
ConvexVST: A Convex Optimization Approach to Variance-stabilizing
transformation

Appendix

Contents

1 Proof of Lemma 1 2

2 Proof of Lemma 2 2

3 Proof of Lemma 3 3

4 Proof of Lemma 4 5

5 Variance based Approach 7

6 The Estimation of Distribution 8

7 Computational Time Comparison 9

ConvexVST: A Convex Optimization Approach to Variance-stabilizing transformation

1. Proof of Lemma 1
In the paper, we used new variables ∆xk to represent the distances between adjacent samples: ∆xk = f(xk)− f(xk−1)
so that we directly optimize ∆x instead of the transform function f(x). Oppositely, every transformation is the sum
of several variables that f(xk) =

∑k
j=1 ∆xj + x0. The signal θ can be processed in the same way when θ is also in

the sample space. Otherwise, we can assume xl−1 ≤ θ ≤ xl so that θ can be represented by a linear combination:
f(θ) =

∑l−1
j=1 ∆xj + x0 + γθ∆xl where 0 ≤ γθ ≤ 1 if θ /∈ Sx.

The objective function can be represented with ∆xk:

C ′f = max
θ
σ2
θ,f (1)

= max
θ
E{[f(Xθ)− f(θ)]2} (2)

= max
θ
{
m−1∑
k=0

pθk[f(xk)− f(θ)]2} (3)

= max
θ
{
∑
k

pθk[

k∑
j=1

∆xj −
l−1∑
j=1

∆xj − γθ∆xl]2} (4)

σ2
θ,f is the combination of a set of quadratic functions with positive coefficients pθk, which is always convex.

Then we show that the maximum of a set of convex functions is also convex. Because σ2
θ,f is convex, we have σ2

θ,f [tx+

(1− t)y] ≤ tσ2
θ,f (x) + (1− t)σ2

θ,f (y) for all x, y ∈ domf, 0 ≤ t ≤ 1. We assume θn is a choice of Θ. For θn:

σ2
θn,f [tx+ (1− t)y] ≤ tσ2

θn,f (x) + (1− t)σ2
θn,f (y) (5)

≤ max
θ
{tσ2

θ,f (x) + (1− t)σ2
θ,f (y)} (6)

≤ tmax
θ
{σ2

θ,f (x)}+ (1− t) max
θ
{σ2

θ,f (y)} (7)

So is it for all other θ. Thus,

max
θ
{σ2

θ,f [tx+ (1− t)y]} ≤ tmax
θ
{σ2

θ,f (x)}+ (1− t) max
θ
{σ2

θ,f (y)} (8)

As a result, maxθ σ
2
θ,f is also convex.

2. Proof of Lemma 2
We can represent the σ2

θ,f in the matrix form:

σ2
θ,f =

m−1∑
k=0

pθk[

k∑
j=1

∆xj −
l−1∑
j=1

∆xj − γθ∆xl]2 (9)

= ∆xTQθ∆x (10)

Form 9 can be converted into Form 10 by:

Qθ{ij} =



∑min{i,j}
k=0 pθk max{i, j} < l∑m−1
k=max{i,j} pθk min{i, j} > l

γθ
∑min{i,j}
k=0 pθk max{i, j} = l ∧ i 6= j

(1− γθ)
∑m−1
k=max{i,j} pθk min{i, j} = l ∧ i 6= j

r2
θ

∑l−1
k=0 pθk + (1− γθ)2

∑m−1
l pθk i = j = l,

(11)

where Qθ{ij} is the entry at the ith row and jth column of Qθ. Qθ is a positive definite matrix because σ2
θ,f is quadratic

and always positive.

ConvexVST: A Convex Optimization Approach to Variance-stabilizing transformation

As a positive definite matrix, Qθ can be decomposed to the product of a matrix and its transpose Qθ = FTθ Fθ by methods
like Cholesky decomposition. Actually, we can derive Fθ directly without computation:

Fθ =



√
pθ0

√
pθ0

√
pθ0 . . .

√
pθ0 γθ

√
pθ0 . . . 0 0 0

0
√
pθ1

√
pθ1 . . .

√
pθ1 γθ

√
pθ1 . . . 0 0 0

0 0
√
pθ2 . . .

√
pθ2 γθ

√
pθ2 . . . 0 0 0

...
...

... . . .
...

... . . .
...

...
...

0 0 0 . . .
√
pθ(l−1) γθ

√
pθ(l−1) . . . 0 0 0

0 0 0 . . . 0 (1− γθ)
√
pθl . . . 0 0 0

...
... 0 . . .

...
... . . .

...
...

...
0 0 0 . . . 0 (1− γθ)

√
pθ(m−3) . . .

√
pθ(m−3) 0 0

0 0 0 . . . 0 (1− γθ)
√
pθ(m−2) . . .

√
pθ(m−2)

√
pθ(m−2) 0

0 0 0 . . . 0 (1− γθ)
√
pθ(m−1) . . .

√
pθ(m−1)

√
pθ(m−1)

√
pθ(m−1)



, (12)

where

Fθ{ij} =


√
pθi (i < l ∧ j ≤ i)|(i > l ∧ j ≥ i)

γθ
√
pθi i = l ∧ j < l

(1− γθ)
√
pθi i = l ∧ j ≥ l

0 otherwise

(13)

The inverse of Fθ can be directly derived as well:

F
−1
θ =



1√
pθ0

− 1√
pθ1

0 . . . 0 0 . . . 0 0 0

0 1√
pθ1

− 1√
pθ2

. . . 0 0 . . . 0 0 0

0 0 1√
pθ2

. . . 0 0 . . . 0 0 0

...
...

... . . .
...

... . . .
...

...
...

0 0 0 . . . 1√
pθ(l−1)

− γθ
(1−γθ)

√
pθ(l−1)

. . . 0 0 0

0 0 0 . . . 0 1
(1−γθ)

√
pθl

. . . 0 0 0

0 0 0 . . . 0 − 1√
pθl

. . . 0 0 0

...
... 0 . . .

...
... . . .

...
...

...
0 0 0 . . . 0 0 . . . − 1√

pθ(m−3)
0 0

0 0 0 . . . 0 0 . . . 0 1√
pθ(m−2)

0

0 0 0 . . . 0 0 . . . 0 − 1√
pθ(m−2)

1√
pθ(m−1)



, (14)

where

Fθ{ij} =



1√
pθi

i = j 6= l

− 1√
pθj

(i− 1 = j < l)|(i+ 1 = j ≥ l)
− γθ

(1−γθ)
√
pθ(l−1)

i− 1 = j = l
1

(1−γθ)
√
pθl

i = j = l

0 otherwise

(15)

3. Proof of Lemma 3
In this part, we will give a brief introduction about the second-order cone programming (SOCP) problem and show how our
problems can be solved efficiently.

Definition 1 – second-order cone. A (n+ 1)-dimensional second-order cone is defined as

Qn+1 = {(x, r) ∈ Rn+1| ||x||2 ≤ r} (16)

Definition 2 – second-order conic constraint. A second-order conic constraint has the form

||Ax + b||2 ≤ cTx + d, (17)

which is equivalent to requiring the affine function (||Ax + b||2, cTx + d) to lie in the second-order cone inQn+1. x is the
variable and A,b, c, d are constants.

ConvexVST: A Convex Optimization Approach to Variance-stabilizing transformation

Definition 3 – SOCP problem. A SOCP problem is a convex optimization problem of the form:

min fTx (18)

s.j. ||Aix + bi||2 ≤ cTi x + d (19)
Fx = g, (20)

which minimizes a linear function subjected to second-order conic constraints and linear constraints.

Here we only illustrate the first part of the algorithm, while the second part of the algorithm can be reformulated in the same
way:

min max
θ

∆xTQθ∆x (21)

s.j. ∆x ≥ 0 (22)

∆xT1 = xm−1 − x0 (23)

It can be rewritten in the form:

min t2 (24)

s.j. ∆xTQθ∆x ≤ t2 (25)
∆x ≥ 0 (26)

∆xT1 = xm−1 − x0 (27)

The two forms are equal, have the same feasible region, and the same optimal solution. However, ∆xTQθ∆x − t2 is
non-convex and the second form isn’t a convex optimization problem. This kind of problem is called the “abstract convex
optimization problem” (Boyd & Vandenberghe, 2004): even it doesn’t follow the definition of the convex optimization
problem, the feasible region is also convex. It can be converted into a convex optimization problem and solved by convex
optimization solvers.

In Section 2 we showed that Qθ had a special decompostion. After the decomposition, we can convert ∆xTQθ∆x =
∆xTFTθ Fθ∆x = ||Fθ∆x||22, and ∆xTQθ∆x ≤ t2 is equivalent to ||Fθ∆x||2 ≤ t. So the optimization problem equals to

min t (28)
s.j. ||Fθ∆x||2 ≤ t (29)

∆x ≥ 0 (30)

∆xT1 = xm−1 − x0, (31)

which is a SOCP problem.

Definition 4 – dual cone. For a subspace K ⊂ Rn, K∗ := {s : x ∈ K|sTx ≥ 0} is the dual cone of K.

K is self-dual if K is a closed convex cone and K = K∗.

Definition 5- homogeneous cone. A closed convex cone K ⊂ Rn is homogeneous if for any x, s ∈ int(K) there exists
B ∈ Rn×n so that B(K) = Kand Bx = s, where int(K) denotes the interior of K.

Lemma 1. Two kinds of cones, R+ := {x ∈ R|x ≥ 0} and the second-order cone are self-dual and homogeneous (Andersen
et al., 2003).

Lemma 2. IfK1 andK2 is homogeneous self-dual, the direct product of the two cones,K := K1×K2 is still homogeneous
self-dual (Nesterov & Todd, 1997).

Every second-order constraint ||Fθ∆x||2 ≤ t is equivalent to a linear equality constraint Fθ∆x = gθ requiring the affine
function (gθ, t) lying in the second-order cone. The constraint ∆x ≥ 0 is equivalent to constrain every variable in R+. Then
the SOCP problem can be solved efficiently by (Andersen et al., 2003) when converted to the conic quadratic optimization

ConvexVST: A Convex Optimization Approach to Variance-stabilizing transformation

problem:

min t (32)
s.j. Fθ∆x = gθ (33)

∆xT1 = xm−1 − x0 (34)

(gθ, t) ∈ Qm+1 (35)
∆x ∈ Rm+ , (36)

which has linear equality constraints and homogeneous self-dual cones only.

Supposing the size of Θ and Sx is n and m, the problem can be solved in O(nm) time complexity operations except
finding the inverse of FT(ΘW)

−2
F ∈ Rnm×nm, where F = diag([F0 F1 . . .Fm−1]) and Θ and W are two matrices

already known. The key step is the bottleneck of off-the-shelf convex solvers, which limits the time complexity toO(n3m3).
However, as mentioned in Section 2, the inverse of F can be derived directly, while it’s multiplication to any matrix can be
processed in O(nm) steps because of its sparsity so that it’s total time complexity can be decreased to O(nm).

4. Proof of Lemma 4
We restate the second part of the algorithm at the beginning. Firstly, we define H

H(∆x) = max
θ
|σ2
θ,f − c| (37)

= max
θ
{σ2

θ,f − c, c− σ2
θ,f} (38)

= max
θ
{∆xTQθ∆x− c, c−∆xTQθ∆x}, (39)

is the original objective function, and hk

hk(∆x) = max
θ
{σ2

θ,f − c, c− σ2
θ,f (∆xk)−

∂σ2
θ,f

∂∆x
(∆xk)(∆x−∆xk)} (40)

= max
θ
{∆xTQθ∆x− c, c−∆xTkQθ∆xk −

∂∆xTQθ∆x

∂∆x
(∆xk)(∆x−∆xk)} (41)

= max
θ
{∆xTQθ∆x− c,−2∆xTkQθ∆x + ∆xTkQθ∆xk + c}, (42)

is an approximation of H(∆x) by substituting c− σ2
θ,f with its first-order Taylor expansion at ∆xk.

In the second part, we want to minimize the objective function H and argue that:

4.1. Convexity

Lemma 3. hk is always convex for any ∆xk.

In Section 1 we showed that σ2
θ,f − c is convex. Because c−σ2

θ,f (∆xk)− ∂σ2
θ,f

∂∆x (∆xk)(∆x−∆xk) is the first-order Taylor
expansion of a function, it’s also convex. As a result, hk is the maximum of a set of convex functions, whose convexity has
been proved.

4.2. Convergence

Lemma 4. If we solve the optimization problems iteratively, which minimize hk under certain constraints, the result
hk(∆xk) will converge. In detail, with the initialization of one iteration ∆xk, we have the optimization problem:

min hk (43)
s.j. ∆x ≥ 0 (44)

∆xT1 = xm−1 − x0 (45)

ConvexVST: A Convex Optimization Approach to Variance-stabilizing transformation

The optimal solution ∆xk+1 is also the initialization of the next iteration. Then we will show hk(∆xk) ≥ hk+1(∆xk+1)
with any initialization of the first iteration ∆x0 and the results can converge.

Because c− σ2
θ,f is concave, we have

c− σ2
θ,f ≤ c− σ2

θ,f (∆xk)−
∂σ2

θ,f

∂∆x
(∆xk)(∆x−∆xk) (46)

c−∆xTQθ∆x ≤ −2∆xTkQθ∆x + ∆xTkQθ∆xk + c (47)

for any ∆xk and all θ based on the definition of the concave function. Then we have:

max
θ
{c−∆xTQθ∆x} ≤ max

θ
{−2∆xTkQθ∆x + ∆xTkQθ∆xk + c} (48)

max
θ
{∆xTQθ∆x− c, c−∆xTQθ∆x} ≤ max

θ
{∆xTQθ∆x− c,−2∆xTkQθ∆x + ∆xTkQθ∆xk + c} (49)

H(∆x) ≤ hk(∆x) (50)

It shows that hk is always larger or equal to H in any cases. So we have hk(∆xk+1) ≥ H(∆xk+1). We also know that
hk+1 is the first-order Taylor expansion of H at ∆xk+1. Therefore hk+1(∆xk+1) = H(∆xk+1).

Besides, ∆xk is the initialization of the problem minimizing hk, and ∆xk+1 is the optimal solution. Certainly, hk(∆xk) ≥
hk(∆xk+1). In conclusion, we have:

hk(∆xk) ≥ hk(∆xk+1) ≥ H(∆xk+1) = hk+1(∆xk+1) (51)

So {hk(∆xk)} is a monotonic decreasing sequence of numbers and has a lower bound (hk ≥ H ≥ 0). It can converge to its
infimum based on the monotone convergence theorem.

4.3. Converge to the Local Optimum

Lemma 5. This series of iterative problems are equivalent to the original optimization problem:

min H (52)
s.j. ∆x ≥ 0 (53)

∆xT1 = xm−1 − x0 (54)

To prove that the iterative problems equal to the original problem, we only need to show that two problems have exactly the
same terminal condition. More narrowly, it will always stay at a local optimal solution of the original problem when the
iteration terminates, and any local optimal solution can be the condition to terminate the iteration.

Firstly, we will show that any local optimal solution can be the condition to terminate the iteration. If a solution ∆x∗ is a
local optimal solution of the original problem, there exists a real number ε > 0 such that we have H(∆x∗ + δ) > H(∆x∗)
for any δ satisfying ||δ||2 < ε. Assume ∆x∗ is the initialization of one iteration with the objective function hk, we have
hk ≥ H and hk(∆x∗) = H(∆x∗) proved in 4.2. So hk(∆x∗ + δ) ≥ H(∆x∗ + δ) > H(∆x∗) = hk(∆x∗) for any δ
satisfying ||δ||2 < ε. It means ∆x∗ is also the global optimal solution of minimizing hk, and the iteration will terminate.

Then we show that the iterative calculation will always converge to a local optimal solution of the original problem. If
the calculation converges when ∆x∗ is the initialization of one iteration with the objective function hk, ∆x∗ is the global
minimal solution and there exists a real number ε > 0 such that we have hk(∆x∗ + δ) > hk(∆x∗) for any δ satisfying
||δ||2 < ε. We have:

hk(∆x) = max
θ
{σ2

θ,f − c, c− σ2
θ,f (∆x∗)−

∂σ2
θ,f

∂∆x
(∆x∗)(∆x−∆x∗)} (55)

= max
θ
{∆xTQθ∆x− c,−2∆x∗TQθ∆x + ∆x∗TQθ∆x∗ + c}, (56)

There are two cases. The first one is

hk(∆x∗ + δ) = (∆x∗ + δ)TQθn(∆x∗ + δ)− c

ConvexVST: A Convex Optimization Approach to Variance-stabilizing transformation

for some certain θn. For this case, we have hk(∆x∗ + δ) = H(∆x∗ + δ) because H also contains the same term and
H ≤ hk. Then we have H(∆x∗ + δ) = hk(∆x∗ + δ) > hk(∆x∗) = H(∆x∗). The second one is

hk(∆x∗ + δ) = −2∆x∗TQθn(∆x∗ + δ) + ∆x∗TQθn∆x∗ + c

for some certain θn. We have

hk(∆x∗ + δ)− hk(∆x∗) = −2∆x∗TQθnδ > 0. (57)

And
H(∆x∗ + δ)−H(∆x∗) = −2∆x∗TQθnδ − δTQθnδ (58)

is larger than zero when ||δ||2 is sufficient small because −δTQθnδ is a higher-order infinitesimal compared to
−2∆x∗TQθnδ. So we can always find a small enough ε > ||δ||2 > 0 to make sure H(∆x∗ + δ) > H(∆x∗) when
hk(∆x∗ + δ) > hk(∆x∗). It shows the iterative calculation always converges to a local optimal solution.

Besides, a local maximum of H can also terminate the iteration, but it’s not stable and unlikely to happen for real application.
This problem doesn’t have saddle points.

In conclusion, the iterative calculation is to solve a series of convex optimization problems iteratively, which can always
converge to a local optimal solution of the original problem.

5. Variance based Approach
In the paper, we shown the algorithm based on the MSE. Here we derive the algorithm based on the variance. We have:

V ar[f(Xθ)] (59)

=E{[f(Xθ)− E[f(Xθ)]]
2} (60)

=E[f
2
(Xθ)]− E2

[f(Xθ)] (61)

=

m−1∑
k=0

pθkf
2
(xk)− [

m−1∑
k=0

pθkf(xk)]
2 (62)

=

m−1∑
k=0

pθk(x0 +

k∑
j=1

∆xj)
2 − [

m−1∑
k=0

pθk(x0 +

k∑
j=1

∆xj)]
2 (63)

=

m−1∑
k=0

pθk[x
2
0 + 2x0

k∑
j=1

∆xj + (

k∑
j=1

∆xj)
2
]− [(

m−1∑
k=0

pθkx0)
2

+ 2(

m−1∑
k=0

pθkx0)(

m−1∑
k=1

pθk

k∑
j=1

∆xj) + (

m−1∑
k=1

pθk

k∑
j=1

∆xj)
2
] (64)

=[x
2
0 + 2x0

m−1∑
k=1

pθk

k∑
j=1

∆xj +

m−1∑
k=1

pθk(

k∑
j=1

∆xj)
2
]− [x

2
0 + 2x0

m−1∑
k=1

pθk

k∑
j=1

∆xj + (

m−1∑
k=1

pθk

k∑
j=1

∆xj)
2
] (65)

=

m−1∑
k=1

pθk(

k∑
j=1

∆xj)
2 − (

m−1∑
k=1

pθk

k∑
j=1

∆xj)
2 (66)

=∆x
T
Qθ∆x (67)

It shows the variance is also a quadratic function of ∆x and can be converted into Form 67 by:

Qθ{ij} =

m−1∑
k=max{i,j}

pθk − (

m−1∑
k=i

pθk)(

m−1∑
k=j

pθk) (68)

=

m−1∑
k=max{i,j}

pθk(1−
m−1∑

k=min{i,j}

pθk) (69)

=

m−1∑
k=max{i,j}

pθk

min{i,j}−1∑
k=0

pθk, (70)

where Qθ{ij} is the entry at the ith row and jth column of Qθ. Qθ is positive definite because V ar[f(Xθ)] > 0. Then we
formulate the problems based on different metrics in the same form so that they can be solved with the same algorithm.

ConvexVST: A Convex Optimization Approach to Variance-stabilizing transformation

In this case, it’s hard to calculate the closed-form expression of a decomposition of Qθ. Fortunately, we have another way to
solve it efficiently. The inverse of Qθ has the closed-form:

Q−1
θ =



pθ0+pθ1
pθ0pθ1

− 1
pθ1

0 0 . . . 0 0

− 1
pθ1

pθ1+pθ2
pθ1pθ2

− 1
pθ2

0 . . . 0 0

0 − 1
pθ2

pθ2+pθ3
pθ2pθ3

− 1
pθ3

. . . 0 0
...

...
...

...
...

...
0 0 0 0 . . .

pθ(m−3)+pθ(m−2)

pθ(m−3)pθ(m−2)
− 1
pθ(m−2)

0 0 0 0 . . . − 1
pθ(m−2)

pθ(m−2)+pθ(m−1)

pθ(m−2)pθ(m−1)


, (71)

where

Q−1
θ {ij} =



pθi+pθ(i+1)

pθipθ(i+1)
i = j

− 1
pθi

i = j + 1

− 1
pθj

j = i+ 1

0 otherwise

(72)

Q−1
θ ∈ Rm×m has 3m nonzero entries only, whose decomposition can be processed in O(m) steps. After decomposition,

we have Q−1
θ = F−1

θ (F−1
θ)T , whose transpose is the target matrix F−1

θ , and then the overall time complexity is decreased
to O(nm) as well.

6. The Estimation of Distribution
The prerequisite of our algorithm is to know the distribution. In Experiment 2, we didn’t mention how to acquire the
distributions and assumed we already knew. In this section, we will introduce how to estimate distributions by the median
filter, why we choose that, and post-processing steps.

6.1. Distribution Estimation based on Median Filter and Reasons

In some cases, we may have prior knowledge to derive the distribution, based on the noise model and camera system
parameters. Sometimes we may obtain the distribution accurately if it’s possible to take multiple static images. Otherwise,
we have to estimate the distribution from the data.

We recommend to estimate distributions from bioimaging data by median filter for three reasons. First of all, it’s fast enough.
Many blind noise level estimation algorithms are based on matrix decomposition or principal component analysis, such as
(Pyatykh et al., 2012), (Chen et al., 2015) and (Liu et al., 2013). Other methods use different operations like grouping similar
blocks (Dabov et al., 2007). However, all these methods are too time-consuming to be applied to large-size bioimaging data.

What’s more, bioimages usually have a lower signal-to-noise ratio, blurrier boundaries, and smoother gradients compared to
natural images, where is more reasonable to assume the neighborhood pixels have similar signals and distributions. Then,
we can infer the signal θ behind an observation based on the information of its local patch. The noise distribution can be
approximately estimated by counting all pixels with the same signal θ.

It’s natural to use the mean of all observations to estimate the signal if only the first two reasons are given. However, as
mentioned before, the expectation of a r.v. may not equal to the signal. The third reason to use a median filter is that clipping
and nonlinear transformation can only change the value information but the order information is still kept. For the Poisson
distribution P(θ), the lower bound and the upper bound of the median is θ − 2/3 and θ + 1/3 (Adell & Jodrá, 2005). When
θ are all integers, we have Median(Xθ) = θ exactly so that the MSE estimated by the median is the same as the real one.

6.2. Truncated Gaussian Model Fitting

The estimation method in 6.1 is based on the assumption that the neighborhood pixels have similar signals. Some pixels on
corners or edges do not satisfy the assumption and should be removed. Here we propose an option to improve the accuracy
of estimated variances (or MSEs) when distributions are rough.

ConvexVST: A Convex Optimization Approach to Variance-stabilizing transformation

For the pixels dissatisfying the assumption, the estimated errors are usually much larger than the real noise so that these
pixels concentrate in the tails of distributions. If we truncate the tails, the remaining part of distributions can be more
accurate. However, the tails contribute most of the variance and cannot be ignored. To recover the real variance, we regard
the noise distribution before truncation as Gaussian distribution. If a r.v. X follows the standard Gaussian distribution and
truncated between α and β, we have (Barr & Sherrill, 1999):

V ar[X] =
V ar[X|α < X < β]

1 + αφ(α)−βφ(β)
Φ(β)−Φ(α) − (αφ(α)−βφ(β)

Φ(β)−Φ(α))2
, (73)

where φ and Φ are the probability density function and the cumulative distribution function of the standard Gaussian
distribution. The variance of the truncated distribution is proportional to the original variance. When α and β are chosen,
the denominator of Equation 73 is a factor to recover the real variance labeled as tθ. The optimization problem can be
reformulated as C ′f = maxθ ∆xTQθ∆x/tθ. As a heuristic rule of thumb, we recommend truncating 3% of all samples.

7. Computational Time Comparison
The two peer methods have superior time complexities. Although the time complexity of GAT is O(m) because all
transformations need to be calculated once, it’s just an analytical function almost without computation, whose execution
time is negligible. Foi’s method has O(kn) time complexity, where k is the number of iterations.

In this paper, we only compared 8-bit image data, where all methods were too quick to be meaningfully distinguished. To
compare the running time, we did a new experiment on clipped Poissonian-Gaussian models with size of Θs ranging from
28 to 212. GAT is not compared, it’s still very quick even for the largest size. Foi’s method was iterated 500 times, and only
the first part of ConvexOpt was executed.

All experiments were executed on a workstation Dellr Precision 7920 Tower. The CPU is Intelr Xeonr Gold 6140, whose
clock rate is 2.30 GHz. The memory size is 128GB (up to 2GB was used). No GPU was used. The operating system is
Windows 10, and all codes are MATLAB, whose version is R2018b. MOSEK optimizer was used, whose version is 9.0.

Table 1. Computational Time

Algorithm n = 28 n = 29 n = 210 n = 211 n = 212

ConvexOpt 4.92 23.6 110 519 2940
Foi 5.81 20.9 71.6 433 2376

Table 1 shows the computational time of the two methods. When n is not very large, they are comparable. However,
ConvexOpt is worse with a bigger size of Θ.

References
Adell, J. A. and Jodrá, P. The median of the poisson distribution. Metrika, 61(3):337–346, 2005.

Andersen, E. D., Roos, C., and Terlaky, T. On implementing a primal-dual interior-point method for conic quadratic
optimization. Mathematical Programming, 95(2):249–277, 2003.

Barr, D. R. and Sherrill, E. T. Mean and variance of truncated normal distributions. The American Statistician, 53(4):
357–361, 1999.

Boyd, S. and Vandenberghe, L. Convex optimization. Cambridge university press, 2004.

Chen, G., Zhu, F., and Ann Heng, P. An efficient statistical method for image noise level estimation. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 477–485, 2015.

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. Image denoising by sparse 3-d transform-domain collaborative
filtering. IEEE Transactions on image processing, 16(8):2080–2095, 2007.

Liu, X., Tanaka, M., and Okutomi, M. Single-image noise level estimation for blind denoising. IEEE transactions on image
processing, 22(12):5226–5237, 2013.

ConvexVST: A Convex Optimization Approach to Variance-stabilizing transformation

Nesterov, Y. E. and Todd, M. J. Self-scaled barriers and interior-point methods for convex programming. Mathematics of
Operations research, 22(1):1–42, 1997.

Pyatykh, S., Hesser, J., and Zheng, L. Image noise level estimation by principal component analysis. IEEE transactions on
image processing, 22(2):687–699, 2012.

