The Implicit Regularization for Adaptive Optimization Algorithms on Homogeneous Neural Networks

A. Preliminaries

In this section, we provide some definitions and basic lemmas which will be used in the proof. The section is organized
as follows: in Subsection A.1, we show general properties which exponential loss and logistic loss share; in Subsection
A.2, (approximate) KKT conditions is defined and sufficient conditions of being an approximate KKT point is given;
in Subsection A.3, we show how conditioners of AdaGrad, RMSProp, and Adam in continuous flow is formulated; in
Subsection A.4, we introduce o-Minimal structure, definable set and definable functions, and show two Kurdyka-Lojasiewicz
inequalities; in Subsection A.6, we show some basic definitions from Measure Theory, including measurable set and
Lebesgue Integrability.

A.1. Property of Exponential and Logistic Loss

In this subsection, we provide several properties which both exponential and logistic loss possess. The properties of
exponential and logistic loss can be described as the following proposition:

Proposition 1. For { € {{cap, liog }

o There exists a C"* function f, such that { = e~ f;
e Forany x € R, f' > 0. Therefore, f is reversible, and f~* € C;
o f'(z)x is non-decreasing for x € (0,00), and lim,_,«, f'(z)x = oo;
* There exists a large enough x ¢ and a constant K > 1 ,such that,
- V0 € [5,1),Vx € (z5,00), and Wy € [~ (xy,00): (f71)(x) < K(f~')'(0x) and f'(y) < K f'(0y);
- Forally € [zy,00), ]{,((Z)) € [y, 2Ka);
- Forallz € [f~(zy), ), (J{:% € [y, 2K ).
- f(x) =06(z) as x — oo.

All properties are easy to verify in Proposition 1 and we omit it here. For brevity, we will use g(z) = f~!(z) in the
following proofs.

A.2. KKT Condition

Being a KKT point is a first order necessary condition for being an optimal point. We first give the definition of approximate
KKT point for general optimization problem (Q).

Definition 2. Consider the following optimization problem (Q) for x € R%:

min f(x)
subject to g;(x) < 0,Vi € [N],

where f,g; (i = 1,--- ,N): R* — R are locally Lipschitz functions. We say that x € R? is a feasible point of (P) if
satisfies g;(x) < 0 for all i € [N].

For any €,6 > 0, a feasible point of (Q) is an (&, )-KKT point if there exists \; > 0, k € df(x), and h; € dg;(x) for all
i € [N] (we will slightly abuse Of (x) to respresent a element in O f(x)) such that

1. Hk + Zie[N] Aihi(m)”z <e

Specifically, when e = § = 0, we call x a KKT point of (Q).

The following Mangasarian-Fromovitz constraint qualification (MFCQ) bridges (&, ) KKT points with KKT points.

Definition 3. A feasible point x of (Q) is said to satisfy MFCQ if there exists a € R? such that for every i € [N] with
gi(x) =0, -
Vh € dg;(x) : (h,a) > 0.
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MFCQ guarantees that the limit of approximate KKT point with convergent € and § is a KKT point.
Lemma 7. Suppose for any k € N, xy, is a (e, 0r)-KKT point of (Q) defined in Definition 2. If limg_ oo = 0,

limg 00 0 = 0, and limy_, o, T, = x, where the limit point x satisfies MFCQ, then x is a KKT point of (Q).
A.3. How is the Continuous Form of Conditioner Formulated?

In this subsection, we show how conditioners of the continuous case for AdaGrad, RMSProp, Adam (w/m) are derived.
Both discrete updates of these optimizers can be written as

1 _
m(t+1) —m(t) = p(m(t), 0L(w(1))), M
m(0) =0

where for AdaGrad, ¢(m(t),0L(w(t))) = OL(w(1))?, P(m(t),t) = m( ), for RMSProp, ¢(m(t),dL(w(t))) =
(1= b)(OL(w(t))? — m(1)), ¥(m(t),t) = m(t); for Adam (w/m), p(m(t), OL(w(t))) = (1 — 0)(OL(w(1))* — m(t)),

vml(t),t) = TG

One can easily observe that eqs. (6) and (7) is a discretization of the following equations:

dw(t) 1 =
dt \Je+¢m(D),t) © 0L (), ®
T — gm(1), DL (w(1)). o)
m(0) = 0.
As for AdaGrad,
dm(t)

o = 0L(w()*,

¢
mt):/éﬁ('wT 2
0

which leads to

and

As for RMSProp and Adam
T~ (1 D@L (w()? — m).

By solving the above differential equation, we have

de(*=0)tmy(t)

n = 1701 — p)AL(w(t))?,

which by integration implies

m(t) = /0 t e (107 (1 _ p)aL(w(r))2dr.

Therefore, for RMSProp, the continuous flow is

dw(t 1 _
’g( ) _ - © IL(w(1));
t Vet JL e 0000 (1 - 0)IL (w(r))2dr
while for Adam (w/m), the continuous flow is
1 _
dw(t) _ _ © dL(wl(t)).

dt \/€+ I efufb)<t4>1(i;b)5c(w(f))2d7
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A.4. o-Minimal Structure and Definable functions

Here we define o-Minimal structure and definable functions which we omit in Theorem 3.

Definition 4 (Appendix B, Ji & Telgarsky (2020)). An o-minimal structure is a collection S = {S,,}52_1, where each S,, is
a set of subsets of Ry, satisfying the following conditions: 1. 51 is the collection of all finite unions of open intervals and
points;

2. S, includes the zero sets of all polynomials on R,,;

3. S, is closed under finite union, finite intersection, and complement;

4. S is closed under Cartesian products: if A € S;, and B € S, then A X B € 405

5. S is closed under projection I1,, onto the first n coordinates: if A € Sy, 41, then IL,(A) € S,,.

A definable function on above o-Minimal Structure can be defined as follows:

Definition 5 (Appendix B, Ji & Telgarsky (2020)). A function f : D — R™ with D C R" is definable if the graph of f is
in S’n+m-

A natural question is: which function is definable? The next Lemma helps to solve this question.

Lemma 8 (Lemma B.2, Ji & Telgarsky (2020)).

e All polynomials are definable, therefore, linear or other polynomial activation is definable;

o Ifboth f(x) and g(x) are definable, min f(z), g(z) and max f(x), g(x) are definable, therefore, ReLU activation is
definable;

e Iffi(x): D =R (i=1,2,---,n) is definable, then f(x) = (f1(x), f2(x), -, fn(x)) is definable.

* Suppose there exists k,do,dy,--- ,dr > 0, and L definable functions (g1, 92, - ,gr), where g; :— R x ... x
Ri-1 x R¥ — R%. Let hy(x, W) 2 g1(x, W), and for2 < j < L,

hj(1'7 W) = gj (.T, hl(l', W), ceey hj_l((L', W), W) ,

then all h; are definable. Therefore, neural networks with polynomial and ReLU activation, convolutional and
max-pooling layers, and skip connections are definable.

An important property for definable function is Kurdyka-Lojasiewicz inequality, which can bound gradient of definable
function in a small region. Here we present two Kurdyka-Lojasiewicz inequalities given by (Ji & Telgarsky, 2020):
Lemma 9 (Lemma 3.6, Ji & Telgarsky (2020)). Given a locally Lipschitz definable function f with an open domain

D e {xl|||z|| > 1}, for any ¢, n > 0O, there exists a > 0 and a definable desingularizing function ¥ on [0, a) (that is,
U(x) € C1((0,a)) N CO([0,a)) with ¥(0) = 0), such that,

V(f@)lzlllof @)l = 1, if f(x) € (0,a), and |0, f(x)]| = cll=[|" [[o\f ()] -

Lemma 10 (Lemma 3.7, Ji & Telgarsky (2020)). Given a locally Lipschitz definable function f with an open domain
D c {x|||z|| > 1}, for any X > 0, there exists a > 0, and a definable desingularizing function U on [0, a) such that

wax {1, 3 L@ 11 0@ 2 1, 170 € 0,0)

At the end of this subsection, we show that definability actually guarantees that ® admits a chain rule, which is formally
stated as following:

Lemma 11 (Lemma B.9, Ji & Telgarsky (2020)). Given a locally Lipschitz definable f : D — R with an open domain D,
for any interval I and any arc z : I — D, it holds for a.e. t € I that
df (Zt) _ < * dzt

% Zt’dt>’ forall z; € Of ().

Therefore, if we are deal with definable neural networks ® as in Theorem 3, we no longer need to assume ® admits a chain
rule which is already guaranteed by lemma 11.
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Figure 3. How h influence convergence direction of w

A.5. Discussion of the influence of initialization on the solution of P*
For AdaGrad, h_” is defined as €1, + >.;°, VL(w(t))?, which is the sum of squared gradients along the trajectory.
Intuitively, as the initialization changes, the trajectory changes respectively, and so does the direction of h,. This intuition
1
can be further verified by Experiment in Section 6.2, where we plot the direction of h..> as the initialization changes.
_1
Furthermore, how h, influence the max-margin problem can be interpreted as follows: optimizing ||ho’ ® w||? with

_1

constraints is equivalent to find the radius r of ellipsoid ||k’ ® w||? = 72 when the ellipsoid is tangent to the feasible set.
This intuition is visualized in Figure 3. One can easily observe that as the direction of h, changes, the direction of the
tangent point changes.

A.6. Basic knowledge from Measure Theory

In this section, we present basic definitions of measurable set, measurable functions and Lebesgue Integrability. These
definition involves use of exterior measure and Borel set in Euclidean space, which we omit them here. Readers interested
in measure theory can refer to (Stein & Shakarchi, 2009) for details.

Definition 6 (Stein & Shakarchi (2009), Chapter 1, page 16). A subset E of Ris Lesbesgue measurable, or simply
measurable, if for any € > 0, there exists an open set G, with E C G, and

m.«(G/E) < e,

where m. is the exterior measure on R%,

Definition 7 (Stein & Shakarchi (2009), Chapter 1, page 28). A function f on a measurable subset E of R? is measurable if
forall a € R, the set

fH([~o0a)) ={z € E: f(x) <a}
is measurable.
Definition 8 (Stein & Shakarchi (2009), Chapter 1, page 64). A measurable function f defined on a measurable subset of
R? is Lesbesgue integrable if

/ (@) |dm(z) < oo.
E

B. Proof of Results for Adaptive Algorithms in Continuous Case

This section collects proof of Theorem 2, Theorem 4, Theorem 5, and also contains proof of Theorem 6 and Theorem 7.
Organization of this section is as follows: In Subsection B.1, we present proof of Theorems 4 and Theorem 5; in Subsection
B.2, we present proof of Theorem 2 based on the proof skeleton in Section 5; in Subsection B.3, we prove Theorem 6 and
Theorem 7 based on 2, Theorem 4, Theorem 5; finally, in Subsection B.4, we provide tight convergence rate of loss and
parameter norm in adaptive gradient flows.
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B.1. Proof of Theorem 4 and Theorem 5: Transition from Continuous Adaptive Algorithms to Adaptive Gradient
Flow

B.1.1. PROOF OF THEOREM 4
The proof of Theorem 4 is divided into two stages: we first prove convergence of hA(t) and [)’A(t); then we show

% = —3(t) ® ALA(vA(t)) satisfies adaptive gradient flow, and is equivalent to AdaGrad flow.

We first show [~ OL(w(t))?dr is bounded.
Lemma 12. For AdaGrad flow defined as eq. (4) with h = hA,

/Ooo(aﬁ(w(T)))?dT <ooi=1,--,p.

Proof. We use reduction of absurdity. If there exists an 4, such that, fooo (OL(w(7)))2dr diverges, by equivalence of integral

convergence, then ~
/ > (OL(w(t)))?
0 e+ [{(OL(w(r)))2dr

dt = co.

Since [ (0L (w(r)))?dT = oo, when ¢ is large enough,

+ / (5£(w(f)))§d7>\/ / (BL(w(r)))2dr.

Therefore,
/ (O}
\/€+f0 L (w(r)))2dr
By integrating 4
L(w(0)) — L(w(t) = _/O dﬁ(;t;(r))dT
_ toy_ w(r dw(T) _
- [ (ot ) a

:/ (OL(w(7)), k(1) @ IL(w(7)))dT

/ CO
\/E—i—fo OL(w(T)))2dr

which leads to a contradictory, since £(w(0)) — L(w(t)) is upper bounded by £(w(0)).
The proof is completed. O

Now we are ready to prove Theorem 4.

Theorem 9 (Theorem 4, restated). Define hoo = lim;_, hA(t). Then h, has no zero elements. Let
vA(t) = h? o w(t),
BA(t) = h o (),
[AW) = L(hE o).
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We have
dv(t)
dt

= —B(t) © 9L (v (1)), (10)
while lim;_, o, ,BA(t) =1, and ‘“%’?A(t) is Lebesgue integrable.

Proof. Since

Vel + Jo (0L (w(r))3dr
by Lemma 12, h has no zero elements.

We then prove eq. (10) by direct calculation.

dvA(t)
dt

_ dw(t)
— pol2 o 22N

o O g
= —h 2 o hA(t) © dL(w(t))
=-—h?onrAt) o h? © h? © 0,L4 (R ? 0 w(t))
—B(1) © Bp—1/2 0y £ (AP © w(t))

—B(t) © By L (v(1)),

which completes the proof of eq. ( 10).

limy_, 00 B4 (t) = 1 can be derived directly by convergence of h*(¢), while since

dlogB84(t)  dlogh™(t) ®
= < ()7
dt dt =

where inequality (x) is due to hAis non-increasing.

r

The proof is completed. O

Therefore,

dlog B%(t)

oo A
i dt = —/ leg7ﬁ(t>dt = log 84(0) < .
0

dt

B.1.2. PROOF OF THEOREM 5

We first prove Theorem 5 for RMSProp, and then extend the proof for Adam (w/m) and other Adam-like optimizers. The
R
proof strategy is similar with AdaGrad: we first prove convergence of hR(t) and integrability dlogdiﬁt(t); then we show

do®

vl — _BR(t) © LR (vR (1)) is equivalent to RMSProp flow, and satisfies adaptive gradient flow.

However, for RMSProp flow, the convergence of h' requires more effort. We start from the following lemma, which bounds
At _r/B )

Fi(t) 2 [/(1 = b= (dL(w(r)))2d7 (i € [p)).

Lemma 13. For RMSProp flow defined as eq. (4) with h = % F;(t) is bounded (i = 1,2, - - | p), that is,

mt_)OOFZ(t) < 0.

Proof. When b =1, F;(t) = 0 for all ¢ and 4, which trivially yields the claim. When b # 1, we use reduction of absurdity.

If there exists an 4, such that, lim;_, o, F};(t) = oo, then t;, 2 inf{t : F;(t) > k} < oo holds. Furthermore, since L is locally
Lipschitz with respect to w, g;(t) is locally bounded for any ¢, which leads to the absolute continuity of F;. Therefore, since
F;(0) = 0, ¢, monotonously increases.
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Therefore, we have that

/twrl Mdt > fest Wdt
ty \/HT(t) h 123 m

w(t)));dt

?

1 tot1r

S ac
Verk+1 /tk oA

b)e~ (1=t =0 (5L (aw (1)) 2dt

3

1 tht1
ST
13 + k + 1 tr

1-b
= Ve it = em 1D By (1)

1-b
>
T WVe+k+1

1-b
3
T Ve+k+1

(k+1-— 6*(1*b)(tl~:+1*t1«)k)

Adding all £ > 1, we then have

)

> (OLw(®)F

which leads to a contradictory.

The proof is completed. O

The next lemma shows that [ (9L (w(t)))?d¢ converges, which indicates that lim;_,o, F;(t) = 0.
Lemma 14. For RMSProp flow defined as eq. (4) with h = h' fooo (OL(w(t)))2dt converges, which indicates that
limy oo Fi(t) =0(i = 1,2, ,p). Consequently, lim;_,~, F;(t) = 0 and lim;_, hR(t) = #lp.

Proof. Similar to Lemma 13, when b = 1, the claim trivially holds. When b # 1, by Lemma 13, there exist M; > 0
(i=1,2,---,p), such that, F;(t) < M; for any ¢t > 0. Therefore,

Z/ 6+F ld Z/ aﬁ dt’

which proves [ (0L(w(t)))?dt < occ.
Therefore, for any positive real ¢ > 0 and a fixed index ¢ € [p], there exists a time T', such that,

/oo(éﬁ(w(t)))fdt <.

T

Thus, for any ¢ > T,

oo

Fi(t) = e~ =T0=0 B () +/ (DL(w(t)2dt < e~ DAV B (T) 4 ¢,

T

which leads to o
lim; oo Fi(t) < e.

Since € and ¢ can be picked arbitrarily, the proof is completed. O
Similar to the proof of Lemma 9, we can rewrite the RMSProp flow as

dvf(t)
dt

= —B(t) © AL (v"(1)),
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where

dloga (1)

and lim;_, o ,BR(t) = 1,. We only need to prove is Lebesgue integrable to complete the proof of Theorem 5.

Proof of Theorem 5 for RMSProp. For any fixed: =1,2,--- | p, by Lemma 14,

dt dt

© 4] R dlog /<L 2210}
/ dlogB @dt:_/ BV = g—o.
0 0

Therefore,

/oo dlog\/@ /°° dlog B2 (1) > (dlog B"(t)
0 dt 0 4 0 _

dt dt

dlog \/ 5D . dlog 1/ ZEFLD)
we only need to prove the convergence of f0°° (% dt, is equivalent to convergence of |, Om(ogdipdt.

dlog \/ HE®) . dlog /O
Forany k € ZT, denote By, = (k,k+ 1) N {t: % > 0}. Since OgTE is measurable, we have that By,
e+ F;i(t)

is a measurable set. Denote M}, as an upper bound for dlong on [k, k + 1) (which is guaranteed since L is locally

Lipschitz). Since By, is a measurable set, there exists an open set By, C (k, k + 1), such that m(By,/By,) <
is Lebesgue measure on R.

< k2M , where m

Therefore, we have

dlog |/ =HE8) dlog |/ e
/ e B I e e K
te(k,k+1) tEBy,

dt dt
+
dlog /=it
< 2V At My ———
/teék dt R,
e+F;(t)

- e I, [ VO
/tGBk dt k2
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Furthermore, let B), = U352 (k,j, ty, ;)- Then we have

dlog +/ 7’3“?(0
/ T8V E ) g
tEBk

dt
> rth; dlog 7[5“?(”
:Z/ R A —
j:1 tk,j dt
e E+Fi t/ Fi tr s
=> | log U e+ Filtrs)
= ¢

1 ilog e+ e Wyt =D By 0y fjk%;(l —b)e” W~ (AL (w(t)))2dt
2 €+ Fi(tk,)
th (. ) (1-b) /5
B ) o e L A GO
-2 = e+ Fl‘(tk’j)
L& S (1= e ths =00 (AL (1)) 2d
<7 »J
-2 Z e+ Fi(tr,;)

The proof is completed. O

In the rest of the section, we extend the proof of Theorem 5 from RMSProp to Adam.

Conditioner for Adam is the same as RMSProp, except that Adam will divide a bias-corrected term 1 — b? for conditioner
each step, that is, ~
dw(t) oL(w(t))

de — (=B (t=7) (1)L (w(T))2 7..
\/€1d+ Jie 0-hDLwr)a

Generally, updates of RMSProp and Adam (w/m) can be both expressed as

dw(t) OL(w(t))
dt te—l— t—T1 —b)oL(w(T .,_7
\/€1d+ g e (;(iatl;)aﬁ( (m))2d
where for RMSProp ¢ = 0, and for Adam ¢ = b. Forany 0 < a < 1, 0 < b < 1, define F;(t) 2
fg(l — b)b "7 (OL(w(t)))?dr as in RMSProp case. We will show Lemmas 13 and 14.
Lemma 15. For adaptive gradient flow defined as eq. (4) with hil(t) = \/€1d + J 6_(1_b)(t_r()l(i;b))éﬁ(w(T))ZdT with

0<a<1land0<b<1, Fi(t)is bounded (i = 1,2,--- ,p), that is,

mt%ooFl(ﬂ < 0.
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Proof. The proof follows the same routine as proof of Lemma 13, except in this case we have

et (AL(w(1)))? et (OL(w (1))
W VRO Sy VerGrnia—a
For k£ > 1, we further have
e @L®) [ @) 1
w Vet ®+D/A-—an) i VerGrD/A-an) et Rt D/A-an)

sum of which diverges.

The proof is completed. O
Lemma 16. For adaptive gradient flow, fo g:(t)?dt converges (i = 1,2, -+ ,p). Consequently, lim;_, . F;(t) = 0 and
limy_yoo h(t) = \kl

Proof. The proof is the same as proof of Lemma 14, except that

[ (OL(w(1)))? [ (0L(w(t)?
0)2;/1 \/5+Fi(t)/(1_at)dt2iz:/1 Mi/(1_a1)+sdt'

=1

The proof is completed. O

~ 0 dlog B(t)
Proof of Theorem 5 for Adam flow. We only need to prove Lebesgue integrability of Og’T.

The proof is the same as proof of Theorem 5 for RMSProp flow, except that

Fy(t},)/(1 = ') = Fy(t,3)/(1 = a')
;c )/(1 - at;“’j) - Fi(tk,j)/(l - at;c,j)

The proof is completed. O

It is worth noting that the current framework of adaptive gradient flow can not cover Adam with a decaying ¢ or without €.
It will be interesting to see if the framework can be modified to analyze these optimizers, and we leave this as a future work.

B.2. Proof of Theorem 2
B.2.1. PROOF OF SURROGATE MARGIN LEMMAS: LEMMA 1, LEMMA 2, AND LEMMA 3

In the beginning, we first prove a basic lemma for normalized margin, i.e., the normalized margin + and normalized gradients
are upper bounded:

Lemma 17. Forany v € RP/{0}, the normalized margin vy = dr‘ml(L) and normalized gradients || ol |L T || (i=12,--,p)
are upper bounded universally.

Proof. By homogeneity of ¢; (¢ = 1,2, -, p), only parameters with unit norm needed to be considered. That is,
{y(v) : v e R?/{0}
={7(®) : o] =1}.
Since ¢; is continuous and {v : ||v|| = 1} is a compact set, normalized margin is upper bounded.
5(11('0

Normalized gradients || 17iz=r || are also bounded following similar routine since g; is locally Lipschitz. O
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We then formally define surrogate norm p(t) and surrogate margin 4 as follows:

Definition 9 (Surrogate norm and surrogate margin). Let v(t) obey an adaptive gradient flow F which satisfies Assumption
1, with loss L and component learning rate 3(t). The surrogate margin p(t) along F is defined as

1
p(t) = 8(t)"7 ©v(t)]],

and surrogate margin (t) is defined as

fﬁl(IOg /j(vl(t)))

op

We can now restate Lemma 1 as follows:

Lemma 18 (Lemma 1 restated). Let v(t) obey an adaptive gradient flow F which satisfies Assumption 1, with loss L and

component learning rate (3(t). Then we have lim;_, o, HvEt%H = 1. Furthermore, if further lim;_, o, L(t) = 00, we have
y(@) _ 1

hII’lt*}OO W =

Proof. By the definition of approximate norm p(t) = ||3(t)~% © v(t)|| and lim;_, B(t) = 1,, we have that

. a1 . t — t — -1
1= hﬁt—)oo 1’1’174_1nﬁi 2 (t) < himt—ﬂx) Sit))| < hmt‘;oo ||5((t;|| < hmt*}w miaxﬂi 2 (t) = 1,

which leads to lim;_, o % =1.
By the definition of £(v), we have

e amin®) < F(y Ze F@@) < Ne=f(Gmin @),

=1

Rearranging the above equation, we have

qmin(v) 2 g (IOg E(l’l))> Z g(f(émm(v)) - 1Og N)
=9(f (Gmin(v))) —log Ng'(§) = Guin(v) — log Ng'(€),
where £ € (f(Gmin(v)) —10g N, f(Gmin(v))).

Therefore, the surrogate margin can be bounded as

fua(0(0) — 0B N/ (€) [0 _ (1) ~log N/ (0
@ e rop
<30 < e (12017 (1)

By the assumption that lim,_,, £ = 0, there exists a large enough time Z, such that, any time ¢ > £, g(&) > 0. The left side
of the above equation 11 can be further rearranged as

Guin(0(1)) — log Ng'(6) [o(0)][F log N/(&)\ [Jo()]*
oL mw>(““ HMHP) FOE
log Ng > o)

@@w|u FOE
log Ng t |

(V(t) p(t)*

( long(t > Jo(t)||"

9(§) f'(9(€) /) pt)F

]

v

y(t) —
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By the assumption that lim;_, f(t) = 0, lim, , ¢ > lim, , logﬁ — log N

00, which further indicates

lim; 00 g(€) f/(9(§)) = oo by the third item of Proposition 1. The proof is completed by taking ¢ to infinity of eq.
(11).

O

By Lemmas 17 and 18, we have that if lim;_, o, £(t) — 0, (%) is upper bounded. We then lower bound %(t) by proving
Lemma 2. As a warm-up, we first calculate the derivative of p2.

Lemma 19. The derivative of p? is as follows:

Ldp(t)” _ 3y 487
5 —Lu(t)+<v(t>,ﬂ (o <t>®v<t>>,

el log =——) =~
where v(t) is defined as Zf\; e~ F@®) £ (g (v(t))) Gi(v(t)). Furthermore, we have that v(t) > M/j(v(t)).
I\ Ty

Proof. By taking derivative directly, we have that

Ldp(t)? _1 dB(t) "2 © v(t)
1 dul <ﬁ <t>@v<t>,dt>

N _1
D LY O Gy (w(t) (o 1) + <ﬁ<t>-% © (1), v(t) o d"““> ,
i=1

where eq. (*) comes from Homogeneity Assumption 1. L.

Furthermore, since ¢;(v(t)) > ¢min(v(t)) > g(log = L for all ¢ € [N] and f’(x)x keeps increasing on (0, c0) by
L(v(t))
Proposition 1,

Therefore,
N
D e TN (v (1)) (v (1))
i=1

g<10g m) - —f@(o(t) _ g<10g m) A

1
9" \l°8 Z@m)

The proof is completed.

2
With the estimation of ddit above, we come to the proof of Lemma 2.
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Proof of Lemma 2. We first construct time ¢; as follows: by properties of 3(¢) in Definition 1, there exists some large
enough time ¢; > tg, such that for any ¢ > ¢,

£ () cwfpy

~Ju dt N
_1
v oo (dlog (872(1) NS
Z/t — 2 —ming o7, 0,
=1 1
and
1 1 3
Z < BT[] < =.
<8O <

Taking logarithmic derivative to 7(v(t)), we have

d
2
O ogy(t)

4 (log £<v1<t>>> 1 (dﬁ(v(t))> TIA0
) p(t)?

L<v<t>,a*%<t)@dﬁ z <t>@v(t>>

(1 gc(v(f)) ) dﬁ(v(t)) 2 w(t) _
Let A= p (r—— (t)) L(v(t)) ( ) L FiGH and B = FOE . We then have
A> L d gz V(t)2
v(t) p(t)
L (_dL  LP(t)?
—v(t) p(t)?
1 dv(t do(t) L dw(t) T 2
- << .0 0 50 ) - (80t o B a0 ol
(%)
>0

3

where inequality () comes from Cauchy-Schwarz inequality.

As for B, we have that

L {olt). 674 0 2100 00

B=-— .

p
o2 () 2

- _L 111 -
i=1 z(t)ﬁz ()

—LZ (dlogﬁ 3 t)) |
+
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Combining the estimation of A and B, we then have

4 > (dlog B; % (t)
dtlogy(t)Z/H—BZ—LZ( +, (12)

and integrating both sides leads to
- _ 1
log7(t) —log7(t1) 2 —3-
The proof is completed.

By the proof of Lemma 2, we can then prove convergence of surrogate margin 7.

_1
Proof of Lemma 3. By eq. (12), log#(t) + f:l LY, <dlog§;2(r)> dr is non-decreasing. Furthermore, since
+

g(log m) < Gmin(v(t)), we have that

(jmin<v(t)) _ mt—nx; qnlin(”(t))

limy—00¥(t) < limy—soe
oo (0) < e 52 oI

which by Lemma 17, the last term is bounded.

_1
Therefore, log ¥(t) + j;tl L Zle (W) dr is upper bounded, which further indicates that it converges due to its
Jr

_1
monotony. The proof is completed by the convergence of j;tl Ly’ (‘“’?3[;;2(7)) dr.
+

B.2.2. CONVERGENCE OF £ AND p: PROOF OF LEMMA 4

Here we restate the complete Lemma 4.
Lemma 20. Let v obey an adaptive gradient flow which satisfies Assumption 1. Let t1 be constructed as Lemma 2. Then,
for any t > t1, define
1 / 2
Zw ¢ (logz)
2-2/L
7oy 9 (log )

Then, for any t > t1, the following inequality holds:

G(t) =

i g (log z)*

2/L
)2—2/L :

Gt) - G(ty) > cdx > (t—t)e TL2F (1)
=5 g (logx

Consequently, lim;_, o £ = 0 and lim;_, o, p = 0.

Proof.
L) s, . do®) | L dv(t) T ()
Furthermore, we have that
2 2/L
1 -
12 V(t)Q >72. g (log Z('”@))) [:('U(t)) ’Y(t)
t)2 — 1 1
o) g (k’g E(v(t») g (log é(v(t)))
2 2/L
g (log L ~ —1/25%
> I2. ( L(vl(t))) E(’U(t)) € V(fl)
!
g (1°g E(v(t))) g (log é(v(t)))
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By simple calculation, we have that

2
/ 1
g (10g ﬁ(v(t))) i 1 1 2/L
22271 dt £(w(1)) v
1
g (log é(v(t)))

Taking integration to both sides, we have

o g (log z)*

2/L
2—2/L :
zip 9 (logx)

dx > (t—t)e” TL% (1)

2L = 50, we have that lim;_, o ==~ = o0.

S 1o
Since limy o0 (t — t1)e™ T L2 (t1) Eb)

The proof is completed. U

B.2.3. VERIFICATION OF KKT CONDITION

In Lemma 5, we omit the construction of coefficients A; to highlight the key factors of coefficients (O(1 —

(6(t), —OL(t))), O (log 7 (Ul( 5 ) ). We restate Lemma 5 and provide the detailed construction as follows:

Lemma 21 (Lemma 5 restated). Let v obey adaptive gradient flow F with empirical loss L satisfying Assumption 1.
Let time t; be constructed as Lemma 2. Then, define coefficients in Definition 2 as \i(t) = Gmin(v(t))' =2/ L ||lv(t)]] -
e F@@O) ¢ (g (v(t))) /0L (t))||2. Then, for any time t > t1, ®(t) = Gmin(v(t))"Tv(t) is an (e(t), 5(t)) KKT point
of L? max-margin problem (P) defined in Theorem 2 , where £(t), §(t) are defined as follows:

e(t) = 8eT Wu — cos(6(1)))

—14+1 1 5
5(t) = M‘Klog2 (2L+lez Bl/v(tl)>’?(t1)72/L¥

)

1
98 Z(o()

where cos(0(t)) is defined as the cosine of angle between v(t) and —9L(v(t)), i.e.,

cos(0(1)) = <f:<t>, —aﬁv\a>>> |

Proof. We verify the definition of approximate KKT point directly.
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2

_ i (0(8) "V E o) e OOV (Gi (v (1)) 9G: (v(t)
10L(w(8))]]2

2
Ginin(v(1)) " [[0(8) |0 (1)

2

As for §, we have that

N
> n (@ @) - 1)
S ) [o(t)] - e EEO) 7 Gi(o(n) (200 1)
10Z((1)]2
it Gmin (D)2 Elo(0)] - =IO (G0 (1)) (@50 (1) = Gnin(v(1)))
10Z(w(e)]2

N
2K~ — Gmin (U —f(qi(v(t ~
<D T Gmin(0(8) T o (1) [P A PO @EWD 1 (G, (0(1)))

)

i
08 Zeo@)
where inequality (x) is because

~ Lu(t)
o)l
1
L g (10g E(’”(ﬂ)) E(’U(t)) > L 1 1
o) 4 1 B
g (log L(v(t)))
L 1

- 1
> e F(@min(v(#))) log — )
[v(t)] 2K L(v(t))

102 @) = (DL (u(1)), 5(1))

>

Bounding ||v|| using p and applying the definition of surrogate margin ¥, we further have
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<> 8K Gl F (w(t)) plt)2ef @min@ON=1@ @O 7 (G, (v(t))) (G (V(E)) — Gnin(v(£)) %
log 7@y

T
<3 B0y 2E - e GO =10 11 (Gy(0(8))) (3 (6(8)) — Gonin (0(2))) ——

1
1 log 7@

, . 1
’y(tl)_Q/L - ef (@min(v() = f (@i (v (1)) ¢/ (Gi(v(1)) (G (v () = Gmin(v(2))) —
= 18 Zrom)

Since £ (Gmin (v(£) (v(1)) = £(@(0())) = (Gnin (0(8)) = GO F(€(8)) E(b) € [Gmin(0(8)), G (0(t))] s guaranteed

by Mean Value Theorem), we then have

IN

=
o0
)

| o
=

=1
N 1
2TK _, . _
§§ ' 7 F(ty) 72 ef @min (0D =F@ @) 7 (g, (v(t)))

1
log 7@

N 2T K
_ Z e A(ty) "L - lmn () =G ONS D) 7 (4. (v(t)))

1

1
log 7@

N
2 7K I~ ~ ’ ~
<37 2R 5 (1)L - B (vO) TGOS (€0 feTom (o) /O 7 (g, (1)

1
log 7@

N 2et K
< Z A(ty) "L - limin () =G (NS (1) log, (28231/‘7 tl))f (&)

1
log 2@
()2~ 1+T KN log, (25F1e3 By /3(1)) - _ 1
< 7 K gg( 2 B1/4( 1)),)/(]51) 2/L10 - ,
& Zw®)

where eq. (k) is because

[log, (:(v(#))/&:(t))] < log (Gi(v ( ))/dmin( () +1
< logy (@ (v() [l @I/ v(®)]|* Gmin (v(2))) +1
= 1 2o (2L+1Blp /Qm1n> < 10g2 (2L+1B1/’7( ))
(2L+162B1/’Y tl))

VANRRVANR VAN

| /\

which further leads to

P (@) < K= A BAm) pre iy
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and eq. (*x) is because e %z < e~ L.

The proof is completed. O

By Lemma 4, we have proved that lim;_,, £(t) = 0, which leads to lim;_,, §(¢) = 0. As stated in the main text, we only
need to bound £(t), or equivalently (1 — cos(6(t))).

Before moving forward, we introduce an equivalent proposition of that (1 — cos(8)) goes to zero.

Lemma 22. [f there exists a time sequence {t;}32,, such that, lim; o t; = 0o and lim;_, o, <ﬂ% Ow, ,8% ® 8Z> = -1,

then

lim cos(0(t;)) = 1.

11— 00

Proof
— cos(0(t))
— <5(t)—/§5v(t) + (i;(t) — ﬁ(tF%\G) v(t)) ﬁ(t)%/c)\éi(t) + (% - ﬁ(t)é/G\éﬁ(t)»
_ <ﬂ(t)_/5-gv(t), 5(t)é/<a\5£(t)> + <B(t)€gv(t)7 (5/55 - ﬂ(t)i‘/G\éi(t))
(o0 -7 F o un) p0F 0 0L0)
n < (w) - ﬂ(t)TBw)) , (a/@ - ﬁ(t)é/&?ﬁ(t)»
Furthermore,
Jim [9206) - po)T @ 00| =2~ 2 im (920051 @ 9(0)) =0

Following the same routine, we have lim;_, o,

The proof is completed. O

Let cos(0(t)) = — <ﬁ(t)/§gv(t),ﬁ(t)é/®\3£~(t)> = <ﬁ(t)/5gv(t),ﬁ(t)/58dzgt)>. Then we only need to

bound 1 — cos(6(t)).

In Section 5.3, we briefly state the methodology of proving the convergence of £(¢). We will make it more clear here: In the
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proof Lemma 2, we show that sum of the derivative of g(log <~) and Pt t) —— with 3(t) fixed can be bounded as

L(t)

5 (m(s (1)) - e 52

— e (cos(B(t))2 —1)
_L%(t) CcOos z 2
=L <51, log p(t), ‘i’t’> (cos(8(t)) 2 —1). (13)

Eq. (13) indicates that, intuitively, (cos(0(t))~2 — 1) can be bounded by the division of change of 7 to change of parameter
part v in p. For this purpose, we define p in Section 5.3 to describe the accumulated change of v in p. The following lemma
describe the basic property of p and its relationship with p.

Lemma 23. (1). The derivative of p* is as follows:

1dp(t)?

s = (OL((®),v(1)) = Lu(t);

(2). p(t) satisfies that, for any t* > t* > t,,
_1
p(tz) > e 2p(t1);

1 1
e2 (t) e2
(3). For any t > t1, 1—§§g(t) <A\ 1+
dp(t)2
Proof. (1). can be directly verified similar to Lemma 19. As for (2)., since dloi L ®) — % pp(dtf)z , we have that

dlogp(ty  LZim e T @ w(0) av (1) + CUREECRCEE. =y

a p(t)?

i;lﬁi(t>-%<t>“ﬁ“’vi<t>2
P B N (twilt)?

Lﬁ%(f)@ﬁ;%tm(t)?
v lﬁ-lu (1)

fl‘“‘)g‘* % L(t)wi(t)>2
P B (twi(t)?

Z(cllogﬂ ))_

i=1
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The proof for (2). is completed by integration.

As for (3)., by expanding (v(t), B2 t)o dﬁ%f(t) ©® v(t)), we have that

where 7 in eq. () is in [¢1, t] and First Mean Value Theorem guarantees its existence

The second inequality follows by lower bound f:l v(T), B2 (r)® dﬁ : (T) ©® v(7))dr similarly.
The proof is completed.

With Lemma 23, we integrate the analysis of the change of 7 into the following Lemma.
Lemma 24. For any time tg > to > tq,

2

[3 (cos@(r) 2 1) dg o ()7 < 14 g 1009

L Portr &S [ dlog ﬁ-_é(t)>
e —=t 7 dt.
(1_6;).21/@ Z( i),

Proof. Recall that

and

G1osi0 > (S5m0 0 5) - (a7 0 5 s T o))
LZ(cllogﬂ %<>> .
.

=1
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We then have

2 | T2w(t)? dt dt dt
- (st o 5T o) )

The proof is completed. O

Applying the First Mean Value Theorem together with Lemmas 22 and 24, one can easily obtain the first inequality in

Lemma 6. To make the following proof simpler, we restate Lemma 6 as the following corollary, while using cos(6(t))
instead of cos(0(t)).

Corollary 1 (First inequality in Lemma 6, restated). For any time t3 > to > ty, there exists a time & € (ta, t3), such that,

o —2_ og p —log p 1 o Y
(008(9(5)) 1) (log p(t2) — log p(t1)) SL <1 - e%> 1 8 = (0)
L & (dlogs; t(t
+ ; Z/ Z( “ ()> -
e ) = = +

We then prove the second inequality in Lemma 6 to complete the proof of Lemma 6.

Proof of Lemma 6. By direct calculation, we have that

| = ot | -e

(7)Y H = ||v(1t)|| ‘

S

o B CORCE

dt
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Furthermore,
o055 - H
<y e—f(qf(v(t)))f Ha% 1)
1€[N]
(@ (v(1))) - 1 -
l;v]e D f (v ()))qz(v(t))qi(v(t))B1||v(t)||L '
1= F@ W) 1 (G - _ -
siezujv]# T EOD £ (@ 00) w0z Bie®) !
< 30 2P e I EEOD f (G (o(1) @(e(0) ——— Bip(t)
i€[N] (logm>
_or1v(t) p(t)" B :2L—1ﬂ~1 B
#(0) g (1og 2L ) ' ORIGRS
Therefore,
df;(t)H pov(t) 1 o1 v(t) 1 3287t ) 1
| < 2 s <32 S < TRV O 0N
_ 32" Bidlogp(t) 1 _ 3-2%7" e2 By dlogp(t) 1
( o %) L dt ’Y(t) - (1 _ %) L dt ’Y(tl)
The proof is completed. O

Applying Lemma 5 and Lemma 6, we can then prove Theorem 2.
Proof of Theorem 2. Let © be any limit point of series {v(t)}$2,. We construct a series of approximate KKT point which
converges to v by induction.

Let t' = ;. Now suppose t*~! has been constructed. By Lemma 3 and that @ is a limit point, there exists s;, > t*~! such
that, for any ¢ > sy,

) i 1 9 3(t) 1 P /OO dlogﬂi(t)_% 1
||’U (sk) 'U||2 S Llog N(Sk) TR and, L E ~ dt

Let s, > sy, satisfy log / (s},) = log p (sx) 4+ # (which is guaranteed as lim;_, o, p = oo and Lemma 23). Therefore, by
Corollary 1, there exists t* € (Sk, S} ), such that
~ 1
cos(@ (t*) 2 —1< ————. (14)
k2(1— <)

M‘ [N

Furthermore,

1

32L1’ 11
(- LAtk

l\J

— 0.

v (tk) - {’H2

(tk) — 0 (sg ||2 + |0 (sk) — 9|y <

+

1
k

1
Therefore, lim;_, o, ¥(t*) = ©. Furthermore, by eq. (14) and Lemma 21, we have that v(¢*) /¢, (v(t¥)) is an (;, §;) KKT
point with lim;_, ., €; = lim;_, o, d; = 0. Since

O(t*) /G (0(1)) = (%) /1 (1),
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and v(t*) converges to a positive number, we further have
: k ~% k\Y _ = . Ky L
Jm v(t%) /4, (v(tY)) = v/ lim ~(t5)T,

is a KKT point of (P), and along the same direction of .

The proof is completed. O

B.3. Convergent Direction of AdaGrad, RMSProp and Adam (w/m): proof of Theorems 6 and 7
First of all, we prove Theorem 6 by substitute v in Theorem 2 with ho, © w.

-

Proof of Theorem 6. Let w be any limit point of series {w(t)}$2,. Since v(t) = hoo?> ® w(t), hoo®> ® W is a limit point
/

—_—

1/L
1 1 _1 -
of {©(t)}. By Theorem 2, hoo®> © W/ Gmin (hoo2 © w) = hoo? © W/ qmin(@)"/* is a KKT point of (P). Therefore,

there exist non-negative reals {\; }2¥,, such that

Rt © W guin(w)"/* = quz < O W guuin(@)),

N
S Mil@i(h? © @/ gumin(@)/") = 1) = 0.

i=1

Applying the relationship between ¢; and ¢;, we then have

h Gw/(Imm (w) VL= ZA aqz (W /Gmin (W )1/L)v
=1
N

Z Ai(qi(ﬂ}/qmim(ﬂj)1/L) — 1) =0.

i=1
The proof is completed. O
Theorem 7 can be obtained in the same way.

Proof of Theorem 7. The claim holds since v is just w with a positive scaling factor, v* and w share the same direction.

The proof is completed.
O

B.4. Convergence Rate of Empirical Loss and Parameter Norm

In the end of this section, we will give a tight bound for the convergence rate of empirical loss and parameter norm, which is
derived by estimating G(x) in Lemma 20. These results will further be used in Appendix C.

Theorem 10. Let v obey an adaptive gradient flow F with empirical loss L satisfying Assumption 1. Let G (z) be defined

as Lemma 20, i.e.,
T g (log2)?
) 2-2/L
Zun 9 (log 2)

Then G(z) = O(z(log )% 2), and G~ (z) = O(x(log x)2~ ). Consequently,

. 1 1
Ct = @ = | d t :@ 1 .
0 (ﬂogt2L) and ol (logtL)

G(z) = -dz.
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Proof. For any large enough z,

" g (logz)’
G(z) = / L i
& g (logz)® *

L(ty)
T 2/L
Qo[ L)
1
L(t1) &2
r 1
iy (027 7

=0 (x(log x)%*z

N—

where eq. (*) is due to Proposition 1.

Since G(x) is monotonously increasing, and lim, o, G(z) = oo, we have z = © (G_l(x)(log G_l(x))%_2>, which
further leads to G~ ! (z) = O(z(log )2~ 1 ).

; 1 _ -1 1 2—2 ; Al — 1
Since O G~ (Q(t)), we have 0 Q(t(logt)*~ 1), which further leads to L(t) = O (t(logt)2§ )

On the other hand,

1 A 2 5 ? g : o
L) _ H'Bi(t) ®a£(t)H2 <9 Ha[ﬁ(t)”2 =0 <£('v(t))g <log /j(t)> ) ;

which leads to = = G~1(O(t)), and L(t) = Q <1> Therefore, £(t) = © (1)

L(t) t(log t)Z*% t(logt)z’%

By Lemma 17,

v(t)|F =0 (log %) which leads to ||v(t)]| = © < 1 >

T
logtT

The proof is completed. O

The convergent behavior of 9L (v(t)) can be derived immediately by the above Theorem.

Corollary 2. Let v obey an adaptive gradient flow F with empirical loss L satisfying Assumption 1. Then, Héf(v(t)) I =
o———).
(t(log t)lf% >

Proof. Since

Q (LO)v®)F) = (@LwM),5(1) < [9£@M)] = 0 (L) lv@]F),

the proof is completed.

C. Proof of Theorem 3

In this section, we will prove that direction of parameters converges, that is, lim;_, % exists. Concretely, define the

c(t)=/ot

We will upper bound () in the rest of this section.

length swept by % as ¢(t),i.e.,
do(r)
dr

’ dr.
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To begin with, we define another surrogate margin 7 as

g(log 75)

A(w) = — o 4 )
ik
The following Lemma then lower bound the derivative of 7.
Lemma 25. For large enough t, we have
() 5 7
2 > L (10 wtonl o o] + o3 wionl o wton])

and

aw B0 eILww).
a el

Proof. To begin with, we calculate the rate of 3 converging to 1,. For AdaGrad, given a fixed index ¢ € [N], we have that,

0 < Bi(t) = 1 =(hoo); ' (hi(t) = (hoo)i) = O(Ri(t) — (hoo):)

- (/ oewerfir) =0 ([ )
=0 ((logt)—L> . (15)

Similarly, for RMSProp, given a fixed index ¢ € [N],

0<i1- Ve —o((-v) [ 0 @zmyar )
Vet (1=) [ e =000 AL (r))2dr 0

-0 ((1 —b) /Otﬁe‘“‘““‘”(@ﬁ(ﬂ)fdr) +0 ((1 —b) /ttﬂe_(l_b)(t_T)(ﬁﬁ(T))de>
O((lb) —(1- b)xf/ (OL(1))2d )+O((1b)(t_\/f/i)2>

_O(t12>: (1ogt )

We then directly calculate the derivative of 7:

=(—q <log 1~> = oL —L i <log %) o(t) — e LoL, d'u(t)>

Llp@ = o@f=+!
e oot
Llw@[F lo@]F*+

<
(#(2)

:<g/ (10g1> oL (log )v<t),az>+<efaz,g<t>@az>
(7 (1)

Zo@l " T

(? Lg log )
Llv ()II fo@I=1"
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The final term can be further bounded as follows:

(1Y L g(logt) 5
<g (log E) Lllv(t)||F tt Jo(OIE+T " t=pue 6£>

ap g logl~
g’(logz) oL ( ‘>@

Llv@ll= @

<0 (os) © (jotay ) 1921
_ (z(v(t))) 0 (Hv(lt)H> 10£]|

=0 (e 1921

10£]

<1 = B®)l

On the other hand,

<e—£<v<t>>55(v(t)),5(t)@ac(v(t))> O([0L(w())[?).

Therefore, there exists a large enough 7', such that, any t > T,

e LOL(v L (v o ! oL g(log%)f) — L (v
< IL(v(t)), B(t) © OL( (t))>+< (1 g >£|| O L & (1= B®) © 9L ()

>3 (e ECOOE (1), DL (0 (1)),

which further leads to

/ 1\ 57 1
dy(w®) o1/ _fwunysps 57 g ( Z) OL(v(®) g <log 5(v(t))> . 8
> — (e P9 L(v(t)), 0L(v(t)) ) + = +L 0,0L(v(t)) ).
> 2 (v(0).0L0(0)) + ( —e oS i o OLw(®)
We then calculate axial component and radial component of e‘i(”)éﬁ(v), g (log %) Eiﬁ;ﬁz)ﬂ +L (”v”LJT) ?, and
dL(v) respectively as follows:
(e_i(v)aﬁ(v)>\\ = (e EMIL(v), )o,
(e—ﬁ(%f:(v))L — e LG (v) — (L (v), D)D),
57 log -+ log ~—~ 57 -
(e 1) G220 o(oe i) N oleezty) (e 1) 22011,
g |log—= | = + L v =L———v+4+¢g |log= | =———,
( < L) Lw)|v|* [[of| £+ N [[v][ 2+ L) Lv)|v|*"

, 1\ 0L(v) 9(1°g ~1,,)A - 1\ 0L(v) — (DL(v), d)®
(9 <1og£~> E(v)||v||L + L ||'u||L£J£1) v)Lg (logz) £~||U||L )
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Therefore,
3 (00 020 ())>+<g/ (o) 2 ()(E,EZHL ljgvﬁm) 0060 )>
2 { (e agew), + () (3E00) ),)
<( ! 12()2)'“%9%@ )@(t))\\+<g OOgl) Bt o+ $|1vi>ﬂ||(;+)1) Mt))!
(9£0), ( @), )

“3( o), [+ = razww), || (o2ew) )

(e*ﬂv(”)éi(v(t) )

allee

/ 1 5~(Ut)) g(lg"vt)A
o (o0 )zt * - omin ”“)) |z, |
L (v g (log z—— .
His (10%) Z(vf)(f)(nft?t)nw” $| <)L||(L(+i))”(t)) |(o2@wn) |
iR

vV
N =

e—i('u(t))f~ v " log = =
( L)+ (18 2) 2 oytuioe * - ToalE

— L)/ , 52 v g |log 7 .
2 ( R (logé) z<v<f>§u5f?§>w glv( >£||(L(+?>v(t))L‘ |(ocwn). |

where eq. (x) is because

1 IL(v(t)) N i (k’g E(vl(t))) ﬁ(t))
¢
W\

—_

(e L@ODL(v(t)), B(t)) = —e L (DL (v(L)), B(t)) < 0,
e~ L@®) 5 ¢

9 (18 7r07;) 1\ (GE().5(0)
L@ (logav(t))) ()]0 o
) g
1

- >0
~ E(v<t))llv(t)l\f>
(O (0(1)),5(1)) = ~(~OL(6(1), 8(1)) < 0

wan)) <"

1
= ——= Lv " 1o
Fo@)v@E ( (t)g (

— S\ =~ 57 log =1—
The proof is completed since 97(v) = —e *(IL(v) — ¢’ <log %) E((?Ul):ﬁ:)HL - Lg(‘lzgufﬂ)) 0.

The following lemma gives an equivalent proposition of that the curve length ( is finite.
Lemma 26. ( is finite if and only if
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Proof. By definition,

Furthermore, by eq. (15), ||1 — B(t)]|c = O(m),

I(1 = B(t)) © DL (v(1)) — (B(1), (1 - B(¢)) © OL (v(1))) 0 (t)]|
<2||(1 - B(1)) © 0L (v(1)) |

(2)

The proof is completed. O

Therefore,

We then prove

/oo H(iﬁ(i)(lf))Hdt <
o o] >

Theorem 11. There exists a,vo > 0 and a definable desingularizing function ® on [0, a), such that, for large enough t,

02| v - 300
@l = i

Proof. Since (t) > 0, and both ” ft()v\l(tL)) and e=£(*(*) are upper bounded, 7(t) converges to a limit non-decreasingly.

Define vy = hmtHOO A(t). If (t) = 7o for a finite time t°, then dit) = 0 for any ¢t > t°, which further leads to

[(DL(v)(t))L|| = 0, and the proof is then completed by letting ¥(z) = z. Therefore, we only consider the case where
~(t) < 7o for any finite time ¢. For any large enough ¢, we further divide the proof into two cases.
Case L |9, 5(v(0)| > [o(t)]| £ |, 3(0(1)].
Applying Lemma 9 to 79 — ¥(v)|jv||>1. there exists an a; > 0 and a definable desingularizing function W1, such that if
lv]| > 1, 5(v) > v — a1, and
113 = ol % (|2, )]l

then

T (yo = F() w1970 @) = 1.

Since lim; o0 (t) = 70, and lim;_, ||v(t)|| = oo, there exists a large enough time 77, such that, for every ¢t > T,
[o®)]| > 1, and 5(t) > 70 — ax.

Therefore, for any ¢ > T} which satisfies ||3, 5(v(t))| > [lo(t)]| T ||\ F(v ()],

1073w ()] = Hé\\ﬂv(t»

which further indicates

|aA@O)]| = 5 [83m)].
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Furthermore, by Lemma 25,

O o] o Leo)|
L(v(t))
ZEHU Gl ECION| H o] H
§ . Hal.c 'v(t))H
T4V (o —@)  [le@)l
Case IL ||0.5(v(t))|| < l|v(t) Ha\w t))]]-

Applying Lemma 10 to 9 — 7y(v) ||lw||>1, We have that there exists an az > 0 and a desingularizing function on [0, a2 ), such
thatif v > 1, and 5(v) > o — az, then

max {1 j.i} Wh(v0 — () [0 295 (v)]| = 1.

Similar to Case I., there exists a large enough time 7% and constants Cy, such that, for every t > T3, |[v(t)] > 1,
5(8) > 70 — a2, Cu[o(®) | < g (log 72 ). and £(w(t)) < [0(1)] 2"

Therefore,

fovs (e 2 )| = (s 2y) <;<t>>||€fy(g)||2Lg(l|of<g(;(t))>ZLCI"”“)”L_l’ "

Y

and

oW (e ()]

g (log f(vl(t))) / 1 (OL(v(t)), B(t)) L) A7 .
—L——————=r —g (log E(v(t))) —e (0L(v(t)),v(t))

o)+

() Lg (log 5rr)
= @)

Ly (log x-*77)
o)+

[o(®)]| 5+ 7

g(log E(vlm)) A , 1\ (OL(w(t),d(t)) . o)A A -
e Wt <10g E(v(t») 7 o(t) + e (OL(v(1)), 8(1))b(t)

+[0L(v(t)]
+BiL(v(t) o (t)] "

a7
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where inequality () is due to

b (bg ﬁ(,,,l(m) v (lOg /:@1@))) <8Z%)<(i)<3s’>;(t)>
=~ 1o (1o £<v1<t>>> ol (1os £<v1<t>>) EZ%)
~ 1 (10s ; (Ul(t))) v (1on (vl(t))) e (fj e (1)) f <<z<v<t>>>>
=t (1on g )+ (0 (8 2 ) )

where § = (¢;)~_, inequality (*) comes from Jensen Inequality and ¢ (log m) is concave with respect to q.

Combining eqgs. (16) and (17), we have

_ 1 LC oLNA -
s (o2 2037 | 2 5 Gy P OB @O as
On the other hand,
5 1 9 (log E<v1<t>>> 57 - A
big (bgw) H = I A w(1) - (DL (). 500
while
I6.5(w(0)]
e E O P (w(e)  GE(w(0) o000+ (108 7 ) S LI AOIRG
—L(v(t g/ (1 g ( ) a7 - -
- (e E(o(t) +~(())vL) |02 () - L), 2ot
1 1
= To® [ ( ) 4

Since - L
|03 (w@)]] < oI % ||\ F(w®)]],
combining eqs. (18) and (19), we have that
B1+ Lg (log Ne}f<0>

Hg\\g <log E(vl(t))) °
LCy

"B+ Lg (log Ne—lf(m

[o(t)]| 72

LC,

) (IOl PRI

] @) FF10.7(w(t))]]

2 (o0 g |

Since L (v(t)) is parallel to dg (log ), we also have

1
L(v(t))
LC

> oIk
H B+ Lg (1Og Ne}f(o))

[EAVCIO)

L ‘ai(v(t))H :
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Furthermore, 5
[07(v(@))|| = |07 (@) + [[o\F (@) < lo)l T [T (e (®))]]-

Thus, by Lemma 25,

d?Tft) %HB\W ) Ha\\ﬁ ))H
2B, + LgL(ilg —T—yy VI |97 (e 0. £
¢ 114119 (t))
:2(31+L9L(101g Neflfm)))HU(ﬁ)HZ)LJr 197 (@) H llv(t) H
1Oy HMw(t»H

2B + Ly (108 wLy)) max {1, 1] W0 — 3(0(0)) 0]

Concluding Case I. and Case II., for any ¢ > max{Ty,T>}, and U(z) =

2(Bl+Lg(log f(o)))max{l,L}
LCl

max{4¥(z), Uy ()}, we have that

(0 — 3(v(t)))

The proof is completed. O

D. Proof for the Discrete Case

We prove the result for AdaGrad and experiential loss, with the result for RMSProp and logistic loss follows exactly as the
continuous case. We slightly change the order of four stages in the flow: First, in Section D.1, we prove that the conditioner
has a limit with no zero entry; secondly, in Section D.2, we prove that the empirical loss converges to zero; then, in Section
D.3, we construct a further smoothed approximate margin, and prove it has a lower bound; finally, in Section D.4, we prove
that every limit point of AdaGrad is along some KKT point of optimization problem (P“) defined in Theorem 6.

D.1. Convergence of conditioners

Before the proof, we give a formal definition of the learning rate bound C(t) in Assumption 2: let M be the smooth constant
in Assumption 2. I. Then, C(t) = max{min;{h:*(t)~'}/M,1, %}, where Cyy will be clear below. By the monotony
of hi'(t), apparently C(t) is non-decreasing. Now we can prove Y2, 0L(w(t))? < oo

Lemma 27. Suppose L is M smooth with respect to w. Then, for {0L(w(t))}{2, updated by AdaGrad (eq. (3)),
352, 0L (w(1)? < ox.

Proof. For any t > t,

L(w(t)) — L{w(t + 1)) = m(dL(w(t), h (t) © IL(w(t))) — % 1R (1) © OL(w(t))|?
> 5 (DL (w (1)), KA (1) © L (w ()
i3 (OL(w (1)), (1) © DL (w ()
Thus, since Zt 1 a¢ share the same convergent behavior with Zt 1 thf (a; > 0), by similar routine of Lemma 12, the

proof is completed. O
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Therefore, h, 2 lim; o hA(t) has no zero entry. We can then define a discrete version of adaptive gradient flow as
v(t) = h /2 O w(b),
B(t) = hol © h(t),
L(v) = L(hE o v),

and

1
Gi(v) = qi(h& O v),
which further leads to

v(t+1) —v(t) = =B(t) © 0Lina(v(1)), (20)
and 3(t) decreases component-wisely to 1,,.
By Lemma 27, for any ¢t > to, L(w(t)) < L(w(ty)) < N. Therefore, there exists a positive real constant C; only

depending on L(w(t)), such that, |w(t)|| > Cy. Furthermore, since hgj > h(ty)™2, |[v(t)]| = Comax;{h;(to) "2}
Define C; = Comax;{h;(to) 2}, which only depends on £(w(to)) and OL(w(t)) (t < to).

Moreover, similar to approximate flow, there exists a time ¢, such that, for any time ¢ > ¢4,

D.2. Convergence of Empirical Loss

Define function 7 as the rate of log + to ||| T

1
_ e mm

7 -

o)

N
~
—

Then, we have the following lemma.

Lemma 28. For any t > t1, 7'(t) is non-decreasing.
Proof. Since by Lemma 27, £ is non-increasing, if ||v(t + 1)|| < ||v(t)]|, the proposition trivially holds. Therefore, we
consider the case that ||v(t + 1)|| > ||v(¢)|| in the following proof.
The change of ||v(¢)|| can be calculated as
lo(t + DI = o)
= —m(B(t) © OL(v(1),v(1)) + ni [B(t) © OL(v(1))|*.

Let A = —n,(B(t) ® L(v(t)),v(t)), and B = n?||B(t) ® L(v(t))||>. We estimate them separately.
As for A:

<mlB(t)© 0
< 21|87 (1) © DL(w () [0 (@)
®

< 2,182 (t)

1

182 (t) © 0L (v (1))
d

< 2n
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As for B:
B =1?||B(t) ® 8L (v(t))|?
< 22|87 (t) ® DL (v (t))||?
< S aEle () © 9L P
< “fjcﬂmﬁ 2 (t) @ AL(v (L))o ()]
||5 (1) © DL ()|l (0)]*
(L (v(t)), v(t)
Therefore,
) ) 187 (£) © DL(w (1) |2 [lv (1) |)?
lo(t + 1)1 — [[o(t)]? < 4n, o) 0(0) : @1

On the other hand, by Lemma 27,

L(v(t)) = L(v(t+1)) > %<5E(W(t))ﬂ7thA(t) ® 0L (w(t)))
= 5 18% () © DL (2)
Combining egs. (21) and (22), we have
L () — Flo Lot + 1| = [v@)]
o (EGw(0) = E(we + 1)) > 5 IO
Since v(t) > ﬁlog &t), we further have
1 F 5 o Llv@E+ D)2 = v@)l?
FioTion s () = Blwtt+ 1) 2 S

By the convexity of log log % (when z is small) and — log z,

1 L
loglog =———— > —-(log [[v(t + 1)|| — log [lv(®)])-

1
L) E) b

The proof is completed. O

Remark 3. Actually, the convexity does not hold for x € [e=', L(v(t1))] (if L(v(t1)) > e~'). However, we can instead
define

1 v 1 1 1
®y(z) = loglog = + [ inf{——— :w e [z, log — + d
o(e) = loglog .+ [ (= v € o dog g} 4

Which satisfies for x € [0, L(v(t1))], ﬁ < =®(x), Do(z) < loglogz, and Py(z) is convex. We can then replace

log z by e~ %) and prove the above theorem in exactly the same way.0

With the relationship between [|v|| and £, we can now prove that the empirical loss goes to zero.

Theorem 12. lim;_, /j(t) = 0. Furthermore, lim;_, p(t) = oo.
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Proof. By Lemma 31, for any integer time ¢ > %,

1 L2u(t)? 1 L2£~(t)210g5(1t)2

< oM S s
27 lv@)* — 2 lo (@)1

L(t+1)—L(t)

Furthermore, since 7' (t) > 4/ (t1), we have that

1 L
log(ﬁ(t)) > P
ME4(to) B
Therefore,
i L ()0 )
LE+1)—-L) < —= -
LN Am) T
< — - L2L(t)? <1og . )
t £(t)) \log(zy)

N 2-8/L
Let By = L (t)° (log ﬁ) , then ¢(z) = min{z?(log 1)>~%, Ey}. Apparently, ¥(z) is non-decreasing in

(0, E(tl)] Therefore, E(z) = ff(tl) 1 (s)ds is convex with respect to x, and
E(L(t+1)) — E(L(t)) > E'(L(t))(L(t+1) = L(t))
> Sl (7 (1)
which further implies

t—1

B(E() ~ B(E(0) > Y gneL? @ (1)

T=tg

oo

Since lim;_, Zt;:io in-L? (¥ (t1))* = oo, we then have

lim E(L(t)) = oo,

t—o0

and as a result,

tgrgo L(t) =0.
O
D.3. Convergence of surrogate margin
As a preparation, define By = max{||0g;(v)| : i € [N],v € B(1)}, and B, = max{ |[Hg;(v)| : i € [N],v € B(1)}.
log —+— ~
Furthermore, we define A(z) = (log 2)~*, and p(z) = %. Since lim;_, o, £(t) = 0, we have the following lemma.

Lemma 29. There exists a large enough time to > t1, such that, for any t > to,

BYL(v)log" "t E(lv)/wtl)? < ME(()u(L(o(1),
and, )
Sy L) 108”2 (BY 4 OBy < ()
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Proof. The proposition is obvious since logi(%) =o(z),Viasz — 0. O
Then, we define a further surrogate margin 4 of the discrete case as following:

®(L)

where p(t) is defined as Hﬂfé (t) © v(t)||, and ®(x) is defined as

B(2) :bglogi +/Of (_Sup{1+2(1+A(1D)/L)M(1IJ) b e [w,i(t2>}}+ 1 5}) .

w log %

The following properties hold for 4.

Lemma 30.  * Let a series of v; satisfies lim;_,  ||v;|| = co. Then, lim; %

I L(v(t) < L(v(t2)), then 4(t) < F(t) < ().

142(14 M (@) /L) u(x)
zlog <

= oo. Therefore, there exists a small enough ¢, such that, for any w < ¢,

Proof. As beginning, we verify the existence of ®. Actually, when x is small enough,

142(14 A (2)/ L))
0 z log %

sup { 14+2(1+ )\(u?i/L)u(zD) i [w7£~ (tg):| } _ 1420 —Il—Ul);(ng/L)u(w)

decreases, and

lim, _,

)
w

which further leads to

1+2(1+ Xw)/L)pu(w) . ~ 1
_sup{ ilog 1 RTINS [w,ﬁ(tg)}} wlog L
2014 Mw)/L)p(w)

wlog% ’

which is integrable as w — 0. Concretely, for any x < e,
x 14+2(1+ Xw)/L)pu(w
[ (- { L2 X 2100
0 wlog =
21+ N L
_ / 201+ Aw)/Lpw)
0

wlog =

W E

—

w,r:(tz)”+ ! )dw

wlog%

=—1lo L L + 1
o gﬁ(h) log% 2Llog2% '

Therefore, for a series {v;}52, satisfying lim;_, o ||v;|| = oo,
~ . ) - 1 )
lim Y(UZ) = lim e (1052 5&’1‘? =1.
1—00 ’y('vi) 1—00

Furthermore, if 2 < L(v(t2)),

114201+ A@)/L)u()
~ wlog = wlog +

<0,

which proves that 4(t) < (t).
The proof is completed. O
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To bound the norm of first and second derivatives of Z we further need the following lemma.

The next lemma characterizes the behavior of surrogate margin 4(t).

Lemma 31. For positive integer time t > t3, 4(t) > e~ 24(ts).

Proof. For any time t > to,
1 _1
p(t+1)? = p(t)* = (IIB72(t) ©v(t + DII* = p(t)*) + (p(t + 1)* = 87> (1) © w(t + D?).
We calculate two parts separately

1872 () vt + 1)) — 872 (t) © v(t)|?
=n?||8% (t) © DL(v(t))||> + 2L (1)
>0.

. _1. .
On the other hand, since 3 2 is non-decreasing,

pt+1) = B2 (t+ 1) @v(t+1)[| > 872 (t) @ v(t + 1)].

1872 (t) ® v(t+1)||2 — |82 (t) ® v(t)||? can also be upper bounded as follows:

1872 () @ v(t + 12— 872 (t) ® v(1)|?
=1218% (1) © DL(v(t))|| + 2L, (t)

=2Lnv(t) (Utﬁé(t) ® dL(v(t))|? . 1)

2Lv(t)
o Lt <A<E<v<t>>>u<£<v<t»> . 1) |

L

where inequality (*) comes from the estimation of || B2 (t) ® DL(v(t))|)? as follows: by the homogeneity of §;, we have

N
. _ _ (%) ~
10L()[| = |[= e "™ dg;(v)|| < BiL(v)|lv|*"
=1
(%) - 4
< B1~$4£(’U)10g4_r ! )
¥ ()T L(v)

where inequality (*#) is due to dg; is (L — 1) homogeneous, and inequality (* * *) holds by Lemma 28. On the other hand,

v(t) > L(v(t))log E(vl(t))' Combining the estimation of v and ||3(t)~2 ® AL(B(t))||, we have

mlBt (1) 0 dbw)? _ BIL®)og™F 7
2Lu(t) = LA ()

<

Similar to Lemma 27, the decrease of E(v) can be calculated by second order Taylor Expansion:

L(t+1) = £(t) = —m (B(t) © DL(w(1)), 0£(v (1))

+%m2(ﬁ(t) © OL)TH(L(v(€)))(B(t) © IL), (23)
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where £ € (0,1).

By homogeneity of §;, the norm of Hessian matrix ||H (£ (v(€)))]| can be bounded as

> e U (04,04 — M)
*) N

IH(L((€)))

N
=1

2

—~

<D (BH©I* 2 + Ballo(©)] %)

L))o~ (BY + C " By)

IA

< Wi(v(g)) log®8/% T @) (B} +CrEBs).
Therefore,
SR (B(0) © DE) H(E(w()(B(1) © IE)
<80 © 90) P sy E©) g™ T £ (B + 1)
<mil|B(1)* © IL)|Put). (24)
Taking the estimation eq. (24) back to eq. (23), we have
L(t) ~ £(t+1) > (- p(O)n1B(1)F © D) 25)

By multiplying % to both sides of eq. (25), we then have

L4 AEOWE®)/L :
(- (L CE+D —E0)

< <1+ ME@®)n(E <>)> (1)

L p(t)?
LB EW v+ DI - I8 ) 0 v0)]*
o2 1872 (1) © v(0)]?

Furthermore, since —®'(L(t)) > , by the convexity of ® and — log x, we have that

L <10g T L — log 11>
1B7=(H) ©v(t+ 1) 1872 (1) © v(B)]]
H@(L(t+ 1)) — ®(L(1))) = 0.

Therefore,

. 1<I>([i(t+1)) ~log 1@(5@) -
1B72(t) ©v(t+1)|F 1872 (t) @ v(t)||F

Furthermore, since
—L/2
1B+ Dot DI B
= 17 9
1875 (t+ 1) ©v(t)|F B+ 1)
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we have

e~ ®(t+1) o= ®(t+1)

—L/2
5(t+1) p B ()

TP " iy _L)2

1Bt + D) ovt+D|E B @) 0o+ D)|F T 8Tt +1)
R0

BT+ 1)

> A(0)IT_,

Thus, by induction,

The proof is completed. O

Similar to the flow case, we can then prove the convergence of 4.

Lemma 32. There exists a positive real 7., such that

lim 4(t) = oe-

t—o0

Proof. Since for any t > t

Y(t+1 S 2 (T
g 20D o B0

Y®) B2t +1)

Nl

)

we have that 4(¢)IT}_, —'— monotonously increases. Furthermore, since 4(t) < 7(t) is bounded, so does 4 (t)IT}_, ——.
B () B ()
Therefore, 4(¢)II7_; L converges to a positive real. Since lim;_, o e, 1 — = 1, the proof is completed. O

BZ (t) BZ (t)

D.4. Verification of KKT point

Similar to the flow case, we have the following construction of (¢, §) KKT point. The proof is exactly the same as Lemma 5,
and we omit it here.
1-2/L

min

Lemma33. Let \; = ¢
as follows:

|vl| - e~ 79 " (¢;) /|OL]|2. Then ©(t) is a (e,8) KKT point of (P), where ¢, § are defined

e = C1(1+ cos(8))
1

0= 0271a

log =

where cos(8) is defined as (0(t), DL(t)), and Cy, Cy are positive real constants.

By Lemma 22, we only need to prove that lim;_, -, cos(@) = 1. Furthermore, the estimation of cos(@) can be given by the
following lemma.

Lemma 34. Foranyts >ty > to,

ta—1

10) ()2 — oe 1o 1 Loe @) (g B 2 ()
2 (C%(e)( : 1> <1 Bom IIﬂ‘é(T)@v(T+1)|> =I5 T (H“lg.—l ) '

T=t3
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Proof. By Lemma 31, for any £ > 19

1 1
L o8 S % )
o R o 1 p(t)* 1 870412
- (l oM ||ﬂ-%<t>@v<t+1>> O

. 1 , B+ )
: —log —— | —log [II_ ~——— ] .
+<Ogﬂ5(t)®v(t+1)|| ng(t)> 08 | M=t T )

—_—

Furthermore, since Lv(t) = <,8é (t) ® L(1), B2 (t)® 'u>, we have

- 1 ) cos(@)*2
IIB M out+1)

1 . B+ 1)
—log— | -1 I,_,—/—— .
( IR @vt+1>|| gﬂf>> Og( =l )

The proof is completed.

We still need a lemma to bound the change of the direction of /6_% Ow.
Lemma 35. Foranyt > to,

—

”/6_7(7f HNovt+1)—6872(1) 0v®)
t—|—1 /8 l(t)) + <O<1)Hﬁ_2 @U(t—Fl)H +1> ]og ||5_§(t) QU(t—Fl)H

-

M@

p(t) p(t)
||ﬁ oot +1) R B; (t+1)
+< W H)lgn’:l B0

Proof. Since triangular inequality,

— ——

IB72(t+1) @o(t+1) - B2 (t) ®o(t)]

< p(til)ﬁé(t“)@”(t*l)_p(til)ﬁ5(t+1)®v(t)H
+ p(til)ﬂ5(t+1)®v(t)—p(tl+1)gé(t)@v(t)H
+ p(til)ﬁ‘é(t)Qv(t)p(lt)g—%(t)@v(t)H.
Let
— Hp(t+1)ﬁ_é(t+ ) ov(t) - ﬁﬁ_%t) @v(t)H,
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Then,
A :@(1)ﬁ\|v(t +1) — ()]
—0(1)——— (t T8 © 0] = 0() s 9L
L00) s < o X
<om2! +(?+ 1)2(t>2 p(Z(Jtr)l) = O(l)p(zg)l) o8 p(;(:)l)’

where eq. (x) can be derived in the same way as Lemma 6;

By ey
<0(1) iﬁ;l(t +1) = B (1);
and 7
c=1- p(f(i)n'
Therefore,

—

18~ (t+1)®v(t+l) BT (t) ©v(t)]

- p(t+1) p(t+1)

MY (B t+1) -6 1(t))+<(’)(1) +1) log 0
+

-

Pt p(t)
S 182 ©(t

"t+1)—B7H() + (O(l)

z:l p(t) p(t)
. (O(l) 18O ove+ 1| 1) g, B+ 1)
P(t) B (1)

_1
We then prove that 7, log W = 0.

1 1
Lemma 36. The sum of log W diverges, that is, Z?—O:,gg log I8~ 2 (Wov(r+D)l — o,

p(7)
Proof.
= 1B 20 @ v 1) L
Z log > Z log —logIl?_, ——.
= p(7) 0
The proof is completed since lim;_,, p(t) = 0o and log IT}_; —3— is bounded.
B, 2 ()

Now we can prove the following lemma.

Lemma 37. Let © be any limit point of {v(t)}$2,. Then © is a KKT point of optimization problem (P).
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Proof. Let t! be any integer time larger than ¢,. We construct a sequence {t'}2, by iteration. Suppose ¢!, - - - ,t*~! have
been constructed. Let s* > t*~! be a large enough time which satisfies

, 1
Then let (s*)" (guaranteed by Lemma 36) be the first time greater than s* that Zii;,fl log W > 2. By

-2
Lemma 34, there exists a time t* € [s*, (s¥)" — 1], such that cos(8) ~ — 1 < ;.

Moreover,
naﬁ»—m2s2065ﬁﬁbvuﬂ—@W+wﬂiﬁﬁbvuﬂ—ﬁa%w)
=~wﬂ—%é%?5v@m——@W—r2(2—2<ﬁ—%é575va@,@uﬂ>)

<2187 0 v(e) - ol + 0 1)

smwuﬁEE@w—ﬂ@66Z@m2+o(;)

<O(1)s +0(eh)

0.
3 —

T =

The proof is completed.

Therefore, similar to the gradient flow case, we then have the following theorem.

Theorem 13. Let w be any limit point of {w(t)}. Then w is along the direction of a KKT point of the following optimization
problem.
1, -1
Minimize §||h,o<,2 o w||

Subject to: q;(w) > 1.

E. Proof of Multi-class Classification with Logistic Loss

In this section, we prove the result for multi-class classification with logistic loss mentioned in Remark 1. Concretely, the
dataset for this case can be represented as {(z;,y;)}},, where y; € [C] represents the class x; belongs to. Unlike the
binary classification case, neural network @ outputs a C-dimension vector as scores for C classes, and we use ® (w, x;) j as

the j-th component of ®(w, x;). The empirical loss can then be represented as

N

Llw) =3 ~log i (26)
i=1 ijleq)( i)

For AdaGrad, RMSProp, and Adam (w/m), limit hfo, hfo, hgg remains non-zero, and we can then define v, /3, and (3 the

~ ~ 1
same as Theorems 6 and 7 (we use v and L to represent all cases), and ® (v, x;) = ®(h& O v, x;).
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We can then define margins in the multi-class classification similarly as the binary case: surrogate norm and margin are

defined exactly the same as the binary case; define §;(v) = ®(v, z;),, — max;-,, ®(v, x;); and normalized margin can

i

be still defined as q“"l""u(f ). The corresponding convergent direction for adaptive gradient flow under multi-class setting can
then be characterized by the following theorem:

Theorem 14. Let v satisfy an adaptive gradient flow F which satisfies Assumption 1. Let © be any limit point of {0 (t)}$2,

(where 0 (t) = Hzgii;” is normalized parameter). Then ¥ is along the direction of a KKT point of the following L? max-margin

problem (P):

1
minf||'vH2
2

subject to G;(v) > 1,Vi € [N].

Proof of Theorem 14 differs from that of Theorem 2 only by Lemma 18, Lemma 19, and the construction of ); in Lemma
21. We show modifications respectively.

First of all, we show normalized margin ~ and surrogate margin  converge to the same limit:

Lemma 38. Let a function v(t) obey an adaptive gradient flow F which satisfies Assumption 1, with loss L and component

learning rate 3(t). Then we have lim;_, % = 1. Furthermore, if further lim;_, o L(t) = 0o, we have lim;_, o, % =
1.
Proof. By definition of empirical loss (eq. (26)),

N

~ @‘i(vﬂwi)yi
L(v) = —log ———F+——
( ) ; Zf:]- e@(’u,ﬂli)j

al 1
:Z —log
i=1

1+ ijéy- e‘i’(vvmi)j—‘i’(”@i)yi '

Let gij(v) =log ., ¢®(v.@); =2y, By exact the same routine of Lemma 18, we have

o)
Jm 2y =1 @7
oL

On the other hand,
7q~min(v) S 1Og Z e(P(v’wi)jiq’(v’wi)yi S 7(jmin(v) + log Na
J#Yi
which leads to
)
A e~ b %)
oL
Combining eqs. (27) and (28), the proof is completed.
O

Secondly, we calculate derivative of surrogate norm p under multi-class classification setting.

Lemma 39. The derivative of p? is as follows:

1dp(t)? iy 487
5 :Ly(t)+<’v(t),,3 2(t) © i (t)®v(t)>,




The Implicit Regularization for Adaptive Optimization Algorithms on Homogeneous Neural Networks

where v(t) is defined as

N Y, eROE R (B0, a;),, — ®(v,2);)

v(t) = Z

v 14y, edee—Era,

9108 7) g
Furthermore, we have that v(t) > ——="80C L(v(t)).
9" (108 7 )

Proof. We only need to show

—(0L(v(1)),v(t)) = Lv(t), (29)
and

log =1
v(t) > g(gw.ﬁ:(v(t)), (30)

’ 1
o (108 7535
while other parts of the proof follows exact the same as Lemma 19.

By chain rule, i i
_ N Z#yi e‘I)(U,mi)j_q)(’wwi)jji 5(@(,,1981.)]. - ®(v,i)y,)
Pl 1+ Zj;ﬁyi e (v,xi)j—P(v,mi)y,

9

while by homogeneity of o,
<5((I)('U wl) - @(’U wl)yi>7v> = L<(i)(vv wi)j - (i)(vvwi)yi)v
which completes the proof of eq. (29).
As for eq. (30),
oty €T RO (B(v, 37),, — B(v, 1))
Zj;éy e&)(v,wi)j—@(v,a}i)yi

N
(t) =Y e/ ERO) £ (gl(o(1)))
N

>3 e @O (g (0(6))d (v (1))

1
(log m,(t))) L(v(t)).
(log E(v(t))>

The proof is completed.
O

Finally, we provide construction of A; similar to Lemma 21. The proof follows the same routine as Lemma 21 and we omit
it here.

Lemma 40. Let v obey adaptive gradient flow F with empirical loss L satisfying Assumption 1. Let time t1 be constructed
as Lemma 2. Then, define coefficients in Definition 2 as

1 1 +6(I>(U ml) ‘I:‘('U (ZZ.L)
L@ 5, cFee e,

(where i € [N], j € [C]/{i}). Then, for any time t > t1, D(t) = Gmin(v(t)) " Tv(t) is an ((t),d(t)) KKT point of (P),
where £(t), §(t) are defined as follows:

Aig (1) = Gmin (0(£) " Fllo(2)]] -

e(t) = O(1 — cos(6(t)))

5(t) = 0 (11> ,
98 Zlo(®)



The Implicit Regularization for Adaptive Optimization Algorithms on Homogeneous Neural Networks

—

where cos(8(t)) is defined as inner product of o(t) and —L(v(t)).

F. Experiment Details

In this section, we provide detailed explanation of experiments showed in Section 6 #. This section is divided into two parts
according to Section 6: in Section F.1, we provide details of structure of neural network we use and hyper-parameters. We
also further plot two additional experiments of Adam and SGD to show the influence of momentum; in Section F.3, we

1
show construction of dataset in Section 6.2 and choose of hyper-parameters. We also show how direction of h..* influence
convergent direction of parameters.

F.1. Experiment on MNIST
F.1.1. CONSTRUCTION OF NEURAL NETWORK AND CHOICE OF HYPER-PARAMETERS

We use the 4-layer convolutional neural network adopted by (Madry et al., 2018) as our model to conduct multi-class
classification on MNIST (LeCun, 1998). Concretely, this convolutional neural network can be expressed in order as
convolutional layer with 32 channel and filter size 5 X 5, max-pool layer with kernel size 2 and stride 2, convolutional
layer with 64 channel and filter size 3 x 3, max-pool with kernel size 2, fully connected layer with width 1024, and fully
connected layer with width 10. In order to guarantee this neural network is homogeneous, we further set bias in all layers to
be zero. We use default method in Pytorch to initialize the neural network.

As for hyper-parameters, we set learning rate of AdaGrad to be the default value in Pytorch; while for RMSProp, we set
learning rate and decay parameter b as 0.001 and 0.9, which is suggested by (Hinton et al., 2012) and used as a default value
in Tensorflow; for Adam, we set the learning rate to 0.0001 as default value in Pytorch, and b to be the same as RMSProp.

F.1.2. INFLUENCE OF MOMENTUM

We plot convergent behaviors for SGDm and Adam in this section. Figure 4 shows that adding momentum term will NOT
keep normalized margin from lower bounded, which indicates our theory might be extended to gradient based optimization
methods with momentum. Specifically, for SGD, we use learning rate 0.1 and momentum parameter 0.9; for Adam, we use
the same setting as Adam (w/m) with momentum parameter 0.9.

uuuuu

—o scom —o— scom —e— scom
adam adam adam

AT e ososommmmny il

w0 1500 1750 2000 W mo  mw  me ww

l ‘
Epoch (log scale)

(a) Training Accuracy (b) Test Accuracy (c) Training Loss (d) Normalized Margin

5 7 4 5 % 750 1000
Epoch (og scale) Epoch

Figure 4. Observation of convergent behavior after adding momentum for SGD and Adam. One can observe that loss still converge to
zero, and margin will keep lower bounded.

=10~5

Epoch

(a) Test Accuracy (b) Normalized margin

Figure 5. Observation of generalization behavior of RMSProp with different . One can observe that larger ¢ leads to larger margin and
smaller generalization error.

*https://github.com/bhwangfy/ICML-2021-Adaptive-Bias
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Figure 6. Experiment on two layer MLP. In (a), we visualize constructed dataset as vectors, with green vectors standing for data with label
—1, and red stands for data with label 1. In (b), we plot convergent margin of different optimizers across runs. In (c), averaged training
1
accuracy across runs is shown, and one can observe all training accuracy achieves 100%. (d)-(e) respectively picture hoo? in AdaGrad
1

(red vectors), RMSProp (blue vectors) and Adam (black vectors) across runs. While direction of h.? in AdaGrad varies across runs,
RMSProp and Adam stay the same and coincide with isotropic direction (green vector) (%, %, %)

F.2. Influence of

We compare the generalization behaviors of RMSProp with different ¢ selected in Figure 5. It is observed that as €
decreases, normalized margin gets smaller and the generalization error gets larger, which indicates the importance of € on
the generalization behavior. When ¢ is completed removed (i.e., is set to 0), the training does not converge. Therefore, we
do not include the results for € = 0 here.

F.3. Experiment on Two Layer MLP
F.3.1. DATASET CONSTRUCTION AND CHOICE OF HYPER-PARAMETERS

As mentioned in Section 6.2, we use a two layer MLP ® with leaky ReLU activation o defined as ®(x, w,v) = vo((w, x)

where € R?, w € R? and v € R and o(¢) is the Leaky ReL.U activation function, i.e., o(t) = ¢ fort > 0 and o'(t) =

for ¢ < 0. We construct binary classification dataset S as {(z;, y;)}}29 as follows:

POt

(z;,y;) = ((c0s(0.5),8in0.5) + €;,1), i € {1,2,--- ,50};
(z:,y;) = ((—cos(0.5), —sin 0.5) + &;, —1), 7 € {51,52,--- ,100},

where ¢; (i = 1,2,3,---,100) are random variables sampled uniformly and i.i.d. from [—0.6,0.6] x [—0.6,0.6]. We
visualize the dataset in Figure 6a.

We then run SGD, AdaGrad, RMSProp (and Adam (w/m)) respectively with learning rates 7 = 0.1, while Weight-decay
hyper-parameter b is set to be 0.9. For each round, we train the model for 5000 epochs to ensure that training accuracy
achieves 100% (see Figure 6¢ for details); while for each optimizer, we conduct 100 rounds of experiments with random

initialization, Convergent directions of square root of inverse conditioners ho,> are plotted in Figures 6d, 6e, and 6f.
1

-1 . . . . . . -1 . . .
Since hoo® occurs in optimization target in (P#), different direction of h.> may lead to different convergent direction of
parameters, which further indicates convergent direction of parameters in AdaGrad can be vulnerable to random initialization.



