convex optimization for-
mulations for two-layer networks. ICML, 2020.

Polyak, B. Gradient methods for minimizing function-
als. Zhurnal Vychislitelnoi Matematiki i Matematich-
eskoi Fiziki, 1963.

Polyak, B. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 1964.

Razin, N. and Cohen, N. Implicit regularization in
deep learning may not be explainable by norms.
NeurIPS2020, 2020.

Recht, B. Lyapunov analysis and the heavy ball method.
Lecture note, 2018.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. ICLR, 2018.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. ICLR, 2014.

Scieur, D. and Pedregosa, F. Universal average-case opti-
mality of polyak momentum. ICML, 2020.

Shamir, O. Exponential convergence time of gradient de-
scent for one-dimensional deep linear neural networks.
COLT, 2019.

Shi, B., Du, S. S., Jordan, M. I., and Su, W. J. Understand-
ing the acceleration phenomenon via high-resolution dif-
ferential equations. arXiv:1810.08907, 2018.

Soltanolkotabi, M. Learning relus via gradient descent.
NeurIPS, 2017.

Song, Z. and Yang, X. Quadratic suffices for
over-parametrization via matrix chernoff bound.
arXiv:1906.03593, 2019.

Su, L. and Yang, P. On learning over-parameterized neu-
ral networks: A functional approximation perspective.
NeurIPS, 2019.

Sun, T., Yin, P., Li, D., Huang, C., Guan, L., and Jiang,
H. Non-ergodic convergence analysis of heavy-ball al-
gorithms. AAAI, 2019.

Tian, Y. An analytical formula of population gradient for
two-layered relu network and its applications in conver-
gence and critical point analysis. ICML, 2017.

van den Brand, J., Peng, B., Song, Z., and Weinstein,
O. Training (overparametrized) neural networks in near-
linear time. arXiv:2006.11648, 2020.

Vaswani, A., Shazeer, N., Parmar, N., and et al. Attention
is all you need. NeurIPS, 2017.

Wang, J.-K., Lin, C.-H., and Abernethy, J. Escaping saddle
points faster with stochastic momentum. ICLR, 2020.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. Regularization
matters: Generalization and optimization of neural nets
v.s. their induced kernel. NeurIPS, 2019.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., , and
Recht., B. The marginal value of adaptive gradient meth-
ods in machine learning. NeurIPS, 2017.

Wilson, A. C., Jordan, M., and Recht, B. A lyapunov analy-
sis of momentum methods in optimization. JMLR, 2021.

Wu, L., Wang, Q., and Ma, C. Global convergence of gradi-
ent descent for deep linear residual networks. NeurIPS,
2019a.

Wu, S., Dimakis, A. G., and Sanghavi, S. Learning distri-
butions generated by one-layer relu networks. NeurIPS,
2019b.

Wu, X., Du, S. S., and Ward, R. Global convergence
of adaptive gradient methods for an over-parameterized
neural network. arXiv:1902.07111, 2019c.

Yang, G. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient
independence, and neural tangent kernel derivation.
arXiv:1902.04760, 2019.

Yang, T., Lin, Q., and Li, Z. Unified convergence analysis
of stochastic momentum methods for convex and non-
convex optimization. IJCAI, 2018.

Yehudai, G. and Shamir, O. Learning a single neuron with
gradient methods. COLT, 2020.

Yun, C., Sra, S., and Jadbabaie, A. Global optimality con-
ditions for deep neural networks. ICLR, 2018.

Zhang, G., Martens, J., and Grosse, R. B. Fast convergence
of natural gradient descent for over-parameterized neural
networks. NeurIPS, 2019.


