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Abstract
The variance-stabilizing transformation (VST)
problem is to transform heteroscedastic data to ho-
moscedastic data so that they are more tractable
for subsequent analysis. However, most of the
existing approaches focus on finding an analyti-
cal solution for a certain parametric distribution,
which severely limits the applications, because
simple distributions cannot faithfully describe the
real data while more complicated distributions
cannot be analytically solved. In this paper, we
converted the VST problem into a convex opti-
mization problem, which can always be efficiently
solved, identified the specific structure of the con-
vex problem, which further improved the effi-
ciency of the proposed algorithm, and showed that
any finite discrete distributions and the discretized
version of any continuous distributions from real
data can be variance-stabilized in an easy and
nonparametric way. We demonstrated the new
approach on bioimaging data and achieved su-
perior performance compared to peer algorithms
in terms of not only the variance homoscedas-
ticity but also the impact on subsequent analysis
such as denoising. Source codes are available at
https://github.com/yu-lab-vt/ConvexVST.

1. Introduction
The variance-stabilizing transformation (VST) problem is to
find a transformation function, which can transform a family
of heteroscedastic random variables (r.v.) to homoscedastic
r.v. In mathematical terms, it is to find a function f for
a family of r.v. Xθ indexed by the parameter θ so that
V ar[f(Xθ)] or MSE[f(Xθ)] are functionally independent
with θ.

As a fundamental preprocessing step for data analysis, the
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VST problem has been the subject of extensive theoretical
and experimental studies because of its broad applications.
In numerous papers, VST, making the resulting distribution
more homoscedastic, not only eases but also improves the
subsequent analysis from the basic logistic regression (Yan
& Su, 2009) to advanced neural networks (Zhang et al.,
2019a). Without VST, people have to either model the dif-
ferent variances for different observations, which is often
difficult and sometimes impossible, or assume wrongly a
single variance for all observations. Indeed, VST has been
applied to a wide variety of different fields, such as image
denoising (Azzari & Foi, 2016), machine learning (Zhang
et al., 2019a), microarray data calibration (Huber et al.,
2002), traffic control (Guo et al., 2012), managerial account-
ing (Ittner & Larcker, 2001), and clinical trials (Enright
et al., 2003).

The most original and classical variance stabilizer (Tippett,
1935)

f(z) =

∫ z 1√
V ar[Xθ]

dE[Xθ] (1)

was proposed to transform an arbitrary family of basic prob-
ability distributions and provide good asymptotic properties.
After that, most of the contributions focused on finding a
closed-form expression for a particular distribution, for ex-
ample, the Anscombe transformation f : z → 2

√
z + 3/8,

which can stabilize the variance of Poisson distribution ap-
proaching 1 when z increasing (Anscombe, 1948).

These theoretical researches did not stabilize variance very
well in real applications. We reasoned that the less satisfac-
tory performance is due to the following two facts. Firstly,
simple parametric transformation functions cannot match
well with the real data, while more complicated models are
hard to be analytically solved. Secondly, almost all works
aimed at achieving the stabilization in the asymptotic sense,
which can only guarantee good performance when the vari-
ance is small compared to its mean. Thus, some researchers
turned to develop data-driven algorithms and tried to find
numerical solutions by optimization approach. We men-
tion the AVAS (Tibshirani, 1988) as the most classical one,
which is further improved in recent years by (Foi, 2009).
Both of them refine the VST functions by calculating an
integral formula like Equation 1 iteratively, hoping for better
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and better results. However, their models led to challeng-
ing nonconvex optimization problems, whose solutions are
difficult to find and convergence cannot be guaranteed.

This paper proposes an optimization approach to solve the
VST problem as well, but it is the first time that the VST
problem is converted into a convex optimization problem,
which can guarantee the convergence and be solved effi-
ciently. What’s more, we took advantage of the special
structure of the resultant optimization problem and showed
that the problem can be solved much efficiently in the time
complexity of O(nm) instead of the off-the-shelf convex
solvers of O(n3m3), where n is the number of distribu-
tions and m is the number of elements in the sample space.
Extensive experiments on both synthetic and real datasets
under various conditions confirmed the superiority of our
proposed approach compared to peer methods.

2. Methods
2.1. Problem Formulation

The VST problem is to find a nonlinear monotonic trans-
formation function f , which can transform the r.v. Xθ to
a new one Yθ = f(Xθ) such that Yθ has the constant vari-
ance V ar[Yθ] = c or the constant MSE MSE[Yθ] = c. To
rigorously formulate the problem, we have the following
definitions.

Definition 1 – heteroscedastic random variable. The ran-
dom variable in this paper is from a family of heteroscedastic
r.v. composed of a series of true signals θ ∈ Θ and noise
distributions Nθ:

Xθ = θ +Nθ, (2)

where Nθ is dependent with θ and so does V ar[Xθ] or
MSE[Xθ]. Θ is the parameter to index the distribution.
For example, for Poisson distribution, we have E[Xθ] =
V ar[Xθ] = θ, where Θ = [0,∞) ⊂ Z.

Definition 2 – finite discrete distributions. A family of
distributions whose choices of the parameter Θ are discrete
and finite, and for a certain parameter θ, the sample space
Sx = {x0, x1, . . . , xm−1} ⊂ R are also discrete and finite
with a probability Pr[X = xk|Θ = θ] = pθk.

Our algorithm is developed for finite discrete distributions
because of the property of data from digital systems. How-
ever, this is not a limitation for practical applications. For
theoretical continuous or infinite discrete distributions, such
as Poisson distribution or multiplicative normal distribution
(Foi, 2009), an approximate solution can also be achieved
by discretization or manually clipping.

Definition 3 - transform function. f : Sx → Sy is a valid
transform function if: (1) it is a bijection; (2) for all x1 < x2,
we have y1 < y2 where f(x1) = y1 and f(x2) = y2.

Definition 4 – variance. The expected squared deviation
from the mean to a r.v.

V ar[Xθ] = E[(Xθ − E[Xθ])
2] (3)

Definition 5 – mean squared error. The expected squared
deviation from the true signal to a r.v.

MSE[Xθ] = E[(Xθ − θ)2] (4)

The VST problem was proposed to stabilize the variance
theoretically, but people may concern more with how much
a r.v. differs from its signal in real applications. For sym-
metric distributions, E[Xθ] = θ so that the two metrics
basically equal. When distributions are clipped, such as the
clipped Poissonian-Gaussian model in Section 3, the two
metrics could be quite different. Our optimization algorithm
can be applied to both of the two metrics. However, for
more reasonable results and clearer interpretation, we only
stabilize the MSE in the remaining part and the algorithm
stabilizing the variance is explained in the supplementary.

2.2. Algorithm

We introduce the cost function proposed by (Foi, 2009) to
measure the performance of a transformation f :

Cf =
∑
θ

|σ2
θ,f − c| (5)

where σ2
θ,f is the MSE of f(Xθ):

σ2
θ,f = E{[f(Xθ)− f(θ)]2} (6)

It is hard to minimize the highly non-convex cost function
directly. As a substitution, we turn to minimize:

C ′f = max
θ
σ2
θ,f , (7)

Lemma 1. C ′f is always convex.

This substitution is the most critical idea that enables our
new method. Before we provide the motivation behind, we
need to introduce several new notations. The samples in
Sx can be sorted in ascending order so that x0 < x1 <
· · · < xm−1. After transformation, the “distances” between
adjacent samples are changed. Let us use new variables
∆x to represent their distances: ∆xk = f(xk)− f(xk−1).
Clearly, with the starting point x0 fixed there is a one-to-one
correspondence between ∆x and f(x). Thus, we can di-
rectly optimize ∆x instead of the transform function f(x).
On the one hand, when minimize C ′f or the maximum σ2

θ,f ,
we have to shrink some related variables in ∆x because
they are positively correlated to σ2

θ,f . On the other hand,
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because the sum of all variables (∆xT1) is fixed, the re-
maining ∆x must be enlarged to satisfy the constraint, and
the variances of other distributions will increase. As a result,
large variances decrease and small variances increase even
though we only tried to explicitly decrease the maximum
one. That is, even though we want to minimize C ′f only,
Cf also decreased because of small variances increasing. In
Section 3, we experimentally showed that minimizing C ′f
can decrease Cf effectively.

Lemma 2. C ′f can be represented in the ma-
trix form C ′f = maxθ ∆xTQθ∆x, where ∆x =

[∆x1 ∆x2 . . .∆xm−1]T . Qθ is a positive definite ma-
trix with a special Cholesky decomposition, whose inverse
can be derived directly.

There are still some restrictions to guarantee good results.
Firstly, ∆x should be positive to keep f monotonically
increasing. What’s more, the sum of ∆x, or the total length
of Sx should not be changed after stabilization. Otherwise
we can set ∆x close to 0 to minimize C ′f . In conclusion,
we formulate an optimization problem:

min
∆x

max
θ

∆xTQθ∆x (8)

s.j. ∆x > 0 (9)

∆xT1 = xm−1 − x0 (10)

Lemma 3. This convex optimization problem can be con-
verted into the second-order cone programming (SOCP)
problem and solved in O(nm) time complexity operations,
where n is the size of Θ and m is the size of Sx.

Mature optimizers like MOSEK (Andersen et al., 2003)
can solve an arbitrary SOCP problem in O(n3m3) time
complexity. We decrease the time complexity to O(nm)
and could get the global optimum ∆x∗ efficiently because
of the special structure of our problem mentioned in Lemma
2.

Solving the optimization problem is the first part of the
algorithm. After that, we have a preliminary solution f0 :

xk →
∑k
j=1 ∆x∗j + x0. And the corresponding MSEs are

σ2
θ,f0

= ∆x∗TQθ∆x∗. For most of the cases, this part
can provide good-enough results. However, the objective
function only constrains the maximum MSE, which may
ignore some extremely small MSEs. To compensate for this
drawback, we propose the second part of the algorithm.

In the first part, we constrain all MSEs σ2
θ,f ≤

maxθ σ
2
θ,f0

= c. In the second part, we hope all MSEs
can be as close to c as possible:

min
f

max
θ
|σ2
θ,f − c| (11)

This objective function is still highly non-convex, but the lo-
cal optimum can be achieved by the majorize-minimization

(MM) algorithm. We can rewrite the function as:

min
f

max
θ
{σ2

θ,f − c, c− σ2
θ,f} (12)

For any θ, σ2
θ,f − c is always convex but c − σ2

θ,f is con-
cave. Assume we have the initialization ∆x0, the first-order
Taylor expansion of c− σ2

θ,f at ∆x0 will be:

c− σ2
θ,f ≤ −2∆xT0 Qθ∆x + ∆xT0 Qθ∆x0 + c (13)

Under the same constraints, the final optimization problem
of the second part is:

min
∆x

max
θ

{∆xTQθ∆x− c,

− 2∆xT0 Qθ∆x + ∆xT0 Qθ∆x0 + c}
(14)

s.j. ∆x > 0 (15)

∆xT1 = xm−1 − x0 (16)

Lemma 4. The solution of Problem 14 will always converge
to a local minimum of Function 11 when we solve it itera-
tively. Similar to the first part, it can also be converted into
a SOCP problem with the same time complexity.

The second part is optional which has the potential to overfit
the distribution when Nθ is inaccurately estimated from
data.

3. Applications and Experiments
In this section, we introduce the noise model of imaging data
(Section 3.1) and two peer methods (Section 3.2), and then
compare the three methods on various types of data. Firstly
we variance-stabilized the theoretical clipped Poissonian-
Gaussian model directly with the assumption that the dis-
tributions are known (Section 3.3), which theoretically fa-
vors peer methods. We also simulated synthetic dynamic
bioimaging data with different noise levels and tested the
performance (Section 3.4). Last but not least, we stabilized
the variances of noise on a public bioimage dataset with
static images (Section 3.5), and investigated the influence of
stabilization on denoising performance based on the BM3D
algorithm (Section 3.6). For all experiments, we compared
our method to two peer methods.

3.1. Clipped Poissonian-Gaussian Model

Clipped Poissonian-Gaussian distribution is a mathematical
model to describe the noise distribution of raw imaging
data (Foi et al., 2008). For digital imaging sensors, the
basic noise model is the Poissonian-Gaussian model. It
is a signal-dependent model consisting of two independent
parts, a Poissonian part Pθ modeling the photo-sensing and a
Gaussian partGmodeling the remaining signal-independent
noise in the camera system:
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Table 1. Mean Absolute Error and Maximum Error on Theoretical Model

Algorithm

Mean Absolute Error Maximum Error

ConvexVST GAT Foi ConvexVST ConvexVST GAT Foi ConvexVST
(open interval) (open interval)

χ = 5 1.504 44.81 7.709 0.379 190.9 377.4 184.2 0.876
χ = 10 2.695 115.5 18.98 0.773 355.4 728.0 313.3 1.633
χ = 15 3.376 200.2 35.05 0.756 517.3 1211 463.4 1.978

Nθ = Pθ +G, (17)

where Pθ + θ ∼ P(χθ) and G ∼ N (0, σG). χ > 0 and
σG ≥ 0 are real scalar parameters, and P and N are the
Poisson and Gaussian distributions. Without the influence
of clipping, the variance and MSE of Poissonian-Gaussian
model is V ar[Nθ] = MSE[Nθ] = χθ + σ2

G.

However, imaging data can only be represented in a range.
For example, the values of the 8-bit image are between 0
to 255. If an observation is out of range, it will be over-
exposed to 255 or under-exposed to 0. We assume the data
range is [a, b], then the clipped Poissonian-Gaussian noise
is:

Ñθ =


b− θ Nθ > b− θ
Nθ a− θ ≤ Nθ ≤ b− θ
a− θ Nθ < a− θ

(18)

And the clipped Poissonian-Gaussian model is:

Xθ = θ + Ñθ (19)

Xθ has a finite discrete distribution.

3.2. Peer Methods

We introduce the two peer methods before the experiments.
The first one is the generalized Anscombe transformation
(GAT) (Starck et al., 1998). Compared to the Anscombe
transformation, it takes the Gaussian part into account:

fGAT : z → 2

χ

√
χz +

3

8
χ2 + σ2

G (20)

fGAT can stabilize the variance of Poissonian-Gaussian
distribution to approximately 1 when z approaches infinite,
which is a stabilizer with the most extensive applications up
to now. However, it cannot deal with the clipping problem.

Few state-of-art methods are focusing on arbitrary distribu-
tions variance stabilization or specific for the clipped model.
We choose the most appropriate one, a recursive optimiza-
tion approach (Foi, 2009). The basic idea is to select a
constant variance c and refine the VST function iteratively
so that the variance curve will more and more close to c.

Figure 1. The experiment result on the theoretical models. (a)
χ = 5. (b) χ = 10. (c) χ = 15. The first row shows VST
functions of all methods, where the dashed lines are the function
f : z → z. The second row shows the stabilized variance curves,
where the dashed lines are the original curves.

The author did not provide the source code and we reim-
plemented it. All parameters are suggested by the author
except c. In the original paper, the author chose c = 1
when θ ∈ [0, 1]. We found c had the most significant influ-
ence and not all distributions could be variance-stabilized
when c = 1. For the best performance, we set c equals to a
theoretically optimal stabilized-variance.

In the following parts, figures, and tables, we use “Con-
vexVST”, “GAT” and “Foi” to represent our method, GAT,
and the recursive optimization approach.
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Table 2. Mean Absolute Error and Maximum Error on Synthetic Dynamic Data

Algorithm

Mean Absolute Error Maximum Error

ConvexVST GAT Foi ConvexVST ConvexVST GAT Foi ConvexVST
(open interval) (open interval)

χ = 5 10.72 40.42 73.65 8.715 216.0 366.3 452.6 46.51
χ = 10 11.01 111.2 131.7 7.437 409.5 731.1 724.3 79.84
χ = 15 20.84 195.8 216.8 15.46 601.2 1224 1153 127.2

3.3. Stabilization Results on Clipped
Poissonian-Gaussian Model

In the experiment, we assume θ ∈ [0, 255] ⊂ Z, and all
observations are clipped between [0, 255]. The variance of
the Gaussian part is σ2

G = 20, and the parameter χ is 5, 10,
and 15 to simulate real noise distributions.

We used both the first part and the second part of Con-
vexVST to achieve the best result, while even only the first
part is also much better than peer methods. The second
part is iterated 5 times to converge. In the experiment, we
realized that it was almost impossible to stabilize variances
for all θ. To improve the overall performance, we release
the constraint on the extreme value in Θ. Thus, we mini-
mize maxθ∈[1,254] σ

2
θ,f without the consideration of θ = 0

or 255. For Foi’s method, we found it cannot converge
probably because of its highly non-convexity and iterated it
150 times. With more iterations, the VST functions have a
stair-like shape, where the steps are likely due to overfitting
and the performance is decreased.

Figure 1 shows the VST functions and stabilized variances.
Even the three methods take different strategies, the corre-
sponding VST functions have similarities to some extent.
Foi’s method can stabilize the variances but there are still
some fluctuations. The performance of GAT depends on
the clipping effect. When χ is bigger, the noise is stronger,
and the clipping effect is larger, GAT performs worse. Con-
vexVST performs better than the other two with almost flat
variance curves except for the ends.

Table 1 shows the quantitative results. The end variances
(θ = 0 or 255) have a huge impact on ConvexVST, whose
performance tends to be underestimated for applications
whose signals of interest does not contain them. As a ref-
erence for applications with a local region of interest, the
quantitative evaluation of ConvexVST without the consider-
ation of end variances is also shown in the table and labeled
as “ConvexVST(open interval)”, the same as the three meth-
ods. The best results of the three methods are in bold in
all tables. ConvexVST(open interval) is in italics and not
compared. Indeed, it always has much better performance
than peer methods without including the end variances.

As Equation 5, we measure the mean absolute error (MAE)

Figure 2. The experiment result on the synthetic dynamic data. (a)
χ = 5. (b) χ = 10. (c) χ = 15. The first row shows the VST
functions of all methods, and the second row shows the stabilized
variances.

MAEf = 1
n

∑n−1
θ=0 |σ2

θ,f − c| to a constant c firstly. We
choose c = Med(σ2

θ,f ) because the median is the optimal
solution to minimize MAE (Poor, 2013). ConvexVST has
the smallest MAE on all models.

To compare the performance of these methods in the ex-
treme case rather than the average performance, we also
proposed the maximum error (ME) MEf = maxθ(σ

2
θ,f )−

minθ(σ
2
θ,f ) as a metric. Foi’s method is slightly better be-

cause our method releases the constraints at the ends to
improve the average performance.
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Figure 3. The experiment on the real static imaging data. Every subfigure plots the original and stabilized variances of a subset.

3.4. Stabilization Results on Synthetic Dynamic
Imaging Data

In Experiment 3.4 and 3.5, we will show the performance of
these methods on both synthetic and real bioimaging data.
For data-driven approaches, the noise model estimation is
necessary to acquire enough information. Static images
without any activity, such as the part of a video before the
experimental manipulation, are excellent materials to esti-
mate noise models for variance stabilization. However, we
should not expect data containing static images all the time.
Therefore, we consider the worst case that no static image
can be utilized and all images are dynamic firstly, where
every signal only generates one observation. It is impossi-
ble to evaluate the performance on real dynamic imaging
data because of the lack of ground truth. Instead, we did
simulation based on our in-house 4D two-photon fluores-
cence imaging data measuring the motility of microglia in
the mouse brain. The data resolution is 512× 512× 61 and
there are 56 frames. The data were denoised by 3×3 median
filters to generate the ground truth, and then added three
levels of noise the same as Experiment 3.3. The training set
and the test set are the same, but we learned the model from
the data directly and tested the performance with the ground

truth to avoid overfitting.

Figure 2 shows the VST functions and stabilized variances.
GAT and Foi’s method can stabilize variances to some de-
gree with better performances under smaller noise levels.
ConvexVST is still the best method, which performs as good
as on the static data. As before, Table 2 shows the MAE
and ME on the synthetic dynamic data. In this experiment,
ConvexVST has the best performance under any noise level
and any metric. It shows our method is more stable than
peer methods when prior knowledge is unknown.

3.5. Stabilization Results on Public Bioimaging Dataset

In this experiment, we utilized the Fluorescence Microscopy
Denoising (FMD) dataset (Zhang et al., 2019b) dedicated
to Poissonian-Gaussian denoising to evaluate the methods.
The dataset consists of 12,000 real fluorescence microscopy
images obtained with commercial confocal, two-photon,
and wide-field microscopes and representative biological
samples such as cells, zebrafish, and mouse brain tissues.
There are 12 subsets containing a certain kind of samples
taken by one microscope. Every subset contains 20 fields
of view (FOV), and every FOV was taken 50 times. The
resolution of all images is 512× 512. All images are 8-bit
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Table 3. Mean Absolute Error and Maximum Error on Real Static Data (the last column is open interval)

Algorithm Mean Absolute Error Maximum Error

ConvexVST GAT Foi ConvexVST ConvexVST GAT Foi ConvexVST

Confocal BPAE B 2.265 23.02 36.28 1.516 93.66 180.0 267.0 16.14
Confocal BPAE G 1.862 16.04 60.86 1.421 50.36 178.8 314.2 16.13
Confocal BPAE R 1.727 16.01 28.94 1.158 32.78 114.0 175.1 8.412
Confocal FISH 19.34 332.0 523.5 13.27 530.6 1991 2377 71.21
Confocal MICE 4.022 27.10 10.05 3.759 30.45 283.0 264.4 29.51
TwoPhoton BPAE B 9.277 53.80 348.4 5.068 515.2 532.8 1186 31.69
TwoPhoton BPAE G 5.546 37.04 136.8 2.952 257.5 310.8 405.7 23.08
TwoPhoton BPAE R 2.070 20.33 19.23 1.251 34.59 94.61 67.03 7.771
TwoPhoton MICE 12.87 54.20 382.3 7.986 577.6 618.7 1336 54.90
WideField BPAE B 3.684 38.67 3.123 2.804 146.8 222.2 40.54 20.19
WideField BPAE G 4.044 56.13 35.92 2.277 181.2 281.0 177.2 20.91
WideField BPAE R 4.066 31.75 20.45 2.211 189.9 200.8 135.2 16.98

Figure 4. A visual comparison of the denoising task. The first row shows the original and denoised images, while the second row shows
the squared differences.

between 0 to 255.

We tested all 12 subsets separately. For each subset, we
allocated half of the images (25 images of all FOVs) as the
training set and half of them as the test set. The training
set was used to estimate the distribution and generate VST
functions, and we evaluated the performance on the test set.

Figure 3 shows the stabilized variances of each subset. For
confocal and two-photon data, the noise follows the clipped
Poissonian-Gaussian distribution, whose original variance
curves are similar to Figure 1. However, for wide-field data,
the noise distribution is quite different on account of unclear
reasons. ConvexVST performs well on all the datasets. On
most of the confocal and two-photon data, GAT can sta-
bilize variances but still performs worse than ConvexVST.

The performance decreases greatly when data don’t follow
the assumptions, such as the wide-field data or “Confo-
cal FISH”, where the latter has strong noise and is clipped
severely. Foi’s method has extremely unstable performance
on the dataset. On one hand, on some subsets like “Confo-
cal MICE” and “WideField BPAE B”, it is comparable to
ConvexVST and even better; on the other hand, on some
others like “Confocal FISH” and “TwoPhoton MICE”, it
cannot stabilize the variances at all.

We also analyzed the results quantitatively. Table 3 shows
the MAE and ME on each subset. ConvexVST beats the
other two on 11 of 12 subsets with much better MAEs, and
has the best performance on all confocal and two-photon
subsets under the evaluation on ME even without excluding
the end variances.
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Figure 5. PSNR of all groups of each subset. Every subfigure plots the PSNR of images stabilized by three VST methods with the
comparison to the directly denoised image.

3.6. Denoising performance on Public Bioimaging
Dataset

In the last experiment, we investigate whether our approach
contributes to practical problems. The most popular appli-
cation of VST is denoising, where VST can make the image
noise distribution more homoscedastic, change the clipped
Poissonian-Gaussian distributions to Gaussian-like distribu-
tions so that the denoising algorithm can simply assume the
noise follows the Gaussian distribution.

As the most effective one with the assumption of additive
i.i.d. Gaussian noise, we utilize BM3D (Dabov et al., 2007)
as the denoising algorithm in this part. BM3D combines
the idea from non-local means (Buades et al., 2005) and
wavelet-based denoising methods, groups similar blocks in
a 3D-array, collaborative filters these blocks in the transform
domain, and then gives a final estimation by aggregating all
local estimates.

The division of the training and test sets are the same as Ex-
periment 3.5, and so are other configurations and parameters.
The dataset is variance-stabilized by the three approaches,
denoised by BM3D, and then transformed inversely to re-
cover original signals. One more group without stabilization
and directly denoised is set as a control group.

The image quality after denoising is measured by PSNR

(peak signal-to-noise ratio). PSNR is arguably the most pop-
ular measure on the image quality in the field of denoising.
Figure 5 shows the box plot of PSNR of groups with or
without stabilization. Every subfigure represents the PSNRs
of the foreground region of all FOVs in one subset. All VST
methods contribute to improving the denoising performance
with higher PSNRs in most of the cases, but a transforma-
tion can also have a negative impact occasionally if not good
enough. The stabilized variance curves are highly correlated
to the denoising performance, but not always.

Our method has the best denoising performance in 9 of all
12 subsets, and is comparable with the better of the peer
methods in the remaining three subsets. Table 4 shows the
overall PSNR comparison on the whole dataset. Compared
to the better one of the peer methods, our approach helps
to improve PSNR by almost 2dB. It is worth noting that an
improvement of 2 dB is a significant number in the field of
denoising.

Table 4. Overall PSNR after denoising

No VST ConvexVST GAT Foi

29.5768 33.3161 30.5624 31.3839

A visual comparison of the denoising task is also presented
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in Figure 4. The first row shows the original and denoised
images from the Confocal FISH subset, while the second
row shows the squared differences between the first row
and the ground truth. The differences were rescaled for
visualization purpose. Corresponding MSEs are shown at
the bottom. These results show that our method outperforms
peer methods not only quantitatively but also qualitatively.
Take the bottom corner indicated by the red arrow as an
example, our method results in a much smaller difference in
this region than other methods.

4. Conclusion
This paper proposed the first convex optimization-based
VST algorithm, which aims at unifying the variance or MSE
of data and making them more consistent to improve the sub-
sequent analysis. It is more stable and flexible compared to
previous works, which guarantees to converge and can stabi-
lize the variance or MSE of any non-analytical distributions
from real data.

The key idea is to minimize the maximum of variances
of all θ. When the maximum variance is decreased, other
variances will tend to increase because the resultant range
of the transformed value is constrained to be the same as
before the transformation. In this way, all variances will
move close to each other and exhibit a stabilized curve.

We tested the algorithm on theoretical distributions and real
bioimaging data, and compared them to two peer meth-
ods in four different experiments. The results are analyzed
qualitatively and quantitatively. Our algorithm achieved
much superior average performance than peer methods in
all experiments and achieved better extreme performance in
most of the real and synthetic data experiments. The denois-
ing experiment exhibited great potential of our approach in
practical applications.

As a general data transformation approach, the algorithm
can be applied to a broad spectrum of problems and be
a preprocessing step before training any models on het-
eroscedastic data, which has the potential to be as important
as the Z-score normalization and Box-Cox transformation
(Sakia, 1992). However, it is also limited to reliable esti-
mation of the distribution and requires large scale of data.
Further more, discretization is necessary for continuous dis-
tributions, which is worth investigating for joint optimal
discretization and variance stabilization in future studies.
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