
The Implicit Regularization for Adaptive Optimization Algorithms on Homogeneous Neural Networks

A. Preliminaries
In this section, we provide some definitions and basic lemmas which will be used in the proof. The section is organized
as follows: in Subsection A.1, we show general properties which exponential loss and logistic loss share; in Subsection
A.2, (approximate) KKT conditions is defined and sufficient conditions of being an approximate KKT point is given;
in Subsection A.3, we show how conditioners of AdaGrad, RMSProp, and Adam in continuous flow is formulated; in
Subsection A.4, we introduce o-Minimal structure, definable set and definable functions, and show two Kurdyka-Lojasiewicz
inequalities; in Subsection A.6, we show some basic definitions from Measure Theory, including measurable set and
Lebesgue Integrability.

A.1. Property of Exponential and Logistic Loss

In this subsection, we provide several properties which both exponential and logistic loss possess. The properties of
exponential and logistic loss can be described as the following proposition:

Proposition 1. For ` ∈ {`exp, `log}:

• There exists a C1 function f , such that ` = e−f ;

• For any x ∈ R, f ′ > 0. Therefore, f is reversible, and f−1 ∈ C1;

• f ′(x)x is non-decreasing for x ∈ (0,∞), and limx→∞ f ′(x)x =∞;

• There exists a large enough xf and a constant K ≥ 1 ,such that,

– ∀θ ∈ [ 1
2 , 1), ∀x ∈ (xf ,∞), and ∀y ∈ f−1(xf ,∞): (f−1)′(x) ≤ K(f−1)′(θx) and f ′(y) ≤ Kf ′(θy);

– For all y ∈ [xf ,∞), f(x)
f ′(x) ∈ [ 1

2Kx, 2Kx];

– For all x ∈ [f−1(xf ),∞), f−1(x)
(f−1)′(x) ∈ [ 1

2Kx, 2Kx].

– f(x) = Θ(x) as x→∞.

All properties are easy to verify in Proposition 1 and we omit it here. For brevity, we will use g(x) = f−1(x) in the
following proofs.

A.2. KKT Condition

Being a KKT point is a first order necessary condition for being an optimal point. We first give the definition of approximate
KKT point for general optimization problem (Q).

Definition 2. Consider the following optimization problem (Q) for x ∈ Rd:

min f(x)

subject to gi(x) ≤ 0,∀i ∈ [N ],

where f, gi (i = 1, · · · , N ): Rd → R are locally Lipschitz functions. We say that x ∈ Rd is a feasible point of (P ) if x
satisfies gi(x) ≤ 0 for all i ∈ [N ].

For any ε, δ > 0, a feasible point of (Q) is an (ε, δ)-KKT point if there exists λi ≥ 0, k ∈ ∂̄f(x), and hi ∈ ∂̄gi(x) for all
i ∈ [N ] (we will slightly abuse ∂̄f(x) to respresent a element in ∂̄f(x)) such that

1.
∥∥∥k +

∑
i∈[N ] λihi(x)

∥∥∥
2
≤ ε;

2. ∀i ∈ [N ] : λigi(x) ≥ −δ.

Specifically, when ε = δ = 0, we call x a KKT point of (Q).

The following Mangasarian-Fromovitz constraint qualification (MFCQ) bridges (ε, δ) KKT points with KKT points.

Definition 3. A feasible point x of (Q) is said to satisfy MFCQ if there exists a ∈ Rd such that for every i ∈ [N ] with
gi(x) = 0,

∀h ∈ ∂̄gi(x) : 〈h,a〉 > 0.
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MFCQ guarantees that the limit of approximate KKT point with convergent ε and δ is a KKT point.
Lemma 7. Suppose for any k ∈ N, xk is a (εk, δk)-KKT point of (Q) defined in Definition 2. If limk→∞ εk = 0,
limk→∞ δk = 0, and limk→∞ xk = x, where the limit point x satisfies MFCQ, then x is a KKT point of (Q).

A.3. How is the Continuous Form of Conditioner Formulated?

In this subsection, we show how conditioners of the continuous case for AdaGrad, RMSProp, Adam (w/m) are derived.
Both discrete updates of these optimizers can be written as

w(t+ 1)−w(t) = −η 1√
ε+ ψ(m(t), t)

� ∂̄L(w(t)), (6)

m(t+ 1)−m(t) = φ(m(t), ∂̄L(w(t))), (7)
m(0) = 0.

where for AdaGrad, φ(m(t), ∂̄L(w(t))) = ∂̄L(w(t))2, ψ(m(t), t) = m(t); for RMSProp, φ(m(t), ∂̄L(w(t))) =
(1− b)(∂̄L(w(t))2 −m(t)), ψ(m(t), t) = m(t); for Adam (w/m), φ(m(t), ∂̄L(w(t))) = (1− b)(∂̄L(w(t))2 −m(t)),
ψ(m(t), t) = m(t)

1−bt .

One can easily observe that eqs. (6) and (7) is a discretization of the following equations:

dw(t)

dt
= − 1√

ε+ ψ(m(t), t)
� ∂̄L(w(t)), (8)

dm(t)

dt
= φ(m(t), ∂̄L(w(t))), (9)

m(0) = 0.

As for AdaGrad,
dm(t)

dt
= ∂̄L(w(t))2,

which leads to

m(t) =

∫ t

0

∂̄L(w(τ))2dτ,

and
dw(t)

dt
= − 1√

ε+
∫ t

0
∂̄L(w(τ))2dτ

� ∂̄L(w(t))

As for RMSProp and Adam
dm(t)

dt
= (1− b)(∂̄L(w(t))2 −m(t)).

By solving the above differential equation, we have

de(1−b)tm(t)

dt
= e(1−b)t(1− b)∂̄L(w(t))2,

which by integration implies

m(t) =

∫ t

0

e−(1−b)(t−τ)(1− b)∂̄L(w(τ))2dτ.

Therefore, for RMSProp, the continuous flow is

dw(t)

dt
= − 1√

ε+
∫ t

0
e−(1−b)(t−τ)(1− b)∂̄L(w(τ))2dτ

� ∂̄L(w(t));

while for Adam (w/m), the continuous flow is

dw(t)

dt
= − 1√

ε+
∫ t
0
e−(1−b)(t−τ)(1−b)∂̄L(w(τ))2dτ

1−bt

� ∂̄L(w(t)).
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A.4. o-Minimal Structure and Definable functions

Here we define o-Minimal structure and definable functions which we omit in Theorem 3.
Definition 4 (Appendix B, Ji & Telgarsky (2020)). An o-minimal structure is a collection S = {Sn}∞n=1, where each Sn is
a set of subsets of Rn satisfying the following conditions: 1. S1 is the collection of all finite unions of open intervals and
points;
2. Sn includes the zero sets of all polynomials on Rn;
3. Sn is closed under finite union, finite intersection, and complement;
4. S is closed under Cartesian products: if A ∈ Sm and B ∈ Sn, then A×B ∈ Sm+n;
5. S is closed under projection Πn onto the first n coordinates: if A ∈ Sn+1, then Πn(A) ∈ Sn.

A definable function on above o-Minimal Structure can be defined as follows:
Definition 5 (Appendix B, Ji & Telgarsky (2020)). A function f : D → Rm with D ⊂ Rn is definable if the graph of f is
in Sn+m.

A natural question is: which function is definable? The next Lemma helps to solve this question.
Lemma 8 (Lemma B.2, Ji & Telgarsky (2020)).

• All polynomials are definable, therefore, linear or other polynomial activation is definable;

• If both f(x) and g(x) are definable, min f(x), g(x) and max f(x), g(x) are definable, therefore, ReLU activation is
definable;

• If fi(x) : D → R (i = 1, 2, · · · , n) is definable, then f(x) = (f1(x), f2(x), · · · , fn(x)) is definable.

• Suppose there exists k, d0, d1, · · · , dL > 0, and L definable functions (g1, g2, · · · , gL), where gj :→ Rd0 × · · · ×
Rdj−1 × Rk → Rdj . Let h1(x,W )

4
= g1(x,W ), and for 2 ≤ j ≤ L,

hj(x,W ) := gj (x, h1(x,W ), . . . , hj−1(x,W ),W ) ,

then all hj are definable. Therefore, neural networks with polynomial and ReLU activation, convolutional and
max-pooling layers, and skip connections are definable.

An important property for definable function is Kurdyka-Lojasiewicz inequality, which can bound gradient of definable
function in a small region. Here we present two Kurdyka-Lojasiewicz inequalities given by (Ji & Telgarsky, 2020):
Lemma 9 (Lemma 3.6, Ji & Telgarsky (2020)). Given a locally Lipschitz definable function f with an open domain
D ∈ {x|‖x‖ > 1}, for any c, η > 0, there exists a > 0 and a definable desingularizing function Ψ on [0, a) (that is,
Ψ(x) ∈ C1((0, a)) ∩ C0([0, a)) with Ψ(0) = 0), such that,

Ψ′(f(x))‖x‖‖∂̄f(x)‖ ≥ 1, if f(x) ∈ (0, a), and
∥∥∂̄⊥f(x)

∥∥ ≥ c‖x‖η ∥∥∂̄\\f(x)
∥∥ .

Lemma 10 (Lemma 3.7, Ji & Telgarsky (2020)). Given a locally Lipschitz definable function f with an open domain
D ⊂ {x|‖x‖ > 1}, for any λ > 0, there exists a > 0, and a definable desingularizing function Ψ on [0, a) such that

max

{
1,

2

λ

}
Ψ′(f(x))‖x‖1+λ‖∂̄f(x)‖ ≥ 1, if f(x) ∈ (0, a).

At the end of this subsection, we show that definability actually guarantees that Φ admits a chain rule, which is formally
stated as following:
Lemma 11 (Lemma B.9, Ji & Telgarsky (2020)). Given a locally Lipschitz definable f : D → R with an open domain D,
for any interval I and any arc z : I → D, it holds for a.e. t ∈ I that

df (zt)

dt
=

〈
z∗t ,

dzt
dt

〉
, for all z∗t ∈ ∂f (zt) .

Therefore, if we are deal with definable neural networks Φ as in Theorem 3, we no longer need to assume Φ admits a chain
rule which is already guaranteed by lemma 11.
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Figure 3. How h∞ influence convergence direction ofw

A.5. Discussion of the influence of initialization on the solution of PA

For AdaGrad, h−2
∞ is defined as ε1p +

∑∞
t=0∇L(w(t))2, which is the sum of squared gradients along the trajectory.

Intuitively, as the initialization changes, the trajectory changes respectively, and so does the direction of h∞. This intuition
can be further verified by Experiment in Section 6.2, where we plot the direction of h−

1
2∞ as the initialization changes.

Furthermore, how h∞ influence the max-margin problem can be interpreted as follows: optimizing ‖h−
1
2∞ � w‖2 with

constraints is equivalent to find the radius r of ellipsoid ‖h−
1
2∞ �w‖2 = r2 when the ellipsoid is tangent to the feasible set.

This intuition is visualized in Figure 3. One can easily observe that as the direction of h∞ changes, the direction of the
tangent point changes.

A.6. Basic knowledge from Measure Theory

In this section, we present basic definitions of measurable set, measurable functions and Lebesgue Integrability. These
definition involves use of exterior measure and Borel set in Euclidean space, which we omit them here. Readers interested
in measure theory can refer to (Stein & Shakarchi, 2009) for details.

Definition 6 (Stein & Shakarchi (2009), Chapter 1, page 16). A subset E of Rdis Lesbesgue measurable, or simply
measurable, if for any ε > 0, there exists an open set G, with E ⊂ G, and

m∗(G/E) ≤ ε,

where m∗ is the exterior measure on Rd.

Definition 7 (Stein & Shakarchi (2009), Chapter 1, page 28). A function f on a measurable subset E of Rd is measurable if
for all a ∈ R, the set

f−1([−∞, a)) = {x ∈ E : f(x) < a}

is measurable.

Definition 8 (Stein & Shakarchi (2009), Chapter 1, page 64). A measurable function f defined on a measurable subset of
Rd is Lesbesgue integrable if ∫

E

|f(x)|dm(x) <∞.

B. Proof of Results for Adaptive Algorithms in Continuous Case
This section collects proof of Theorem 2, Theorem 4, Theorem 5, and also contains proof of Theorem 6 and Theorem 7.
Organization of this section is as follows: In Subsection B.1, we present proof of Theorems 4 and Theorem 5; in Subsection
B.2, we present proof of Theorem 2 based on the proof skeleton in Section 5; in Subsection B.3, we prove Theorem 6 and
Theorem 7 based on 2, Theorem 4, Theorem 5; finally, in Subsection B.4, we provide tight convergence rate of loss and
parameter norm in adaptive gradient flows.
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B.1. Proof of Theorem 4 and Theorem 5: Transition from Continuous Adaptive Algorithms to Adaptive Gradient
Flow

B.1.1. PROOF OF THEOREM 4

The proof of Theorem 4 is divided into two stages: we first prove convergence of hA(t) and βA(t); then we show
dvA(t)

dt = −βA(t)� ∂̄L̃A(vA(t)) satisfies adaptive gradient flow, and is equivalent to AdaGrad flow.

We first show
∫∞

0
∂̄L(w(t))2dτ is bounded.

Lemma 12. For AdaGrad flow defined as eq. (4) with h = hA,∫ ∞
0

(∂̄L(w(τ)))2
idτ <∞, i = 1, · · · , p.

Proof. We use reduction of absurdity. If there exists an i, such that,
∫∞

0
(∂̄L(w(τ)))2

idτ diverges, by equivalence of integral
convergence, then ∫ ∞

0

(∂̄L(w(t)))2
i

ε+
∫ t

0
(∂̄L(w(τ)))2

idτ
dt =∞.

Since
∫∞

0
(∂̄L(w(τ)))2

idτ =∞, when t is large enough,

ε+

∫ t

0

(∂̄L(w(τ)))2
idτ >

√
ε+

∫ t

0

(∂̄L(w(τ)))2
idτ .

Therefore, ∫ ∞
0

(∂̄L(w(t)))2
i√

ε+
∫ t

0
(∂̄L(w(τ)))2

idτ
dt =∞.

By integrating dL(w(t))
dt ,

L(w(0))− L(w(t)) = −
∫ t

0

dL(w(τ))

dτ
dτ

= −
∫ t

0

〈
∂̄L(w(τ)),

dw(τ)

dτ

〉
dτ

=

∫ t

0

〈∂̄L(w(τ)),hA(τ)� ∂̄L(w(τ))〉dτ

=

p∑
i=1

∫ t

0

(∂̄L(w(s)))2
i√

ε+
∫ t

0
(∂̄L(w(τ)))2

idτ
ds

=∞,

which leads to a contradictory, since L(ω(0))− L(ω(t)) is upper bounded by L(ω(0)).

The proof is completed.

Now we are ready to prove Theorem 4.

Theorem 9 (Theorem 4, restated). Define h∞ = limt→∞ h
A(t). Then h∞ has no zero elements. Let

vA(t) = h−1/2
∞ �w(t),

βA(t) = h−1
∞ � h

A(t),

L̃A(v) = L(h
1
2∞ � v).
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We have
dvA(t)

dt
= −βA(t)� ∂̄L̃A(vA(t)), (10)

while limt→∞ β
A(t) = 1, and d logβA(t)

dt is Lebesgue integrable.

Proof. Since

h∞ =
1√

ε1p +
∫∞

0
(∂̄L(w(τ)))2

idτ
,

by Lemma 12, h∞ has no zero elements.

We then prove eq. (10) by direct calculation.

dvA(t)

dt
= h−1/2

∞ � dw(t)

dt

= −h−1/2
∞ � hA(t)� ∂̄L(w(t))

= −h−1/2
∞ � hA(t)� h−1/2

∞ � h1/2
∞ � ∂̄wL̃A(h−1/2

∞ �w(t))

= −βA(t)� ∂̄
h
−1/2
∞ �w(t)

L̃A(h−1/2
∞ �w(t))

= −βA(t)� ∂̄v(t)L̃A(v(t)),

which completes the proof of eq. ( 10).

limt→∞ β
A(t) = 1 can be derived directly by convergence of hA(t), while since

d logβA(t)

dt
=

d loghA(t)

dt

(∗)
≤ 0,

where inequality (∗) is due to hA is non-increasing.

Therefore, ∫ ∞
0

∣∣∣∣∣d logβA(t)

dt

∣∣∣∣∣dt = −
∫ ∞

0

d logβA(t)

dt
dt = logβA(0) <∞.

The proof is completed.

B.1.2. PROOF OF THEOREM 5

We first prove Theorem 5 for RMSProp, and then extend the proof for Adam (w/m) and other Adam-like optimizers. The
proof strategy is similar with AdaGrad: we first prove convergence of hR(t) and integrability d logβR(t)

dt ; then we show
dvR(t)

dt = −βR(t)� ∂̄L̃R(vR(t)) is equivalent to RMSProp flow, and satisfies adaptive gradient flow.

However, for RMSProp flow, the convergence of hR requires more effort. We start from the following lemma, which bounds

Fi(t)
4
=
∫ t

0
(1− b)bt−τ (∂̄L(w(τ)))2

idτ (i ∈ [p]).

Lemma 13. For RMSProp flow defined as eq. (4) with h = hR , Fi(t) is bounded (i = 1, 2, · · · , p), that is,

limt→∞Fi(t) <∞.

Proof. When b = 1, Fi(t) = 0 for all t and i, which trivially yields the claim. When b 6= 1, we use reduction of absurdity.

If there exists an i, such that, limt→∞Fi(t) =∞, then tk
4
= inf{t : Fi(t) ≥ k} <∞ holds. Furthermore, since L is locally

Lipschitz with respect tow, gi(t) is locally bounded for any t, which leads to the absolute continuity of Fi. Therefore, since
Fi(0) = 0, tk monotonously increases.
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Therefore, we have that∫ tk+1

tk

(∂̄L(w(t)))2
i√

ε+ Fi(t)
dt ≥

∫ tk+1

tk

(∂̄L(w(t)))2
i√

ε+ k + 1
dt

=
1√

ε+ k + 1

∫ tk+1

tk

(∂̄L(w(t)))2
idt

≥ 1√
ε+ k + 1

∫ tk+1

tk

(1− b)e−(1−b)(tk+1−t)(∂̄L(w(t)))2
idt

=
1− b√
ε+ k + 1

(Fi(tk+1)− e−(1−b)(tk+1−tk)Fi(tk))

≥ 1− b√
ε+ k + 1

(k + 1− e−(1−b)(tk+1−tk)k)

≥ 1− b√
ε+ k + 1

.

Adding all k ≥ 1, we then have

L(t1) ≥
∫ ∞
t1

(∂̄L(w(t)))2
i√

ε+ Fi(t)
dt =∞,

which leads to a contradictory.

The proof is completed.

The next lemma shows that
∫∞

0
(∂̄L(w(t)))2

idt converges, which indicates that limt→∞ Fi(t) = 0.

Lemma 14. For RMSProp flow defined as eq. (4) with h = hR ,
∫∞

0
(∂̄L(w(t)))2

idt converges, which indicates that
limt→∞ Fi(t) = 0 (i = 1, 2, · · · , p). Consequently, limt→∞ Fi(t) = 0 and limt→∞ h

R(t) = 1√
ε
1p.

Proof. Similar to Lemma 13, when b = 1, the claim trivially holds. When b 6= 1, by Lemma 13, there exist Mi > 0
(i = 1, 2, · · · , p), such that, Fi(t) ≤Mi for any t > 0. Therefore,

L(0) ≥
p∑
i=1

∫ ∞
0

(∂̄L(w(t)))2
i√

ε+ Fi(t)
dt ≥

p∑
i=1

∫ ∞
0

(∂̄L(w(t)))2
i√

Mi + ε
dt,

which proves
∫∞

0
(∂̄L(w(t)))2

idt <∞.

Therefore, for any positive real ε > 0 and a fixed index i ∈ [p], there exists a time T , such that,∫ ∞
T

(∂̄L(w(t)))2
idt ≤ ε.

Thus, for any t ≥ T ,

Fi(t) = e−(t−T )(1−b)Fi(T ) +

∫ ∞
T

(∂̄L(w(t)))2
idt ≤ e−(t−T )(1−b)Fi(T ) + ε,

which leads to
limt→∞Fi(t) ≤ ε.

Since ε and i can be picked arbitrarily, the proof is completed.

Similar to the proof of Lemma 9, we can rewrite the RMSProp flow as

dvR(t)

dt
= −βR(t)� ∂̄L̃R(vR(t)),
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where

vR(t) = 4
√
εw(t),

βR(t) =
√
εh(t),

L̃R(v) = L(
4
√
ε−1v),

and limt→∞ β
R(t) = 1p. We only need to prove d logβR(t)

dt is Lebesgue integrable to complete the proof of Theorem 5.

Proof of Theorem 5 for RMSProp. For any fixed i = 1, 2, · · · , p, by Lemma 14,

∫ ∞
0

d logβR(t)

dt
dt = −

∫ ∞
0

d log
√

ε+Fi(t)
ε

dt
dt = 0.

Therefore,

0 =

∫ ∞
0

d log
√

ε+Fi(t)
ε

dt
dt =

∫ ∞
0

(
d logβR(t)

dt

)
+

dt+

∫ ∞
0

(
d logβR(t)

dt

)
−

dt,

we only need to prove the convergence of
∫∞

0

(
d log

√
ε+Fi(t)

ε

dt

)
−

dt, is equivalent to convergence of
∫∞

0
(

d log

√
ε+Fi(t)

ε

dt )+dt.

For any k ∈ Z+, denote Bk = (k, k + 1) ∩ {t :
d log

√
ε+Fi(t)

ε

dt > 0}. Since
d log

√
ε+Fi(t)

ε

dt is measurable, we have that Bk

is a measurable set. Denote Mk as an upper bound for
d log

√
ε+Fi(t)

ε

dt on [k, k + 1) (which is guaranteed since L is locally
Lipschitz). Since Bk is a measurable set, there exists an open set B̃k ⊂ (k, k + 1), such that m(B̃k/Bk) ≤ 1

k2Mk
, where m

is Lebesgue measure on R.

Therefore, we have

∫
t∈[k,k+1)

d log
√

ε+Fi(t)
ε

dt


+

dt =

∫
t∈Bk

d log
√

ε+Fi(t)
ε

dt

 dt

≤
∫
t∈B̃k

d log
√

ε+Fi(t)
ε

dt

 dt+Mk ·
1

k2Mk

=

∫
t∈B̃k

d log
√

ε+Fi(t)
ε

dt

 dt+
1

k2
.
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Furthermore, let B̃k = ∪∞j=1(tk,j , t
′
k,j). Then we have

∫
t∈B̃k

d log
√

ε+Fi(t)
ε

dt

 dt

=

∞∑
j=1

∫ t′k,j

tk,j

d log
√

ε+lFi(t)
ε

dt
dt

=

∞∑
j=1

log

√
ε+ Fi(t′k,j)

ε
− log

√
ε+ Fi(tk,j)

ε


=

1

2

∞∑
j=1

log
ε+ Fi(t

′
k,j)

ε+ Fi(tk,j)

=
1

2

∞∑
j=1

log
ε+ e−(t′k,j−tk,j)(1−b)Fi(tk,j) +

∫ t′k,j
tk,j

(1− b)e−(t′k,j−t)(1−b)(∂̄L(w(t)))2
idt

ε+ Fi(tk,j)

≤1

2

∞∑
j=1

log
ε+ Fi(tk,j) +

∫ t′k,j
tk,j

(1− b)e−(t′k,j−t)(1−b)(∂̄L(w(t)))2
idt

ε+ Fi(tk,j)

≤1

2

∞∑
j=1

∫ t′k,j
tk,j

(1− b)e−(t′k,j−t)(1−b)(∂̄L(w(t)))2
idt

ε+ Fi(tk,j)

≤1

2

∞∑
j=1

∫ t′k,j
tk,j

(∂̄L(w(t)))2
idt

ε

≤1

2

∫
t∈B̃k(∂̄L(w(t)))2

idt

ε
<∞.

The proof is completed.

In the rest of the section, we extend the proof of Theorem 5 from RMSProp to Adam.

Conditioner for Adam is the same as RMSProp, except that Adam will divide a bias-corrected term 1− bt for conditioner
each step, that is,

dw(t)

dt
= − ∂̄L(w(t))√

ε1d +
∫ t
0
e−(1−b)(t−τ)(1−b)∂̄L(w(τ))2dτ

(1−bt)

.

Generally, updates of RMSProp and Adam (w/m) can be both expressed as

dw(t)

dt
= − ∂̄L(w(t))√

ε1d +
∫ t
0
e−(1−b)(t−τ)(1−b)∂̄L(w(τ))2dτ

(1−at)

,

where for RMSProp a = 0, and for Adam a = b. For any 0 ≤ a < 1, 0 ≤ b ≤ 1, define Fi(t)
4
=∫ t

0
(1− b)bt−τ (∂̄L(w(t)))2

idτ as in RMSProp case. We will show Lemmas 13 and 14.

Lemma 15. For adaptive gradient flow defined as eq. (4) with h−1(t) =

√
ε1d +

∫ t
0
e−(1−b)(t−τ)(1−b)∂̄L(w(τ))2dτ

(1−at) with

0 ≤ a < 1 and 0 ≤ b ≤ 1, Fi(t) is bounded (i = 1, 2, · · · , p), that is,

limt→∞Fi(t) <∞.
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Proof. The proof follows the same routine as proof of Lemma 13, except in this case we have∫ tk+1

tk

(∂̄L(w(t)))2
i√

ε+ Fi(t)/(1− aτ )
dt ≥

∫ tk+1

tk

(∂̄L(w(t)))2
i√

ε+ (k + 1)/(1− atk)
dt.

For k ≥ 1, we further have∫ tk+1

tk

(∂̄L(w(t)))2
i√

ε+ (k + 1)/(1− atk)
dt ≥

∫ tk+1

tk

(∂̄L(w(t)))2
i√

ε+ (k + 1)/(1− at1)
dt ≥ 1− b√

ε+ (k + 1)/(1− at1)
,

sum of which diverges.

The proof is completed.

Lemma 16. For adaptive gradient flow,
∫∞

0
gi(t)

2dt converges (i = 1, 2, · · · , p). Consequently, limt→∞ Fi(t) = 0 and
limt→∞ h(t) = 1√

ε
1p.

Proof. The proof is the same as proof of Lemma 14, except that

L(0) ≥
p∑
i=1

∫ ∞
1

(∂̄L(w(t)))2
i√

ε+ Fi(t)/(1− at)
dt ≥

p∑
i=1

∫ ∞
1

(∂̄L(w(t)))2
i√

Mi/(1− a1) + ε
dt.

The proof is completed.

Proof of Theorem 5 for Adam flow. We only need to prove Lebesgue integrability of d logβ(t)
dt .

The proof is the same as proof of Theorem 5 for RMSProp flow, except that

Fi(t
′
k,j)/(1− at

′
k,j )− Fi(tk,j)/(1− atk,j )

≤Fi(t′k,j)/(1− at
′
k,j )− Fi(tk,j)/(1− at

′
k,j )

≤ 1

1− a
(Fi(t

′
k,j)− Fi(tk,j)).

The proof is completed.

It is worth noting that the current framework of adaptive gradient flow can not cover Adam with a decaying ε or without ε.
It will be interesting to see if the framework can be modified to analyze these optimizers, and we leave this as a future work.

B.2. Proof of Theorem 2

B.2.1. PROOF OF SURROGATE MARGIN LEMMAS: LEMMA 1, LEMMA 2, AND LEMMA 3

In the beginning, we first prove a basic lemma for normalized margin, i.e., the normalized margin γ and normalized gradients
are upper bounded:

Lemma 17. For any v ∈ Rp/{0}, the normalized margin γ = q̃min(v)
‖v‖L and normalized gradients ‖ ∂̄q̃i(v)

‖v‖L−1 ‖ (i = 1, 2, · · · , p)
are upper bounded universally.

Proof. By homogeneity of q̃i (i = 1, 2, · · · , p), only parameters with unit norm needed to be considered. That is,

{γ(v) : v ∈ Rp/{0}
= {γ(v) : ‖v‖ = 1} .

Since q̃i is continuous and {v : ‖v‖ = 1} is a compact set, normalized margin is upper bounded.

Normalized gradients ‖ ∂̄q̃i(v)
‖v‖L−1 ‖ are also bounded following similar routine since q̃i is locally Lipschitz.
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We then formally define surrogate norm ρ(t) and surrogate margin γ̃ as follows:

Definition 9 (Surrogate norm and surrogate margin). Let v(t) obey an adaptive gradient flow F which satisfies Assumption
1, with loss L̃ and component learning rate β(t). The surrogate margin ρ(t) along F is defined as

ρ(t) = ‖β(t)−
1
2 � v(t)‖,

and surrogate margin γ̃(t) is defined as

γ̃(t) =
f−1(log 1

L̃(v(t))
)

ρ(t)L
.

We can now restate Lemma 1 as follows:

Lemma 18 (Lemma 1 restated). Let v(t) obey an adaptive gradient flow F which satisfies Assumption 1, with loss L̃ and
component learning rate β(t). Then we have limt→∞

ρ(t)
‖v(t)‖ = 1. Furthermore, if further limt→∞ L̃(t) = ∞, we have

limt→∞
γ(t)
γ̃(t) = 1

Proof. By the definition of approximate norm ρ(t) = ‖β(t)−
1
2 � v(t)‖ and limt→∞ β(t) = 1p, we have that

1 = limt→∞min
i
β
− 1

2
i (t) ≤ limt→∞

ρ(t)

‖v(t)‖
≤ limt→∞

ρ(t)

‖v(t)‖
≤ limt→∞max

i
β
− 1

2
i (t) = 1,

which leads to limt→∞
ρ(t)
‖v(t)‖ = 1.

By the definition of L̃(v), we have

e−f(q̃min(v)) ≤ L̃(v) =

N∑
i=1

e−f(q̃i(v)) ≤ Ne−f(q̃min(v)).

Rearranging the above equation, we have

q̃min(v) ≥ g
(

log
1

L̃(v)

)
≥ g(f(q̃min(v))− logN)

=g(f(q̃min(v)))− logNg′(ξ) = q̃min(v)− logNg′(ξ),

where ξ ∈ (f(q̃min(v))− logN, f(q̃min(v))).

Therefore, the surrogate margin can be bounded as

q̃min(v(t))− logNg′(ξ)

‖v(t)‖L
‖v(t)‖L

ρ(t)L
=
q̃min(v(t))− logNg′(ξ)

ρ(t)L

≤γ̃(t) ≤ q̃min

ρ(t)L
= γ(t)

(
‖v(t)‖
ρ(t)

)L
. (11)

By the assumption that limt→∞ L̃ = 0, there exists a large enough time t̃, such that, any time t ≥ t̃, g(ξ) > 0. The left side
of the above equation 11 can be further rearranged as

q̃min(v(t))− logNg′(ξ)

‖v(t)‖L
‖v(t)‖L

ρ(t)L
=

(
γ(t)− logNg′(ξ)

‖v(t)‖L

)
‖v(t)‖L

ρ(t)L

=

(
γ(t)− logNg′(ξ)g(ξ)

‖v(t)‖Lg(ξ)

)
‖v(t)‖L

ρ(t)L

≥
(
γ(t)− logNg′(ξ)γ(t)

g(ξ)

)
‖v(t)‖L

ρ(t)L

=

(
γ(t)− logNγ(t)

g(ξ)f ′(g(ξ))

)
‖v(t)‖L

ρ(t)L
.
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By the assumption that limt→∞ L̃(t) = 0, limt→∞ξ ≥ limt→∞ log 1
L̃(t)
− logN = ∞, which further indicates

limt→∞ g(ξ)f ′(g(ξ)) = ∞ by the third item of Proposition 1. The proof is completed by taking t to infinity of eq.
(11).

By Lemmas 17 and 18, we have that if limt→∞ L̃(t)→ 0, γ̃(t) is upper bounded. We then lower bound γ̃(t) by proving
Lemma 2. As a warm-up, we first calculate the derivative of ρ2.

Lemma 19. The derivative of ρ2 is as follows:

1

2

dρ(t)2

dt
= Lν(t) +

〈
v(t),β−

1
2 (t)� dβ−

1
2

dt
(t)� v(t)

〉
,

where ν(t) is defined as
∑N
i=1 e

−f(q̃i(v(t)))f ′ (q̃i(v(t))) q̃i(v(t)). Furthermore, we have that ν(t) >
g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) L̃(v(t)).

Proof. By taking derivative directly, we have that

1

2

dρ(t)2

dt
=

〈
β−

1
2 (t)� v(t),

dβ(t)−
1
2 � v(t)

dt

〉

=

〈
β(t)−

1
2 � v(t),v(t)� dβ(t)−

1
2

dt
+ β(t)−

1
2 � dv(t)

dt

〉

= −
〈
v(t), ∂̄L̃(v(t))

〉
+

〈
β−

1
2 (t)� v(t),v(t)� dβ(t)−

1
2

dt

〉
(∗)
= L

N∑
i=1

e−f(q̃i(v(t)))f ′ (q̃i(v(t))) q̃i(v(t)) +

〈
β(t)−

1
2 � v(t),v(t)� dβ(t)−

1
2

dt

〉
,

where eq. (∗) comes from Homogeneity Assumption 1. I.

Furthermore, since q̃i(v(t)) ≥ q̃min(v(t)) ≥ g(log 1
L̃(v(t))

) for all i ∈ [N ] and f ′(x)x keeps increasing on (0,∞) by
Proposition 1,

f ′ (q̃i(v(t))) q̃i(v(t)) ≥ f ′
(
g

(
log

1

L̃(v(t))

))
· g
(

log
1

L̃(v(t))

)
=

g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) .
Therefore,

N∑
i=1

e−f(q̃i(v(t))(v(t)))f ′ (q̃i(v(t))) q̃i(v(t))

≥
g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) N∑
i=1

e−f(q̃i(v(t))) =
g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) L̃(v(t)).

The proof is completed.

With the estimation of dρ2

dt above, we come to the proof of Lemma 2.
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Proof of Lemma 2. We first construct time t1 as follows: by properties of β(t) in Definition 1, there exists some large
enough time t1 > t0, such that for any t > t1,

p∑
i=1

∫ ∞
t1

d log
(
β
− 1

2
i (t)

)
dt


+

≤ min

{
1

2L
,

1

4

}
,

p∑
i=1

∫ ∞
t1

d log
(
β
− 1

2
i (t)

)
dt


−

≥ −min

{
1

2L
,

1

4

}
,

and
1

2
≤ ‖β−

1
2 (t)‖∞ ≤

3

2
.

Taking logarithmic derivative to γ̃(v(t)), we have

d

dt
log γ̃(t)

=
d

dt

(
log

(
g

(
log

1

L̃(v(t))

))
− L log ρ(t)

)

=
g′
(

log 1
L̃(v(t))

)
g
(

log 1
L̃(v(t))

) · 1

L̃(v(t))
·

(
−dL̃(v(t))

dt

)
− L2 · ν(t)

ρ(t)2
−
L

〈
v(t),β−

1
2 (t)� dβ−

1
2

dt (t)� v(t)

〉
ρ(t)2

.

Let A =
g′
(

log 1
L̃(v(t))

)
g
(

log 1
L̃(v(t))

) · 1
L̃(v(t))

·
(
−dL̃(v(t))

dt

)
− L2 · ν(t)

ρ(t)2 and B =
L

〈
v(t),β−

1
2 (t)� dβ

− 1
2

dt (t)�v(t)

〉
ρ(t)2 . We then have

A ≥ 1

ν(t)
·

(
−dL̃(v(t))

dt

)
− L2 · ν(t)

ρ(t)2

≥ 1

ν(t)
·

(
−dL̃(v(t))

dt
− L2ν(t)2

ρ(t)2

)

=
1

ν(t)

(〈
dv(t)

dt
,β(t)−1 � dv(t)

dt

〉
−
〈
β(t)−

1
2 � dv(t)

dt
, ̂β(t)−

1
2 � v(t)

〉2
)

(∗)
≥ 0,

where inequality (∗) comes from Cauchy-Schwarz inequality.

As for B, we have that

B = −
L

〈
v(t),β−

1
2 � dβ−

1
2 (t)

dt (t)� v(t)

〉
ρ2

= −L
∑p
i=1 v

2
i (t)β

− 1
2

i (t)
dβ
− 1

2
i (t)

dt∑p
i=1 v

2
i (t)β−1

i (t)

≥ −L
p∑
i=1

(
d logβ

− 1
2

i (t)

dt

)
+

.



The Implicit Regularization for Adaptive Optimization Algorithms on Homogeneous Neural Networks

Combining the estimation of A and B, we then have

d

dt
log γ̃(t) ≥ A+B ≥ −L

p∑
i=1

(
d logβ

− 1
2

i (t)

dt

)
+

, (12)

and integrating both sides leads to

log γ̃(t)− log γ̃(t1) ≥ −1

2
.

The proof is completed.

By the proof of Lemma 2, we can then prove convergence of surrogate margin γ̃.

Proof of Lemma 3. By eq. (12), log γ̃(t) +
∫ t
t1
L
∑p
i=1

(
d logβ

− 1
2

i (τ)

dτ

)
+

dτ is non-decreasing. Furthermore, since

g(log 1
L̃(v(t))

) ≤ q̃min(v(t)), we have that

limt→∞γ̃(t) ≤ limt→∞
q̃min(v(t))

ρ(t)L
= limt→∞

q̃min(v(t))

‖v(t)‖L
,

which by Lemma 17, the last term is bounded.

Therefore, log γ̃(t) +
∫ t
t1
L
∑p
i=1

(
d logβ

− 1
2

i (τ)

dt

)
+

dτ is upper bounded, which further indicates that it converges due to its

monotony. The proof is completed by the convergence of
∫ t
t1
L
∑p
i=1

(
d logβ

− 1
2

i (τ)

dτ

)
+

dτ .

B.2.2. CONVERGENCE OF L̃ AND ρ: PROOF OF LEMMA 4

Here we restate the complete Lemma 4.
Lemma 20. Let v obey an adaptive gradient flow which satisfies Assumption 1. Let t1 be constructed as Lemma 2. Then,
for any t ≥ t1, define

G(t) =

∫ 1
L̃(t)

1
L̃(t1)

g′ (log x)
2

g (log x)
2−2/L

· dx.

Then, for any t ≥ t1, the following inequality holds:

G(t)−G(t1) ≥
∫ 1
L̃(t)

1
L̃(t1)

g′ (log x)
2

g (log x)
2−2/L

· dx ≥ (t− t1)e−
1
LL2γ̃ (t1)

2/L
.

Consequently, limt→∞ L̃ = 0 and limt→∞ ρ =∞.

Proof.

−dL̃(v(t))

dt
=

∥∥∥∥β− 1
2 (t)� dv(t)

dt

∥∥∥∥2

2

≥ 〈β(t)−
1
2 � dv(t)

dt
,

̂
β−

1
2 (t)� v(t)〉2 = L2 · ν(t)2

ρ(t)2
.

Furthermore, we have that

L2 ν(t)2

ρ(t)2
≥ L2 ·

 g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) L̃(v(t))

2

·

 γ̃(t)

g
(

log 1
L̃(v(t))

)
2/L

≥ L2 ·

 g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) L̃(v(t))

2

·

 e−1/2γ̃(t1)

g
(

log 1
L̃(v(t))

)
2/L

.
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By simple calculation, we have that

g′
(

log 1
L̃(v(t))

)2

g
(

log 1
L̃(v(t))

)2−2/L
· d

dt

1

L̃(v(t))
≥ e− 1

LL2γ̃ (t1)
2/L

.

Taking integration to both sides, we have

∫ 1
L̃(t)

1
L̃(t1)

g′ (log x)
2

g (log x)
2−2/L

· dx ≥ (t− t1)e−
1
LL2γ̃ (t1)

2/L
.

Since limt→∞(t− t1)e−
1
LL2γ̃ (t1)

2/L
=∞, we have that limt→∞

1
L̃(t)

=∞.

The proof is completed.

B.2.3. VERIFICATION OF KKT CONDITION

In Lemma 5, we omit the construction of coefficients λi to highlight the key factors of coefficients (O(1 −
〈v̂(t), −̂∂̄L̃(t)〉),O

(
log 1
L̃(v(t))

)
). We restate Lemma 5 and provide the detailed construction as follows:

Lemma 21 (Lemma 5 restated). Let v obey adaptive gradient flow F with empirical loss L̃ satisfying Assumption 1.
Let time t1 be constructed as Lemma 2. Then, define coefficients in Definition 2 as λi(t) = q̃min(v(t))1−2/L‖v(t)‖ ·
e−f(q̃i(v(t)))f ′ (q̃i(v(t))) /‖∂̄L̃(v(t))‖2. Then, for any time t ≥ t1, ṽ(t) = q̃min(v(t))−

1
L v(t) is an (ε(t), δ(t)) KKT point

of L2 max-margin problem (P ) defined in Theorem 2 , where ε(t), δ(t) are defined as follows:

ε(t) = 8e
1
L

1

γ̃(t1)2/L
(1− cos(θ(t)))

δ(t) =
2e−1+ 1

LKN

L
K

log2

(
2L+1e

1
2B1/γ̃(t1)

)
γ̃(t1)−2/L 1

log 1
L̃(v(t))

,

where cos(θ(t)) is defined as the cosine of angle between v(t) and −∂̄L̃(v(t)), i.e.,

cos(θ(t)) =

〈
v̂(t),− ̂∂̄L̃(v(t))

〉
.

Proof. We verify the definition of approximate KKT point directly.
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∥∥∥∥∥ṽ(t)−
N∑
i=1

λi(t)∂̄q̃i (ṽ(t))

∥∥∥∥∥
2

2

=

∥∥∥∥q̃min(v(t))−1/L‖v(t)‖v̂(t)− q̃min(v(t))−1/L‖v(t)‖e−f(q̃i(v(t)))f ′ (q̃i(v(t))) ∂̄q̃i (v(t))

‖∂̄L̃(v(t))‖2

∥∥∥∥2

2

= q̃min(v(t))−2/L‖v(t)‖2
∥∥∥∥∥v̂(t) +

∂̄L̃(v(t))

‖∂̄L̃(v(t))‖2

∥∥∥∥∥
2

2

= q̃min(v(t))−2/L‖v(t)‖2
(

2− 2

〈
v̂(t), ̂−∂̄L̃(v(t))

〉)
≤ 2g

(
log

(
1

L̃(v(t))

))−2/L

‖v(t)‖2(1− cos(θ(t)))

≤ 8g

(
log

(
1

L̃(v(t))

))−2/L

ρ(t)2(1− cos(θ(t)))

= 8
1

γ̃(t)2/L
(1− cos(θ(t))) ≤ 8

1

γ̃(t)2/L
(1− cos(θ(t)))

≤ 8e
1
L

1

γ̃(t1)2/L
(1− cos(θ(t))).

As for δ, we have that

N∑
i=1

λi (q̃i(ṽ(t))− 1)

=

∑N
i=1 q̃

1−2/L
min (v(t))‖v(t)‖ · e−f(q̃i(v(t))f ′ (q̃i(v(t))

(
q̃i(v(t))
q̃min(v(t)) − 1

)
‖∂̄L̃(v(t)‖2

=

∑N
i=1 q̃min(v(t))−2/L‖v(t)‖ · e−f(q̃i(v(t)))f ′ (q̃i(v(t))) (q̃i(v(t))− q̃min(v(t)))

‖∂̄L̃(v(t))‖2
(∗)
≤

N∑
i=1

2K

L
q̃min(v(t))−2/L‖v(t)‖2ef(q̃min(v(t)))−f(q̃i(v(t)))f ′ (q̃i(v(t)))

· (q̃i(v(t))− q̃min(v(t)))
1

log 1
L̃(v(t))

,

where inequality (∗) is because

‖∂̄L̃(v(t))‖ ≥
〈
∂̄L̃(v(t)), v̂(t)

〉
=

Lν(t)

‖v(t)‖

≥ L

‖v(t)‖

g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) L̃(v(t)) ≥ L

‖v(t)‖
1

2K
log

1

L̃(v(t))
· L̃(v(t))

≥ L

‖v(t)‖
1

2K
e−f(q̃min(v(t))) log

1

L̃(v(t))
.

Bounding ‖v‖ using ρ and applying the definition of surrogate margin γ̃, we further have
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N∑
i=1

λi (q̃i(ṽ(t))− 1)

≤
N∑
i=1

8K

L
q̃
−2/L
min (v(t))ρ(t)2ef(q̃min(v(t)))−f(q̃i(v(t)))f ′ (q̃i(v(t))) (q̃i(v(t))− q̃min(v(t))

1

log 1
L̃(v(t))

≤
N∑
i=1

8K

L
γ̃(t)−2/L · ef(q̃min(v(t)))−f(q̃i(v(t)))f ′ (q̃i(v(t))) (q̃i(v(t))− q̃min(v(t)))

1

log 1
L̃(v(t))

≤
N∑
i=1

8e
1
LK

L
γ̃(t1)−2/L · ef(q̃min(v(t)))−f(q̃i(v(t)))f ′ (q̃i(v(t))) (q̃i(v(t))− q̃min(v(t)))

1

log 1
L̃(v(t))

.

Since f(q̃min(v(t))(v(t)))− f(q̃i(v(t))) = (q̃min(v(t))− q̃i(v(t)))f ′(ξi(t)) (ξi(t) ∈ [q̃min(v(t)), q̃i(v(t))] is guaranteed
by Mean Value Theorem), we then have

N∑
i=1

λi (q̃i(ṽ(t))− 1)

≤
N∑
i=1

2e
1
LK

L
γ̃(t1)−2/L · ef(q̃min(v(t)))−f(q̃i(v(t)))f ′ (q̃i(v(t)))

(q̃i(v(t))− q̃min(v(t)))
1

log 1
L̃(v(t))

=

N∑
i=1

2e
1
LK

L
γ̃(t1)−2/L · e(q̃min(v(t))−q̃i(v(t)))f ′(ξi(t))f ′ (q̃i(v(t)))

(q̃i(v(t))− q̃min(v(t)))
1

log 1
L̃(v(t))

≤
N∑
i=1

2e
1
LK

L
γ̃(t1)−2/L · e(q̃min(v(t))−q̃i(v(t)))f ′(ξi(t))Kdlog2(q̃i(v(t))/ξi(t))ef ′ (ξi(t))

(q̃i(v(t))− q̃min(v(t)))
1

log 1
L̃(v(t))

(∗)
≤

N∑
i=1

2e
1
LK

L
γ̃(t1)−2/L · e(q̃min(v(t))−q̃i(v(t)))f ′(ξi(t))K

log2

(
2e

1
2B1/γ̃(t1)

)
f ′ (ξi(t))

(q̃i(v(t))− q̃min(v(t)))
1

log 1
L̃(v(t))

(∗∗)
≤ 2e−1+ 1

LKN

L
K

log2

(
2L+1e

1
2B1/γ̃(t1)

)
γ̃(t1)−2/L 1

log 1
L̃(v(t))

,

where eq. (∗) is because

dlog2 (q̃i(v(t))/ξi(t))e ≤ log2 (q̃i(v(t))/q̃min(v(t))) + 1

≤ log2

(
q̃i(v(t))‖v(t)‖L/‖v(t)‖Lq̃min(v(t))

)
+ 1

≤ log2

(
2L+1B1ρ(t)L/q̃min

)
≤ log2

(
2L+1B1/γ̃(t)

)
≤ log2

(
2L+1e

1
2B1/γ̃(t1)

)
,

which further leads to

f ′ (q̃i(v(t))) ≤ K log2

(
2e

1
2B1/γ̃(t1)

)
f ′ (ξi(t)) ,
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and eq. (∗∗) is because e−xx ≤ e−1.

The proof is completed.

By Lemma 4, we have proved that limt→∞ L̃(t) = 0, which leads to limt→∞ δ(t) = 0. As stated in the main text, we only
need to bound ε(t), or equivalently (1− cos(θ(t))).

Before moving forward, we introduce an equivalent proposition of that (1− cos(θ)) goes to zero.

Lemma 22. If there exists a time sequence {ti}∞i=1, such that, limi→∞ ti =∞ and limi→∞

〈
̂
β−

1
2 � v, ̂

β
1
2 � ¯∂L̃

〉
= −1,

then

lim
i→∞

cos(θ(ti)) = 1.

Proof.

− cos(θ(t))

=

〈
̂β(t)−

1
2 � v(t) +

(
v̂(t)− ̂β(t)−

1
2 � v(t)

)
, ̂β(t)

1
2 � ∂̄L̃(t) +

(
̂̄∂L̃(t)− ̂β(t)

1
2 � ∂̄L̃(t)

)〉
=

〈
̂β(t)−

1
2 � v(t), ̂β(t)

1
2 � ∂̄L̃(t)

〉
+

〈
̂β(t)−

1
2 � v(t),

(
̂̄∂L̃(t)− ̂β(t)

1
2 � ∂̄L̃(t)

)〉
+

〈(
v̂(t)− ̂β(t)−

1
2 � v(t)

)
, ̂β(t)

1
2 � ∂̄L̃(t)

〉
+

〈(
v̂(t)− ̂β(t)−

1
2 � v(t)

)
,

(
̂̄∂L̃(t)− ̂β(t)

1
2 � ∂̄L̃(t)

)〉
.

Furthermore,

lim
i→∞

∥∥∥∥̂̄∂L̃(t)− ̂β(t)
1
2 � ∂̄L̃(t)

∥∥∥∥ = 2− 2 lim
i→∞

〈
̂̄∂L̃(t), ̂β(t)

1
2 � ∂̄L̃(t)

〉
= 0.

Following the same routine, we have limi→∞

∥∥∥∥v̂(t)− ̂β(t)−
1
2 � v(t)

∥∥∥∥ = 0.

The proof is completed.

Let cos(θ̃(t)) = −
〈

̂β(t)−
1
2 � v(t), ̂β(t)

1
2 � ∂̄L̃(t)

〉
=

〈
̂β(t)−

1
2 � v(t),

̂
β(t)−

1
2 � dv(t)

dt

〉
. Then we only need to

bound 1− cos(θ̃(t)).

In Section 5.3, we briefly state the methodology of proving the convergence of ε(t). We will make it more clear here: In the
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proof Lemma 2, we show that sum of the derivative of g(log 1
L̃(t)

) and 1
ρ(t)L

with β(t) fixed can be bounded as

d

dt

(
log

(
g

(
log

1

L̃(t)

)))
− L

〈
∂̄v log ρ(t),

dv(t)

dt

〉

=
g′
(

log 1
L̃(t)

)
g
(

log 1
L̃(t)

) · 1

L̃(t)
·

(
−dL̃(t)

dt

)
− L2 · ν(t)

ρ(t)2

≥ 1

ν(t)

(〈
dv(t)

dt
,β(t)−1 � dv(t)

dt

〉
−
〈
β(t)−

1
2 � dv(t)

dt
, ̂β(t)−

1
2 � v(t)

〉2
)

=

〈
β(t)−

1
2 � dv(t)

dt , ̂β(t)−
1
2 � v(t)

〉2

ν(t)
(cos(θ̃(t))−2 − 1)

=
L2ν(t)

ρ(t)2
(cos(θ̃(t))−2 − 1)

=L

〈
∂̄v log ρ(t),

dv

dt

〉
(cos(θ̃(t))−2 − 1). (13)

Eq. (13) indicates that, intuitively, (cos(θ̃(t))−2 − 1) can be bounded by the division of change of γ̃ to change of parameter
part v in ρ. For this purpose, we define ρ̃ in Section 5.3 to describe the accumulated change of v in ρ. The following lemma
describe the basic property of ρ̃ and its relationship with ρ.
Lemma 23. (1). The derivative of ρ̃2 is as follows:

1

2

dρ̃(t)2

dt
= 〈∂̄L̃(v(t)),v(t)〉 = Lν(t);

(2). ρ(t) satisfies that, for any t2 > t1 > t1,
ρ(t2) ≥ e− 1

2 ρ(t1);

(3). For any t > t1,
√

1− e
1
2

2 ≤
ρ(t)
ρ̃(t) ≤

√
1 + e

1
2

2 .

Proof. (1). can be directly verified similar to Lemma 19. As for (2)., since d log ρ(t)
dt = 1

2

dρ(t)2

dt

ρ(t)2 , we have that

d log ρ(t)

dt
=

L
∑N
i=1 e

−f(q̃i(v(t)))f ′ (q̃i(v(t))) q̃i(v(t)) +

〈
β(t)−

1
2 � v(t),v(t)� dβ(t)−

1
2

dt

〉
ρ(t)2

≥

〈
β(t)−

1
2 � v(t),v(t)� dβ(t)−

1
2

dt

〉
ρ(t)2

≥
∑p
i=1 βi(t)

− 1
2 (t)

dβ
− 1

2
i (t)

dt vi(t)
2∑p

i=1 β
−1
i (t)vi(t)2

=

∑p
i=1 β

1
2
i (t)

dβ
− 1

2
i (t)

dt β−1
i (t)vi(t)

2∑p
i=1 β

−1
i (t)vi(t)2

=

∑p
i=1

d logβ
− 1

2
i (t)

dt β−1
i (t)vi(t)

2∑p
i=1 β

−1
i (t)vi(t)2

≥
p∑
i=1

(
d logβ

− 1
2

i (t)

dt

)
−

.
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The proof for (2). is completed by integration.

As for (3)., by expanding 〈v(t),β−
1
2 (t)� dβ−

1
2 (t)

dt � v(t)〉, we have that

ρ̃(t)2 =

∫ t

t1

〈v(τ),β−
1
2 (τ)� dβ−

1
2 (τ)

dτ
� v(τ)〉dτ

=

p∑
i=1

∫ t

t1

v2
i (τ)β−1

i (τ)β
1
2
i (τ)

dβ
− 1

2
i (τ)

dt
dτ

≤
p∑
i=1

∫ t

t1

β−1
i (τ)v2

i (τ)

(
β

1
2
i (τ)

dβ
− 1

2
i (τ)

dt

)
+

dτ

≤
∫ t

t1

(
p∑
i=1

β−1
i v

2
i (τ)

)(
p∑
i=1

(
β

1
2
i (τ)

dβ
− 1

2
i (τ)

dt

)
+

)
dτ

(∗)
=‖β(τ0)−

1
2 � v(τ0)‖2

∫ t

t1

(
p∑
i=1

(
β

1
2
i (τ)

dβ
− 1

2
i (τ)

dt

)
+

)
dτ

≤1

4
‖β(τ0)−

1
2 � v(τ0)‖2

≤e
1
2

4
‖β(t)−

1
2 � v(t)‖2,

where τ0 in eq. (∗) is in [t1, t] and First Mean Value Theorem guarantees its existence.

The second inequality follows by lower bound
∫ t
t1
〈v(τ),β−

1
2 (τ)� dβ−

1
2 (τ)

dτ � v(τ)〉dτ similarly.

The proof is completed.

With Lemma 23, we integrate the analysis of the change of γ̃ into the following Lemma.

Lemma 24. For any time t3 > t2 ≥ t1,∫ t3

t2

(
cos(θ̃(τ))−2 − 1

)
· d

dτ
log ρ̃(τ)dτ ≤ 1

L

(
1− e

1
2

2

) log
γ̃ (t3)

γ̃ (t2)

+
L(

1− e
1
2

2

) p∑
i=1

∫ t3

t2

p∑
i=1

(
d logβ

− 1
2

i (t)

dt

)
+

dt.

Proof. Recall that

d log ρ̃(t)

dt
=
Lν(t)

ρ̃(t)2
=

〈
v(t),β(t)−1 � dv(t)

dt

〉
ρ̃(t)2

,

and

d

dt
log γ̃(t) ≥ 1

ν(t)

(〈
dv(t)

dt
,β(t)−1 � dv(t)

dt

〉
−
〈
β(t)−

1
2 � dv(t)

dt
, ̂β(t)−

1
2 � v(t)

〉)
−L

p∑
i=1

(
d logβi(t)

− 1
2 (t)

dt

)
+

.



The Implicit Regularization for Adaptive Optimization Algorithms on Homogeneous Neural Networks

We then have

d

dt
log γ̃(t) ≥ 1

ν(t)

(〈
dv(t)

dt
,β(t)−1 � dv(t)

dt

〉
−
〈
β(t)−

1
2 � dv(t)

dt
, ̂β(t)−

1
2 � v(t)

〉2
)

−L
p∑
i=1

(
d logβ(t)

− 1
2

i (t)

dt

)
+

=L
ρ̃(t)2

L2ν(t)2

d log ρ̃(t)

dt

(〈
dv(t)

dt
,β(t)−1 � dv(t)

dt

〉
−
〈
β(t)−

1
2 � dv(t)

dt
, ̂β(t)−

1
2 � v(t)

〉2
)

−L
p∑
i=1

(
d logβ(t)

− 1
2

i (t)

dt

)
+

≥L

(
1− e

1
2

2

)
ρ(t)2

L2ν(t)2

d log ρ̃(t)

dt

(〈
dv(t)

dt
,β(t)−1 � dv(t)

dt

〉

−
〈
β(t)−

1
2 � dv(t)

dt
,

̂
β−

1
2 � v(t)

〉2
)

−L
p∑
i=1

(
d logβ

− 1
2

i (t)

dt

)
+

=L

(
1− e

1
2

2

)
d log ρ̃

dt
(cos(θ̃(t))−2 − 1)− L

p∑
i=1

(
d logβ

− 1
2

i (t)

dt

)
+

.

The proof is completed.

Applying the First Mean Value Theorem together with Lemmas 22 and 24, one can easily obtain the first inequality in
Lemma 6. To make the following proof simpler, we restate Lemma 6 as the following corollary, while using cos(θ̃(t))
instead of cos(θ(t)).

Corollary 1 (First inequality in Lemma 6, restated). For any time t3 > t2 ≥ t1, there exists a time ξ ∈ (t2, t3), such that,

(
cos(θ̃(ξ))−2 − 1

)
(log ρ̃(t2)− log ρ̃(t1)) ≤ 1

L

(
1− e

1
2

2

) log
γ̃ (t3)

γ̃ (t2)

+
L(

1− e
1
2

2

) p∑
i=1

∫ t3

t2

p∑
i=1

(
d logβ

− 1
2

i (t)

dt

)
+

dt.

We then prove the second inequality in Lemma 6 to complete the proof of Lemma 6.

Proof of Lemma 6. By direct calculation, we have that

∥∥∥∥dv̂(t)

dt

∥∥∥∥ =
1

‖v(t)‖

∥∥∥∥(I − v̂(t)v̂(t)>
) dv(t)

dt

∥∥∥∥ ≤ 1

‖v(t)‖

∥∥∥∥dv(t)

dt

∥∥∥∥ ≤ 2

‖v(t)‖

∥∥∥∥β(t)−1 � dv(t)

dt

∥∥∥∥ .



The Implicit Regularization for Adaptive Optimization Algorithms on Homogeneous Neural Networks

Furthermore, ∥∥∥∥β(t)−1 � dv(t)

dt

∥∥∥∥ =
∥∥∥∂̄L̃(t)

∥∥∥
≤
∑
i∈[N ]

e−f(q̃i(v(t)))f ′ (q̃i(v(t)))
∥∥∂̄q̃i(v(t))

∥∥
≤
∑
i∈[N ]

e−f(q̃i(v(t)))f ′ (q̃i(v(t))) q̃i(v(t))
1

q̃i(v(t))
B1‖v(t)‖L−1

≤
∑
i∈[N ]

2L−1e−f(q̃i(v(t)))f ′ (q̃i(v(t))) q̃i(v(t))
1

q̃i(v(t))
B1ρ(t)L−1

≤
∑
i∈[N ]

2L−1e−f(q̃i(v(t)))f ′ (q̃i(v(t))) q̃i(v(t))
1

g
(

log 1
L̃(t)

)B1ρ(t)L−1

= 2L−1 ν(t)

ρ(t)

ρ(t)L

g
(

log 1
L̃(t)

)B1 = 2L−1 ν(t)

ρ(t)

1

γ̃(t)
B1

Therefore, ∥∥∥∥dv̂(t)

dt

∥∥∥∥ ≤ 2L
ν(t)

ρ(t)‖v(t)‖
1

γ̃(t)
B1 ≤ 3 · 2L−1 ν(t)

ρ(t)2

1

γ̃(t)
B1 ≤

3 · 2L−1

(1− e
1
2

2 )

ν(t)

ρ̃(t)2

1

γ̃(t)
B1

=
3 · 2L−1

(1− e
1
2

2 )

B1

L

d log ρ̃(t)

dt

1

γ̃(t)
≤ 3 · 2L−1

(1− e
1
2

2 )

e
1
2B1

L

d log ρ̃(t)

dt

1

γ̃(t1)
.

The proof is completed.

Applying Lemma 5 and Lemma 6, we can then prove Theorem 2.

Proof of Theorem 2. Let v̄ be any limit point of series {v(t)}∞t=0. We construct a series of approximate KKT point which
converges to v̄ by induction.

Let t1 = t1. Now suppose tk−1 has been constructed. By Lemma 3 and that v̄ is a limit point, there exists sk > tk−1 such
that, for any t > sk

‖v̂ (sk)− v̄‖2 ≤
1

k
,

2

L
log

γ̃(t)

γ̃(sk)
≤ 1

2k3
, and, L

p∑
i=1

∫ ∞
sm

(
d logβi(t)

− 1
2

dt

)
+

dt ≤ 1

2k3
.

Let s′k > sk satisfy log ρ̃ (s′k) = log ρ̃ (sk) + 1
k (which is guaranteed as limt→∞ ρ = ∞ and Lemma 23). Therefore, by

Corollary 1, there exists tk ∈ (sk, s
′
k), such that

cos(θ̃
(
tk
)
)−2 − 1 ≤ 1

k2(1− e
1
2

2 )
. (14)

Furthermore, ∥∥v̂ (tk)− v̄∥∥
2
≤
∥∥v̂ (tk)− v̂ (sk)

∥∥
2

+ ‖v̂ (sk)− v‖2 ≤
3 · 2L−1

(1− e
1
2

2 )

e
1
2

L

1

γ̃(t1)

1

k
+

1

k
→ 0.

Therefore, limt→∞ v̂(tk) = v̄. Furthermore, by eq. (14) and Lemma 21, we have that v(tk)/q̃
1
L

min(v(tk)) is an (εi, δi) KKT
point with limi→∞ εi = limi→∞ δi = 0. Since

v(tk)/q̃
1
L

min(v(tk)) = v̂(tk)/γ(tk),
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and γ(tk) converges to a positive number, we further have

lim
k→∞

v(tk)/q̃
1
L

min(v(tk)) = v̄/ lim
k→∞

γ(tk)
1
L ,

is a KKT point of (P ), and along the same direction of v̄.

The proof is completed.

B.3. Convergent Direction of AdaGrad, RMSProp and Adam (w/m): proof of Theorems 6 and 7

First of all, we prove Theorem 6 by substitute v in Theorem 2 with h∞ �w.

Proof of Theorem 6. Let w̄ be any limit point of series {ŵ(t)}∞t=0. Since v(t) = h
− 1

2∞ �w(t),
̂

h
− 1

2∞ � w̄ is a limit point

of {v̂(t)}. By Theorem 2,
̂

h
− 1

2∞ � w̄/q̃min

(
̂

h
− 1

2∞ � w̄
)1/L

= h
− 1

2∞ � w̄/qmin(w̄)1/L is a KKT point of (P̃ ). Therefore,

there exist non-negative reals {λi}Ni=1, such that

h
− 1

2∞ � w̄/qmin(w̄)1/L =
N∑
i=1

λi∂̄q̃i(h
− 1

2∞ � w̄/qmin(w̄)1/L),

N∑
i=1

λi(q̃i(h
− 1

2∞ � w̄/qmin(w̄)1/L)− 1) = 0.

Applying the relationship between q̃i and qi, we then have

h−1
∞ � w̄/qmin(w̄)1/L =

N∑
i=1

λi∂̄qi(w̄/qmin(w̄)1/L),

N∑
i=1

λi(qi(w̄/qmin(w̄)1/L)− 1) = 0.

The proof is completed.

Theorem 7 can be obtained in the same way.

Proof of Theorem 7. The claim holds since vR is just w with a positive scaling factor, vR and w share the same direction.

The proof is completed.

B.4. Convergence Rate of Empirical Loss and Parameter Norm

In the end of this section, we will give a tight bound for the convergence rate of empirical loss and parameter norm, which is
derived by estimating G(x) in Lemma 20. These results will further be used in Appendix C.

Theorem 10. Let v obey an adaptive gradient flow F with empirical loss L̃ satisfying Assumption 1. Let G(x) be defined
as Lemma 20, i.e.,

G(x) =

∫ x

1
L̃(t1)

g′ (log z)
2

g (log z)
2−2/L

· dz.

Then G(x) = Θ(x(log x)
2
L−2), and G−1(x) = Θ(x(log x)2− 2

L ). Consequently,

L̃(t) = Θ

(
1

t log t2−
2
L

)
, and ‖v(t)‖ = Θ

(
1

log t
1
L

)
.
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Proof. For any large enough x,

G(x) =

∫ x

1
L̃(t1)

g′ (log z)
2

g (log z)
2−2/L

· dz

(∗)
= Θ

(∫ x

1
L̃(t1)

g (log z)
2/L

(log z)2
· dz

)

= Θ

(∫ x

1
L̃(t1)

1

(log z)2− 2
L

· dz

)
= Θ

(
x(log x)

2
L−2

)
,

where eq. (∗) is due to Proposition 1.

Since G(x) is monotonously increasing, and limx→∞G(x) = ∞, we have x = Θ
(
G−1(x)(logG−1(x))

2
L−2

)
, which

further leads to G−1(x) = Θ(x(log x)2− 2
L ).

Since 1
L̃(t)

= G−1(Ω(t)), we have 1
L̃(t)

= Ω(t(log t)2− 2
L ), which further leads to L̃(t) = O

(
1

t(log t)2−
2
L

)
.

On the other hand,

−dL̃(v(t))

dt
=
∥∥∥β 1

2 (t)� ∂̄L̃(t)
∥∥∥2

2
≤ 2

∥∥∥∂̄L̃(t)
∥∥∥2

2
= O

(
L̃(v(t))g

(
log

1

L̃(t)

)1− 1
L

)
,

which leads to 1
L̃(t)

= G−1(O(t)), and L̃(t) = Ω

(
1

t(log t)2−
2
L

)
. Therefore, L̃(t) = Θ

(
1

t(log t)2−
2
L

)
By Lemma 17, ‖v(t)‖L = Θ

(
log 1
L̃(t)

)
, which leads to ‖v(t)‖ = Θ

(
1

log t
1
L

)
.

The proof is completed.

The convergent behavior of ∂̄L̃(v(t)) can be derived immediately by the above Theorem.

Corollary 2. Let v obey an adaptive gradient flow F with empirical loss L̃ satisfying Assumption 1. Then, ‖∂̄L̃(v(t))‖ =

Θ

(
1

t(log t)1−
1
L

)
.

Proof. Since

Ω
(
L̃(v(t))‖v(t)‖L−1

)
= 〈∂̄L̃(v(t)), v̂(t)〉 ≤ ‖∂̄L̃(v(t))‖ = O

(
L̃(v(t))‖v(t)‖L−1

)
,

the proof is completed.

C. Proof of Theorem 3
In this section, we will prove that direction of parameters converges, that is, limt→∞

v(t)
‖v(t)‖ exists. Concretely, define the

length swept by v(t)
‖v(t)‖ as ζ(t), i.e.,

ζ(t) =

∫ t

0

∥∥∥∥dv̂(τ)

dτ

∥∥∥∥ dτ.

We will upper bound ζ(t) in the rest of this section.
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To begin with, we define another surrogate margin γ̄ as

γ̄(v) =
g(log 1

L̃(v)
)

‖v‖L
+ e−L̃(v).

The following Lemma then lower bound the derivative of γ̄.

Lemma 25. For large enough t, we have

dγ̄(v(t))

dt
≥ 1

2

(∥∥∂̄\\γ̄ (v(t))
∥∥ ∥∥∥∂̄\\L̃ (v(t))

∥∥∥+
∥∥∂̄⊥γ̄ (v(t))

∥∥ ∥∥∥∂̄⊥L̃ (v(t))
∥∥∥) ,

and

dζ(t)

dt
=

∥∥∥(β(t)� ∂̄L̃ (v(t)))⊥

∥∥∥
‖v(t)‖

.

Proof. To begin with, we calculate the rate of β converging to 1p. For AdaGrad, given a fixed index i ∈ [N ], we have that,

0 ≤ βi(t)− 1 =(h∞)−1
i (hi(t)− (h∞)i) = Θ(hi(t)− (h∞)i)

=Θ

(∫ ∞
t

∂̄L(w(τ))2dτ

)
= Θ

(∫ ∞
t

1

τ2(log τ)2− 2
L

dτ

)
=O

(
1

t(log t)2− 2
L

)
. (15)

Similarly, for RMSProp, given a fixed index i ∈ [N ],

0 ≤ 1−
√
ε√

ε+ (1− b)
∫ t

0
e−(1−b)(t−τ)(∂̄L(τ))2

idτ
= Θ

(
(1− b)

∫ t

0

e−(1−b)(t−τ)(∂̄L(τ))2
idτ

)

=Θ

(
(1− b)

∫ t−
√
t

0

e−(1−b)(t−τ)(∂̄L(τ))2
idτ

)
+ Θ

(
(1− b)

∫ t

t−
√
t

e−(1−b)(t−τ)(∂̄L(τ))2
idτ

)
=O

(
(1− b)e−(1−b)

√
t

∫ ∞
0

(∂̄L̃(τ))2
idτ

)
+O

(
(1− b)

√
t

(t−
√
t)2

)
=O

(
1

t
3
2

)
= O

(
1

t(log t)2− 2
L

)
.

We then directly calculate the derivative of γ̄:

dγ̄(v(t))

dt
=〈∂̄γ̄(v(t)),

dv(t)

dt
〉

=

〈
−g′

(
log

1

L̃

)
∂̄L̃

L̃‖v(t)‖L
− L

g
(

log 1
L̃

)
‖v(t)‖L+1

v̂(t)− e−L̃∂̄L̃, dv(t)

dt

〉

=

〈
g′
(

log
1

L̃

)
∂̄L̃

L̃‖v(t)‖L
+ L

g
(

log 1
L̃

)
‖v(t)‖L+1

v̂(t) + e−L̃∂̄L̃,β(t)� ∂̄L̃

〉

=

〈
g′
(

log
1

L̃

)
∂̄L̃

L̃‖v(t)‖L
+ L

g
(

log 1
L̃

)
‖v(t)‖L+1

v̂(t), ∂̄L̃

〉
+
〈
e−L̃∂̄L̃,β(t)� ∂̄L̃

〉

+

〈
g′
(

log
1

L̃

)
∂̄L̃(v(t))

L̃‖v(t)‖L
+ L

g
(

log 1
L̃

)
‖v(t)‖L+1

v̂(t), (1− β(t))� ∂̄L̃

〉
.
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The final term can be further bounded as follows:∣∣∣∣∣∣
〈
g′
(

log
1

L̃

)
∂̄L̃

L̃‖v(t)‖L
+ L

g
(

log 1
L̃

)
‖v(t)‖L+1

v̂, (1− β(t))� ∂̄L̃

〉∣∣∣∣∣∣
≤‖1− β(t)‖∞

∥∥∥∥∥∥g′
(

log
1

L̃

)
∂̄L̃

L̃‖v(t)‖L
+ L

g
(

log 1
L̃

)
‖v(t)‖L+1

v̂

∥∥∥∥∥∥ ‖∂̄L̃‖
≤O

(
1

t(log t)2− 2
L

)
O
(

1

‖v(t)‖

)
‖∂̄L̃‖

=O
(
L̃(v(t))

)
O
(

1

‖v(t)‖

)
‖∂̄L̃‖

=O
(

1

‖v(t)‖L

)
‖∂̄L̃‖2.

On the other hand, 〈
e−L̃(v(t))∂̄L̃(v(t)),β(t)� ∂̄L̃(v(t))

〉
= Θ(‖∂̄L̃(v(t))‖2).

Therefore, there exists a large enough T , such that, any t ≥ T ,

〈
e−L̃∂̄L̃(v(t)),β(t)� ∂̄L̃(v(t))

〉
+

〈
g′
(

log
1

L̃

)
∂̄L̃

L̃‖v(t)‖L
+ L

g
(

log 1
L̃

)
‖v(t)‖L+1

v̂, (1− β(t))� ∂̄L̃(v(t))

〉

≥1

2

〈
e−L̃(v(t))∂̄L̃(v(t)), ∂̄L̃(v(t))

〉
,

which further leads to

dγ̄(v(t))

dt
≥ 1

2

〈
e−L̃(v(t))∂̄L̃(v(t)), ∂̄L̃(v(t))

〉
+

〈
g′
(

log 1
L̃

)
∂̄L̃(v(t))

L̃(v(t))‖v(t)‖L
+ L

g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

v̂, ∂̄L̃(v(t))

〉
.

We then calculate axial component and radial component of e−L̃(v)∂̄L̃(v), g′
(

log 1
L̃

)
∂̄L̃(v)

L̃(v)‖v‖L + L
g
(

log 1
L̃(v)

)
‖v‖L+1 v̂, and

∂̄L̃(v) respectively as follows: (
e−L̃(v)∂̄L̃(v)

)
\\

= 〈e−L̃(v)∂̄L̃(v), v̂〉v̂,(
e−L̃(v)∂̄L̃(v)

)
⊥

= e−L̃(v)(∂̄L̃(v)− 〈∂̄L̃(v), v̂〉v̂),g′(log
1

L̃

)
∂̄L̃(v)

L̃(v)‖v‖L
+ L

g
(

log 1
L̃(v)

)
‖v‖L+1

v̂


\\

= L
g
(

log 1
L(v)

)
‖v‖L+1

v̂ + g′
(

log
1

L̃

)
〈∂̄L̃(v), v̂〉
L̃(v)‖v‖L

v̂,

g′(log
1

L̃

)
∂̄L̃(v)

L̃(v)‖v‖L
+ L

g
(

log 1
L̃(v)

)
‖v‖L+1

v̂


⊥

= g′
(

log
1

L̃

)
∂̄L̃(v)− 〈∂̄L̃(v), v̂〉v̂

L̃‖v‖L
,

(
∂̄L̃(v)

)
\\

= 〈∂̄L̃(v), v̂〉v̂(
∂̄L̃(v)

)
⊥

= ∂̄L̃(v)− 〈∂̄L̃(v), v̂〉v̂.
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Therefore,

1

2

〈
e−L̃(v(t))∂̄L̃(v(t)), ∂̄L̃(v(t))

〉
+

〈
g′
(

log
1

L̃

)
∂̄L̃(v(t))

L̃(v(t))‖v(t)‖L
+ L

log 1
L̃(v(t))

‖v‖L+1
v̂(t), ∂̄L̃(v(t))

〉

=
1

2

〈(
e−L̃(v(t))∂̄L̃(v(t))

)
\\

+
(
e−L̃(v(t))∂̄L̃(v(t))

)
⊥
,
(
∂̄L̃(v(t))

)
\\

+
(
∂̄L̃(v(t))

)
⊥

〉

+

〈g′(log
1

L̃

)
∂̄L̃(v(t))

L̃(v(t))‖v(t)‖L
+ L

g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

v̂(t)


\\

+

g′(log
1

L̃

)
∂̄L̃(v(t))

L̃(v(t))‖v(t)‖L
+ L

g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

v̂(t)


⊥

,

(
∂̄L̃(v(t))

)
\\

+
(
∂̄L̃(v(t))

)
⊥

〉
(∗)
=

1

2

(∥∥∥∥(e−L̃(v(t))∂̄L̃(v(t))
)
\\

∥∥∥∥∥∥∥∥(∂̄L̃(v(t))
)
\\

∥∥∥∥+
∥∥∥(e−L̃(v(t))∂̄L̃(v(t))

)
⊥

∥∥∥∥∥∥(∂̄L̃(v(t))
)
⊥

∥∥∥)

+

∥∥∥∥∥∥∥
g′(log

1

L̃

)
∂̄L̃(v(t))

L̃(v(t))‖v(t)‖L
+ L

g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

v̂(t)


\\

∥∥∥∥∥∥∥
∥∥∥∥(∂̄L̃(v(t))

)
\\

∥∥∥∥
+

∥∥∥∥∥∥
g′(log

1

L̃

)
∂̄L̃(v(t))

L̃(v(t))‖v(t)‖L
+ L

g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

v̂(t)


⊥

∥∥∥∥∥∥
∥∥∥(∂̄L̃(v(t))

)
⊥

∥∥∥
≥1

2

∥∥∥∥∥∥∥
e−L̃(v(t))∂̄L̃(v(t)) + g′

(
log

1

L̃

)
∂̄L̃(v(t))

L̃(v(t))‖v(t)‖L
+ L

g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

v̂(t)


\\

∥∥∥∥∥∥∥
∥∥∥∥(∂̄L̃(v(t))

)
\\

∥∥∥∥
+

1

2

∥∥∥∥∥∥
e−L̃(v(t))∂̄L̃(v(t)) + g′

(
log

1

L̃

)
∂̄L̃(v(t))

L̃(v(t))‖v(t)‖L
+ L

g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

v̂(t)


⊥

∥∥∥∥∥∥
∥∥∥(∂̄L̃(v(t))

)
⊥

∥∥∥ ,
where eq. (∗) is because

〈e−L̃(v(t))∂̄L̃(v(t)), v̂(t)〉 = −e−L̃(v(t))〈−∂̄L̃(v(t)), v̂(t)〉 < 0,

e−L̃(v(t)) > 0,

L
g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

+ g′
(

log
1

L̃(v(t))

)
〈∂̄L̃(v(t)), v̂(t)〉
L̃(v(t))‖v(t)‖L

= − 1

L̃(v(t))‖v(t)‖L+1

(
Lν(t)g′

(
log

1

L̃(v(t))

)
− L̃(v(t))g

(
log

1

L̃(v(t))

))
< 0,

1

L̃(v(t))‖v(t)‖L
> 0,

〈∂̄L̃(v(t)), v̂(t)〉 = −〈−∂̄L̃(v(t)), v̂(t)〉 < 0.

The proof is completed since ∂̄γ̄(v) = −e−L̃(v)∂̄L̃(v)− g′
(

log 1
L̃

)
∂̄L̃(v)

L̃(v)‖v‖L − L
g
(

log 1
L̃(v)

)
‖v‖L+1 v̂.

The following lemma gives an equivalent proposition of that the curve length ζ is finite.

Lemma 26. ζ is finite if and only if ∫ ∞
0

∥∥∥∂̄⊥L̃ (v(t))
∥∥∥

‖v(t)‖
dt <∞.
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Proof. By definition,

(β(t)� ∂̄L̃ (v(t)))⊥

=β(t)� ∂̄L̃ (v(t))− 〈v̂(t),β(t)� ∂̄L̃ (v(t))〉v̂(t)

=∂̄⊥L̃ (v(t)) + (1− β(t))� ∂̄L̃ (v(t))− 〈v̂(t), (1− β(t))� ∂̄L̃ (v(t))〉v̂(t).

Furthermore, by eq. (15), ‖1− β(t)‖∞ = O( 1

t(log t)2−
2
L

),

‖(1− β(t))� ∂̄L̃ (v(t))− 〈v̂(t), (1− β(t))� ∂̄L̃ (v(t))〉v̂(t)‖
≤2‖(1− β(t))� ∂̄L̃ (v(t)) ‖

=O
(

1

t2

)
.

Therefore,

∫ ∞
0

dζ(t)

dt
≤
∫ ∞

0

∥∥∥∂̄⊥L̃ (v(t))
∥∥∥

‖v(t)‖
dt+

∫ ∞
0

O
(

1

t2

)
dt.

The proof is completed.

We then prove ∫ ∞
0

∥∥∥∂̄⊥L̃ (v(t))
∥∥∥

‖v(t)‖
dt <∞.

Theorem 11. There exists a, γ0 > 0 and a definable desingularizing function Φ on [0, a), such that, for large enough t,∥∥∥∂̄⊥L̃ (v(t))
∥∥∥

‖v(t)‖
≤ −dΨ(γ0 − γ̄(t))

dt
.

Proof. Since dγ̄(t)
dt ≥ 0, and both

log 1
˜L(v(t))

‖v(t)‖L and e−L̃(v(t)) are upper bounded, γ̄(t) converges to a limit non-decreasingly.

Define γ0 = limt→∞ γ̄(t). If γ̄(t) = γ0 for a finite time t0, then dγ̄(t)
dt = 0 for any t ≥ t0, which further leads to

‖(∂̄L̃(v)(t))⊥‖ = 0, and the proof is then completed by letting Ψ(x) = x. Therefore, we only consider the case where
γ̄(t) < γ0 for any finite time t. For any large enough t, we further divide the proof into two cases.

Case I.
∥∥∂̄⊥γ̄(v(t))

∥∥ ≥ ‖v(t)‖L4
∥∥∂̄\\γ̄(v(t))

∥∥.

Applying Lemma 9 to γ0 − γ̄(v)|‖v‖>1, there exists an a1 > 0 and a definable desingularizing function Ψ1, such that if
‖v‖ > 1, γ̄(v) > γ0 − a1, and ∥∥∂̄⊥γ̄(v)

∥∥ ≥ ‖v‖L4 ∥∥∂̄\\γ̄(v)
∥∥ ,

then
Ψ′1(γ0 − γ̄(v))‖v‖‖∂̄γ̄(v(t))‖ ≥ 1.

Since limt→∞ γ̄(t) = γ0, and limt→∞ ‖v(t)‖ = ∞, there exists a large enough time T1, such that, for every t ≥ T1,
‖v(t)‖ > 1, and γ̄(t) > γ0 − a1.

Therefore, for any t ≥ T1 which satisfies
∥∥∂̄⊥γ̄(v(t))

∥∥ ≥ ‖v(t)‖L4
∥∥∂̄\\γ̄(v(t))

∥∥, we have∥∥∂̄⊥γ̄(v(t))
∥∥ ≥ ∥∥∂̄\\γ̄(v(t))

∥∥ ,
which further indicates ∥∥∂̄⊥γ̄(v(t))

∥∥ ≥ 1

2

∥∥∂̄γ̄(v(t))
∥∥ .
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Furthermore, by Lemma 25,

dγ̄(t)

dt
≥1

2

∥∥∂̄⊥γ̄(v(t))
∥∥∥∥∥∂̄⊥L̃(v(t))

∥∥∥
≥1

4
‖v(t)‖

∥∥∂̄γ̄(v(t))
∥∥
∥∥∥∂̄⊥L̃(v(t))

∥∥∥
‖v(t)‖

≥ 1

4Ψ′1(γ0 − γ̄(t))

∥∥∥∂̄⊥L̃(v(t))
∥∥∥

‖v(t)‖
.

Case II.
∥∥∂̄⊥γ̄(v(t))

∥∥ < ‖v(t)‖L4
∥∥∂̄\\γ̄(v(t))

∥∥.

Applying Lemma 10 to γ0− γ̄(v)|‖v‖>1, we have that there exists an a2 > 0 and a desingularizing function on [0, a2), such
that if v > 1, and γ̄(v) > γ0 − a2, then

max

{
1,

4

L

}
Ψ′2(γ0 − γ̄(v))‖v‖L2 +1‖∂̄γ̄(v)‖ ≥ 1.

Similar to Case I., there exists a large enough time T2 and constants C1, such that, for every t ≥ T1, ‖v(t)‖ > 1,
γ̄(t) > γ0 − a2, C1‖v(t)‖L ≤ g

(
log 1
L̃(v(t))

)
, and L̃(v(t)) ≤ ‖v(t)‖−2L.

Therefore,

∥∥∥∥∂̄\\g(log
1

L̃(v(t))

)∥∥∥∥ = g′
(

log
1

L̃(v(t))

)
1

L̃(v(t))

Lν(t)

‖v(t)‖
≥
Lg
(

log 1
L̃(v(t))

)
‖v(t)‖

≥ LC1‖v(t)‖L−1, (16)

and

‖∂̄\\γ̄(v(t))‖

=

∥∥∥∥∥∥L
g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

v̂(t) + g′
(

log
1

L̃(v(t))

)
〈∂̄L̃(v(t)), v̂(t)〉
L̃‖v(t)‖L

v̂(t) + e−L̃(v(t))〈∂̄L̃(v(t)), v̂(t)〉v̂(t)

∥∥∥∥∥∥
=− L

g
(

log 1
L̃(v(t))

)
‖v(t)‖L+1

− g′
(

log
1

L̃(v(t))

)
〈∂̄L̃(v(t)), v̂(t)〉
L̃(v(t))‖v(t)‖L

− e−L̃(v(t))〈∂̄L̃(v(t)), v̂(t)〉

(∗)
≤
Lg
(
log 1

Ne−f(0)

)
‖v(t)‖L+1

+ ‖∂̄L̃(v(t))‖

≤
Lg
(
log 1

Ne−f(0)

)
‖v(t)‖L+1

+B1L̃(v(t))‖v(t)‖L−1

≤
B1 + Lg

(
log 1

Ne−f(0)

)
‖v(t)‖L+1

, (17)
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where inequality (∗) is due to

− Lg
(

log
1

L̃(v(t))

)
− g′

(
log

1

L̃(v(t))

)
〈∂̄L̃(v(t)),v(t)〉
L̃(v(t))

=− Lg
(

log
1

L̃(v(t))

)
+ g′

(
log

1

L̃(v(t))

)
Lν(t)

L̃(v(t))

=− Lg
(

log
1

L̃(v(t))

)
+ g′

(
log

1

L̃(v(t))

)
L

L̃(v(t))

(
N∑
i=1

e−q̃i(v(t))q̃i(v(t))f ′ (q̃i(v(t)))

)

=− Lg
(

log
1

L̃(v(t))

)
+ L

〈
∇q̃g

(
log

1

L̃(v(t))

)
, q̃

〉
(∗)
≤ − Lg

(
log

1

Ne−f(0)

)
,

where q̃ = (q̃i)
N
i=1 inequality (∗) comes from Jensen Inequality and g

(
log 1
L̃(v(t))

)
is concave with respect to q̃.

Combining eqs. (16) and (17), we have∥∥∥∥∂̄\\g(log
1

L̃(v(t))

)∥∥∥∥ ≥ LC1

B1 + Lg
(
log 1

Ne−f(0)

)‖v(t)‖2L‖∂̄\\γ̄(v(t))‖. (18)

On the other hand, ∥∥∥∥∂̄⊥g(log
1

L̃(v(t))

)∥∥∥∥ =
g′
(

log 1
L̃(v(t))

)
L̃(v(t))

‖∂̄L̃(v(t))− 〈∂̄L̃(v(t)), v̂(t)〉v̂(t)‖,

while

‖∂̄⊥γ̄(v(t))‖

=

∥∥∥∥∥e−L̃(v(t))(∂̄L̃(v(t))− 〈∂̄L̃(v(t)), v̂(t)〉v̂(t)) + g′
(

log
1

L̃(v(t))

)
∂̄L̃(v(t))− 〈∂̄L̃(v(t)), v̂(t)〉v̂(t)

L̃(v(t))‖v(t)‖L

∥∥∥∥∥
=

e−L̃(v(t)) +
g′
(

log 1
L̃(v(t))

)
L̃(v(t))‖v(t)‖L

∥∥∥∂̄L̃(v(t))− 〈∂̄L̃(v(t)), v̂(t)〉v̂(t)
∥∥∥

≥ 1

‖v(t)‖L

∥∥∥∥∂̄⊥g(log
1

L̃(v(t))

)∥∥∥∥ . (19)

Since ∥∥∂̄⊥γ̄(v(t))
∥∥ < ‖v‖L4 ∥∥∂̄\\γ̄(v(t))

∥∥ ,
combining eqs. (18) and (19), we have that∥∥∥∥∂̄\\g(log

1

L̃(v(t))

)∥∥∥∥ ≥ LC1

B1 + Lg
(
log 1

Ne−f(0)

)‖v(t)‖2L‖∂̄\\γ̄(v(t))‖

≥ LC1

B1 + Lg
(
log 1

Ne−f(0)

)‖v(t)‖ 7
4L‖∂̄⊥γ̄(v(t))‖

≥ LC1

B1 + Lg
(
log 1

Ne−f(0)

)‖v(t)‖ 3
4L

∥∥∥∥∂̄⊥g(log
1

L̃(v(t))

)∥∥∥∥ .
Since ∂̄L̃(v(t)) is parallel to ∂̄g

(
log 1
L̃(v(t))

)
, we also have∥∥∥∂̄\\L̃(v(t))

∥∥∥ ≥ LC1

B1 + Lg
(
log 1

Ne−f(0)

)‖v(t)‖ 3
4L
∥∥∥∂̄⊥L̃(v(t))

∥∥∥ .
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Furthermore, ∥∥∂̄γ̄(v(t))
∥∥ =

∥∥∂̄⊥γ̄(v(t))
∥∥+

∥∥∂̄\\γ̄(v(t))
∥∥ ≤ ‖v‖L4 ∥∥∂̄\\γ̄(v(t))

∥∥ .
Thus, by Lemma 25,

dγ̄(t)

dt
≥1

2

∥∥∂̄\\γ̄ (v(t))
∥∥ ∥∥∥∂̄\\L̃ (v(t))

∥∥∥
≥ LC1

2(B1 + Lg
(
log 1

Ne−f(0)

)
)
‖v(t)‖ 1

2L
∥∥∂̄γ̄ (v(t))

∥∥∥∥∥∂̄⊥L̃(v(t))
∥∥∥

=
LC1

2(B1 + Lg
(
log 1

Ne−f(0)

)
)
‖v(t)‖ 1

2L+1
∥∥∂̄γ̄ (v(t))

∥∥
∥∥∥∂̄⊥L̃ (v(t))

∥∥∥
‖v(t)‖

≥ LC1

2(B1 + Lg
(
log 1

Ne−f(0)

)
) max

{
1, 4

L

}
Ψ′2(γ0 − γ̄(v(t)))

∥∥∥∂̄⊥L̃ (v(t))
∥∥∥

‖v(t)‖
.

Concluding Case I. and Case II., for any t ≥ max{T1, T2}, and Ψ(x) =

max{4Ψ1(x),
2(B1+Lg

(
log 1

Ne−f(0)

)
) max{1, 4L}

LC1
Ψ2(x)}, we have that

Ψ′(γ0 − γ̄(v(t)))
dγ̄(t)

dt
≥

∥∥∥∂̄⊥L̃ (v(t))
∥∥∥

‖v(t)‖
.

The proof is completed.

D. Proof for the Discrete Case
We prove the result for AdaGrad and experiential loss, with the result for RMSProp and logistic loss follows exactly as the
continuous case. We slightly change the order of four stages in the flow: First, in Section D.1, we prove that the conditioner
has a limit with no zero entry; secondly, in Section D.2, we prove that the empirical loss converges to zero; then, in Section
D.3, we construct a further smoothed approximate margin, and prove it has a lower bound; finally, in Section D.4, we prove
that every limit point of AdaGrad is along some KKT point of optimization problem (PA) defined in Theorem 6.

D.1. Convergence of conditioners

Before the proof, we give a formal definition of the learning rate bound C(t) in Assumption 2: let M be the smooth constant
in Assumption 2. I. Then, C(t) = max{mini{hAi (t)−1}/M, 1,

C2
1

2LNe−1 }, where C0 will be clear below. By the monotony
of hAi (t), apparently C(t) is non-decreasing. Now we can prove

∑∞
t=1 ∂̄L(w(t))2 <∞.

Lemma 27. Suppose L is M smooth with respect to w. Then, for {∂̄L(w(t))}∞t=1 updated by AdaGrad (eq. (3)),∑∞
t=1 ∂̄L(w(t))2 <∞.

Proof. For any t > t0,

L(w(t))− L(w(t+ 1)) = ηt〈∂̄L(w(t)),hA(t)� ∂̄L(w(t))〉 − M

2
η2
t ‖h

A(t)� ∂̄L(w(t))‖2

≥ ηt
1

2
〈∂̄L(w(t)),hA(t)� ∂̄L(w(t))〉

≥ η̃ 1

2
〈∂̄L(w(t)),hA(t)� ∂̄L(w(t))〉.

Thus, since
∑∞
t=1 at share the same convergent behavior with

∑∞
t=1

at∑t
τ=1 aτ

(at ≥ 0), by similar routine of Lemma 12, the
proof is completed.
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Therefore, h∞
4
= limt→∞ h

A(t) has no zero entry. We can then define a discrete version of adaptive gradient flow as

v(t) = h−1/2
∞ �w(t),

β(t) = h−1
∞ � h(t),

L̃(v) = L(h
1
2∞ � v),

and
q̃i(v) = qi(h

1
2∞ � v),

which further leads to
v(t+ 1)− v(t) = −β(t)� ∂̄Lind(v(t)), (20)

and β(t) decreases component-wisely to 1p.

By Lemma 27, for any t ≥ t0, L(w(t)) ≤ L(w(t0)) < N . Therefore, there exists a positive real constant C0 only

depending on L(w(t0)), such that, ‖w(t)‖ ≥ C0. Furthermore, since h−
1
2∞ ≥ h(t0)−

1
2 , ‖v(t)‖ ≥ C0 maxi{hi(t0)−

1
2 }.

Define C1 = C0 maxi{hi(t0)−
1
2 }, which only depends on L(w(t0)) and ∂̄L(w(t)) (t ≤ t0).

Moreover, similar to approximate flow, there exists a time t1, such that, for any time t ≥ t1,
p∑
i=1

log
1

βi(t)
− 1

2

≤ 1

2
,

‖β−1(t)‖ ≥
√

1

2
.

D.2. Convergence of Empirical Loss

Define function γ̃′ as the rate of log 1
L to ‖v‖L4 :

γ̃′(t) =
log 1
L̃(v(t))

‖v(t)‖L4
.

Then, we have the following lemma.
Lemma 28. For any t ≥ t1, γ̃′(t) is non-decreasing.

Proof. Since by Lemma 27, L̃ is non-increasing, if ‖v(t + 1)‖ ≤ ‖v(t)‖, the proposition trivially holds. Therefore, we
consider the case that ‖v(t+ 1)‖ > ‖v(t)‖ in the following proof.

The change of ‖v(t)‖ can be calculated as

‖v(t+ 1)‖2 − ‖v(t)‖2

=− ηt〈β(t)� ∂̄L̃(v(t)),v(t)〉+ η2
t ‖β(t)� ∂̄L̃(v(t))‖2.

Let A = −ηt〈β(t)� ∂̄L̃(v(t)),v(t)〉, and B = η2
t ‖β(t)� ∂̄L̃(v(t))‖2. We estimate them separately.

As for A:

A = −ηt〈β(t)� ∂̄L̃(v(t)),v(t)〉
≤ ηt‖β(t)� ∂̄L̃(v(t))‖‖v(t)‖

≤ 2ηt‖β
1
2 (t)� ∂̄L̃(v(t))‖‖v(t)‖

≤ 2ηt‖β
1
2 (t)� ∂̄L̃(v(t))‖‖v(t)‖‖∂̄L̃(v(t))‖‖v(t)‖

〈∂̄L̃(v(t)),v(t)〉

≤ 2ηt
‖β

1
2 (t)� ∂̄L̃(v(t))‖2‖v(t)‖2

〈∂̄L̃(v(t)),v(t)〉
.
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As for B:

B = η2
t ‖β(t)� ∂̄L̃(v(t))‖2

≤ 2η2
t ‖β

− 1
2 (t)� ∂̄L̃(v(t))‖2

≤ LNe−1

Lν(t)
2η2
t ‖β

− 1
2 (t)� ∂̄L̃(v(t))‖2

≤ LNe−1

Lν(t)C2
1

2η2
t ‖β

− 1
2 (t)� ∂̄L̃(v(t))‖2‖v(t)‖2

≤ 2ηt
‖β

1
2 (t)� ∂̄L̃(v(t))‖2‖v(t)‖2

〈∂̄L̃(v(t)),v(t)〉
.

Therefore,

‖v(t+ 1)‖2 − ‖v(t)‖2 ≤ 4ηt
‖β

1
2 (t)� ∂̄L̃(v(t))‖2‖v(t)‖2

〈∂̄L̃(v(t)),v(t)〉
. (21)

On the other hand, by Lemma 27,

L̃(v(t))− L̃(v(t+ 1)) ≥ 1

2
〈∂̄L(w(t)), ηth

A(t)� ∂̄L(w(t))〉

= ηt
1

2
‖β

1
2 (t)� ∂̄L̃(v(t))‖2. (22)

Combining eqs. (21) and (22), we have

4
1

ν(t)
(L̃(v(t))− L̃(v(t+ 1))) ≥ L

2

‖v(t+ 1)‖2 − ‖v(t)‖2

‖v(t)‖2
.

Since ν(t) ≥ L̃ log 1
L̃(t)

, we further have

1

L̃(v(t)) log 1
L̃(v(t))

(L̃(v(t))− L̃(v(t+ 1))) ≥ L

8

‖v(t+ 1)‖2 − ‖v(t)‖2

‖v(t)‖2
.

By the convexity of log log 1
x (when x is small) and − log x,

log log
1

L(v(t+ 1))
− log log

1

L̃(v(t))
≥ L

4
(log ‖v(t+ 1)‖ − log ‖v(t)‖).

The proof is completed.

Remark 3. Actually, the convexity does not hold for x ∈ [e−1, L̃(v(t1))] (if L̃(v(t1)) > e−1). However, we can instead
define

Φ0(x) = log log
1

x
+

∫ x

0

inf{− 1

w log 1
w

: w ∈ [x, log
1

L̃(v(t1))
]}+

1

x log 1
x

dw.

Which satisfies for x ∈ [0, L̃(v(t1))], 1
x log 1

x

≤ −Φ′0(x), Φ0(x) ≤ log log x, and Φ0(x) is convex. We can then replace

log x by e−Φ0(x) and prove the above theorem in exactly the same way.0

With the relationship between ‖v‖ and L̃, we can now prove that the empirical loss goes to zero.

Theorem 12. limt→∞ L̃(t) = 0. Furthermore, limt→∞ ρ(t) =∞.
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Proof. By Lemma 31, for any integer time t ≥ t0

L̃(t+ 1)− L̃(t) ≤ −1

2
ηt
L2ν(t)2

‖v(t)‖2
≤ −1

2
ηt
L2L̃(t)2 log 1

L̃(t)2

‖v(t)‖2
.

Furthermore, since γ̃′(t) ≥ γ̃′(t1), we have that (
log( 1

L̃(t)
)

ML
1 γ̂(t0)

) 1
L

≥ ρ.

Therefore,

L̃(t+ 1)− L̃(t) ≤ −1

2
ηt
L2L̃(t)2(log 1

L̃(t)
)2

‖v(t)‖2

≤ −1

2
ηtL

2L̃(t)2

(
log

1

L̃(t)

)2
(

γ̃′(t1)

log( 1
L̃(t)

)

) 8
L

= −1

2
ηtL

2L̃(t)2

(
log

1

L̃(t)

)2− 8
L

(γ̃′(t1))
8
L .

Let E0 = L̃ (t1)
2
(

log 1
L̃(t1)

)2−8/L

, then ψ(x) = min{x2(log 1
x )2− 8

L , E0}. Apparently, ψ(x) is non-decreasing in

(0, L̃(t1)]. Therefore, E(x) =
∫ L̃(t1)

x
ψ(s)ds is convex with respect to x, and

E(L̃(t+ 1))− E(L̃(t)) ≥ E′(L̃(t))(L̃(t+ 1)− L̃(t))

≥ 1

2
ηtL

2 (γ̃′(t1))
8
L ,

which further implies

E(L̃(t))− E(L̃(t1)) ≥
t−1∑
τ=t0

1

2
ητL

2 (γ̃′(t1))
2
L .

Since limt→∞
∑t−1
τ=t0

1
2ητL

2 (γ̃′(t1))
8
L =∞, we then have

lim
t→∞

E(L̃(t)) =∞,

and as a result,
lim
t→∞

L̃(t) = 0.

D.3. Convergence of surrogate margin

As a preparation, define B1 = max{‖∂̄q̃i(v)‖ : i ∈ [N ],v ∈ B(1)}, and B2 = max{ ‖Hq̃i(v)‖ : i ∈ [N ],v ∈ B(1)}.

Furthermore, we define λ(x) = (log 1
x )−1, and µ(x) =

log 1
L̃(v(t1))

log 1
x

. Since limt→∞ L̃(t) = 0, we have the following lemma.

Lemma 29. There exists a large enough time t2 ≥ t1, such that, for any t ≥ t2,

B2
1L̃(v) log7− 8

L
1

L̃(v)
/γ̃′(t1)

8
L ≤ λ(L̃(v(t)))µ(L̃(v(t))),

and,
1

γ̃′(t1)8−8/L
L̃(v(t)) log8−8/L 1

L̃(v(t))

(
B2

1 + C−L1 B2

)
≤ µ(t).
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Proof. The proposition is obvious since logi( 1
x ) = o(x), ∀i as x→ 0.

Then, we define a further surrogate margin γ̂ of the discrete case as following:

γ̂(t) :=
eΦ(L̃)

ρL
,

where ρ(t) is defined as ‖β−
1
2 (t)� v(t)‖, and Φ(x) is defined as

Φ(x) = log log
1

x
+

∫ x

0

(
− sup

{
1 + 2(1 + λ(w̃)/L)µ(w̃)

w̃ log 1
w̃

: w̃ ∈
[
w, L̃ (t2)

]}
+

1

w log 1
w

)
dw.

The following properties hold for γ̂.

Lemma 30. • Let a series of vi satisfies limi→∞ ‖vi‖ =∞. Then, limi→∞
γ̂(vi)
γ̃(vi)

= 1;

• If L̃(v(t)) ≤ L̃(v(t2)), then γ̂(t) < γ̃(t) ≤ γ̄(t).

Proof. As beginning, we verify the existence of Φ. Actually, when x is small enough, 1+2(1+λ(x)/L)µ(x)

x log 1
x

decreases, and

limx→0
1+2(1+λ(x)/L)µ(x)

x log 1
x

=∞. Therefore, there exists a small enough ε, such that, for any w < ε,

sup

{
1 + 2(1 + λ(w̃)/L)µ(w̃)

w̃ log 1
w̃

: w̃ ∈
[
w, L̃ (t2)

]}
=

1 + 2(1 + λ(w)/L)µ(w)

w log 1
w

,

which further leads to

− sup

{
1 + 2(1 + λ(w̃)/L)µ(w̃)

w̃ log 1
w̃

: w̃ ∈
[
w, L̃ (t2)

]}
+

1

w log 1
w

= −2(1 + λ(w)/L)µ(w)

w log 1
w

,

which is integrable as w → 0. Concretely, for any x < ε,∫ x

0

(
− sup

{
1 + 2(1 + λ(w̃)/L)µ(w̃)

w̃ log 1
w̃

: w̃ ∈
[
w, L̃ (t2)

]}
+

1

w log 1
w

)
dw

=

∫ x

0

−2(1 + λ(w)/L)µ(w)

w log 1
w

dw

= − log
1

L(t1)

(
1

log 1
x

+
1

2L log2 1
x

)
.

Therefore, for a series {vi}∞i=1 satisfying limi→∞ ‖vi‖ =∞,

lim
i→∞

γ̃(vi)

γ̂(vi)
= lim
i→∞

e
−O

(
1

log2 1
L̃(vi)

)
= 1.

Furthermore, if x ≤ L̃(v(t2)),

Φ′(x) ≤ 1

w log 1
w

− 1 + 2(1 + λ(w̃)/L)µ(w̃)

w̃ log 1
w̃

< 0,

which proves that γ̂(t) < γ̃(t).

The proof is completed.
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To bound the norm of first and second derivatives of L̃, we further need the following lemma.

The next lemma characterizes the behavior of surrogate margin γ̂(t).

Lemma 31. For positive integer time t ≥ t2, γ̂(t) ≥ e− 1
2 γ̂(t2).

Proof. For any time t ≥ t2,

ρ(t+ 1)2 − ρ(t)2 = (‖β−
1
2 (t)� v(t+ 1)‖2 − ρ(t)2) + (ρ(t+ 1)2 − ‖β−

1
2 (t)� v(t+ 1)‖2).

We calculate two parts separately

‖β−
1
2 (t)� v(t+ 1)‖2 − ‖β−

1
2 (t)� v(t)‖2

=η2
t ‖β

1
2 (t)� ∂̄L̃(v(t))‖2 + 2Lηtν(t)

≥0.

On the other hand, since β−
1
2 is non-decreasing,

ρ(t+ 1) = ‖β−
1
2 (t+ 1)� v(t+ 1)‖ ≥ ‖β−

1
2 (t)� v(t+ 1)‖.

‖β−
1
2 (t)� v(t+ 1)‖2 − ‖β−

1
2 (t)� v(t)‖2 can also be upper bounded as follows:

‖β−
1
2 (t)� v(t+ 1)‖2 − ‖β−

1
2 (t)� v(t)‖2

=η2
t ‖β

1
2 (t)� ∂̄L̃(v(t))‖2 + 2Lηtν(t)

=2Lηtν(t)

(
ηt‖β

1
2 (t)� ∂̄L̃(v(t))‖2

2Lν(t)
+ 1

)
(∗)
≤2Lηtν(t)

(
λ(L̃(v(t)))µ(L̃(v(t)))

L
+ 1

)
,

where inequality (*) comes from the estimation of ‖β
1
2 (t)� ∂̄L̃(v(t))‖2 as follows: by the homogeneity of q̃i, we have

‖∂̄L̃(v)‖ =

∥∥∥∥∥−
N∑
i=1

e−q̃i(v)∂̄q̃i(v)

∥∥∥∥∥ (∗∗)
≤ B1L̃(v)‖v‖L−1

(∗∗∗)
≤ B1

1

γ̃′(t1)
4
L

L̃(v) log4− 4
L

1

L̃(v)
,

where inequality (∗∗) is due to ∂̄q̃i is (L− 1) homogeneous, and inequality (∗ ∗ ∗) holds by Lemma 28. On the other hand,
ν(t) ≥ L̃(v(t)) log 1

L̃(v(t))
. Combining the estimation of ν and ‖β(t)−

1
2 � ∂̄L̃(β(t))‖, we have

ηt‖β
1
2 (t)� ∂̄L̃(v(t))‖2

2Lν(t)
≤
B2

1L̃(v) log7− 8
L 1
L̃(v)

Lγ̃′(t1)
8
L

≤ λ(L̃(v(t)))µ(L̃(v(t)))

L
.

Similar to Lemma 27, the decrease of L̃(v) can be calculated by second order Taylor Expansion:

L̃(t+ 1)− L̃(t) =− ηt
〈
β(t)� ∂̄L̃(v(t)), ∂̄L̃(v(t))

〉
+

1

2
η2
t (β(t)� ∂̄L̃)TH(L̃(v(ξ)))(β(t)� ∂̄L̃), (23)



The Implicit Regularization for Adaptive Optimization Algorithms on Homogeneous Neural Networks

where ξ ∈ (0, 1).

By homogeneity of q̃i, the norm of Hessian matrix ‖H(L̃(v(ξ)))‖ can be bounded as

‖H(L̃(v(ξ)))‖ =

∥∥∥∥∥
N∑
i=1

e−q̃i
(
∂̄q̃i∂̄q̃

>
i −Hq̃i

)∥∥∥∥∥
2

(∗)
≤

N∑
i=1

e−q̃i
(
B2

1‖v(ξ)‖2L−2 +B2‖v(ξ)‖L−2
)

≤ L̃(v(ξ))‖v(ξ)‖2L−2
(
B2

1 + C−L1 B2

)
≤ 1

γ̃′(t1)8−8/L
L̃(v(ξ)) log8−8/L 1

L̃(v(ξ))

(
B2

1 + C−L1 B2

)
.

Therefore,

1

2
η2
t (β(t)� ∂̄L̃)TH(L̃(v(ξ)))(β(t)� ∂̄L̃)

≤ηt‖β(t)
1
2 � ∂̄L̃)‖2 1

γ̃′(t1)8−8/L
L̃(v(ξ)) log8−8/L 1

L̃(v(ξ))

(
B2

1 + C−L1 B2

)
≤ηt‖β(t)

1
2 � ∂̄L̃)‖2µ(t). (24)

Taking the estimation eq. (24) back to eq. (23), we have

L̃(t)− L̃(t+ 1) ≥ (1− µ(t))ηt‖β(t)
1
2 � ∂̄L̃)‖2 (25)

By multiplying 1+λ(L̃(t))µ(L̃(t))/L

(1−µ(L̃(t)))ν(t)
to both sides of eq. (25), we then have

1 + λ(L̃(t))µ(L̃(t))/L

(1− µ(L̃(t)))ν(t)
(L̃(t+ 1)− L̃(t))

≤− ηt

(
1 +

λ(L̃(t))µ(L̃(t))

L

)
L2ν(t)

ρ(t)2

≤− L

2

‖β−
1
2 (t)� v(t+ 1)‖2 − ‖β−

1
2 (t)� v(t)‖2

‖β−
1
2 (t)� v(t)‖2

.

Furthermore, since −Φ′(L̃(t)) ≥ 1+λ(L̃(t))µ(L̃(t))/L

(1−µ(L̃(t)))L̃(t)/λ(L̃(t))
, by the convexity of Φ and − log x, we have that

L

(
log

1

‖β−
1
2 (t)� v(t+ 1)‖

− log
1

‖β−
1
2 (t)� v(t)‖

)
+(Φ(L̃(t+ 1))− Φ(L̃(t))) ≥ 0.

Therefore,

log
Φ(L̃(t+ 1))

‖β−
1
2 (t)� v(t+ 1)‖L

− log
Φ(L̃(t)

‖β−
1
2 (t)� v(t)‖L

≥ 0.

Furthermore, since
‖β−

1
2 (t+ 1)� v(t+ 1)‖L

‖β−
1
2 (t+ 1)� v(t)‖L

≥ Πp
i=1

β
−L/2
i (t)

β
−L/2
i (t+ 1)

,
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we have

γ̂(t+ 1) =
e−Φ(t+1)

‖β−
1
2 (t+ 1)� v(t+ 1)‖L

≥ e−Φ(t+1)

‖β−
1
2 (t)� v(t+ 1)‖L

Πp
i=1

β
−L/2
i (t)

β
−L/2
i (t+ 1)

≥ γ̂(t)Πp
i=1

β
−L/2
i (t)

β
−L/2
i (t+ 1)

.

Thus, by induction,

γ̂(t+ 1) ≥ γ̂(t)Πp
i=1

β
−L/2
i (t0)

β
−L/2
i (t+ 1)

≥ e− 1
2 γ̂(t1).

The proof is completed.

Similar to the flow case, we can then prove the convergence of γ̂.

Lemma 32. There exists a positive real γ̂∞, such that

lim
t→∞

γ̂(t) = γ̂∞.

Proof. Since for any t ≥ t2

log
γ̂(t+ 1)

γ̂(t)
≥ log Πp

i=1

β
− 1

2
i (t)

β
− 1

2
i (t+ 1)

,

we have that γ̂(t)Πp
i=1

1

β
1
2
i (t)

monotonously increases. Furthermore, since γ̂(t) < γ(t) is bounded, so does γ̂(t)Πp
i=1

1

β
1
2
i (t)

.

Therefore, γ̂(t)Πp
i=1

1

β
1
2
i (t)

converges to a positive real. Since limt→∞Πp
i=1

1

β
1
2
i (t)

= 1, the proof is completed.

D.4. Verification of KKT point

Similar to the flow case, we have the following construction of (ε, δ) KKT point. The proof is exactly the same as Lemma 5,
and we omit it here.

Lemma 33. Let λi = q
1−2/L
min ‖v‖ · e−f(qi)f ′ (qi) /‖∂̄L̃‖2. Then ṽ(t) is a (ε, δ) KKT point of (P̃ ), where ε, δ are defined

as follows:

ε = C1(1 + cos(θ))

δ = C2
1

log 1
L
,

where cos(θ) is defined as 〈v̂(t), ̂̄∂L̃(t)〉, and C1, C2 are positive real constants.

By Lemma 22, we only need to prove that limt→∞ ˜cos(θ) = 1. Furthermore, the estimation of cos(θ̃) can be given by the
following lemma.

Lemma 34. For any t3 > t4 ≥ t2,

t4−1∑
τ=t3

(
˜cos(θ)(τ)−2 − 1

)(
log

1

ρ(t)
− log

1

‖β−
1
2 (τ)� v(τ + 1)‖

)
≤ 1

L
log

γ̂(t4)

γ̂(t3)
+ log

(
Πp
i=1

β
− 1

2
i (t3)

β
− 1

2
i (t4)

)
.
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Proof. By Lemma 31, for any t ≥ t0

1

L
log

γ̂(t+ 1)

γ̂(t)
=

1

L
(Φ(t+ 1)− Φ(t)) +

(
log

1

ρ(t+ 1)
− log

1

ρ(t)

)
≥

(
log

1

ρ(t)
− log

1

‖β−
1
2 (t)� v(t+ 1)‖

)
ρ(t)2

L2ν(t)2
‖β

1
2 (t)� ∂̄L̃(t)‖2

+

(
log

1

‖β−
1
2 (t)� v(t+ 1)‖

− log
1

ρ(t)

)
− log

(
Πp
i=1

β
− 1

2
i (t+ 1)

β
− 1

2
i (t)

)
.

Furthermore, since Lν(t) =

〈
̂

β
1
2 (t)� ∂̄L̃(t),

̂
β−

1
2 (t)� v

〉
, we have

1

L
log

γ̂(t+ 1)

γ̂(t)
≥

(
log

1

ρ(t)
− log

1

‖β−
1
2 (t)� v(t+ 1)‖

)
cos(θ)−2

+

(
log

1

‖β−
1
2 (t)� v(t+ 1)‖

− log
1

ρ(t)

)
− log

(
Πp
i=1

β
− 1

2
i (t+ 1)

β
− 1

2
i (t)

)
.

The proof is completed.

We still need a lemma to bound the change of the direction of β−
1
2 � v.

Lemma 35. For any t ≥ t2,

‖ ̂
β−

1
2 (t+ 1)� v(t+ 1)− ̂

β−
1
2 (t)� v(t)‖

≤O(1)

p∑
i=1

(
β−1
i (t+ 1)− β−1

i (t)
)

+

(
O(1)

‖β−
1
2 � v(t+ 1)‖
ρ(t)

+ 1

)
log
‖β−

1
2 (t)� v(t+ 1)‖

ρ(t)

+

(
O(1)

‖β−
1
2 � v(t+ 1)‖
ρ(t)

+ 1

)
log Πp

i=1

β
− 1

2
i (t+ 1)

β
− 1

2
i (t)

.

Proof. Since triangular inequality,

‖ ̂
β−

1
2 (t+ 1)� v(t+ 1)− ̂

β−
1
2 (t)� v(t)‖

≤
∥∥∥∥ 1

ρ(t+ 1)
β−

1
2 (t+ 1)� v(t+ 1)− 1

ρ(t+ 1)
β−

1
2 (t+ 1)� v(t)

∥∥∥∥
+

∥∥∥∥ 1

ρ(t+ 1)
β−

1
2 (t+ 1)� v(t)− 1

ρ(t+ 1)
β−

1
2 (t)� v(t)

∥∥∥∥
+

∥∥∥∥ 1

ρ(t+ 1)
β−

1
2 (t)� v(t)− 1

ρ(t)
β−

1
2 (t)� v(t)

∥∥∥∥ .
Let

A =

∥∥∥∥ 1

ρ(t+ 1)
β−

1
2 (t+ 1)� v(t+ 1)− 1

ρ(t+ 1)
β−

1
2 (t+ 1)� v(t)

∥∥∥∥ ;

B =

∥∥∥∥ 1

ρ(t+ 1)
β−

1
2 (t+ 1)� v(t)− 1

ρ(t+ 1)
β−

1
2 (t)� v(t)

∥∥∥∥ ;

C =

∥∥∥∥ 1

ρ(t+ 1)
β−

1
2 (t)� v(t)− 1

ρ(t)
β−

1
2 (t)� v(t)

∥∥∥∥ .
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Then,

A =O(1)
1

ρ(t+ 1)
‖v(t+ 1)− v(t)‖

=O(1)
1

ρ(t+ 1)
‖ηtβ(t)� ∂̄L̃‖ = O(1)

ηt
ρ(t+ 1)

‖∂̄L̃‖

(∗)
≤O(1)

ηtν(t)

γ̂(t2)ρ(t+ 1)ρ(t)
≤ O(1)

ρ(t+ 1)2 − ρ(t)2

ρ(t+ 1)ρ(t)

≤O(1)
ρ(t+ 1)2 − ρ(t)2

ρ(t+ 1)2

ρ(t+ 1)

ρ(t)
≤ O(1)

ρ(t+ 1)

ρ(t)
log

ρ(t+ 1)

ρ(t)
,

where eq. (∗) can be derived in the same way as Lemma 6;

B ≤
p∑
i=1

(β
− 1

2
i (t+ 1)− β−

1
2

i (t))2 ‖v(t)‖
ρ(t+ 1)

≤ O(1)

p∑
i=1

β−1
i (t+ 1)− β−1

i (t);

and

C = 1− ρ(t)

ρ(t+ 1)
.

Therefore,

‖ ̂
β−

1
2 (t+ 1)� v(t+ 1)− ̂

β−
1
2 (t)� v(t)‖

≤O(1)

p∑
i=1

(
β−1
i (t+ 1)− β−1

i (t)
)

+

(
O(1)

ρ(t+ 1)

ρ(t)
+ 1

)
log

ρ(t+ 1)

ρ(t)

≤O(1)

p∑
i=1

(
β−1
i (t+ 1)− β−1

i (t)
)

+

(
O(1)

‖β−
1
2 � v(t+ 1)‖
ρ(t)

+ 1

)
log
‖β(t)−

1
2 (t)� v(t+ 1)‖
ρ(t)

+

(
O(1)

‖β(t)−
1
2 � v(t+ 1)‖
ρ(t)

+ 1

)
log Πp

i=1

β
− 1

2
i (t+ 1)

β
− 1

2
i (t)

We then prove that
∑∞
τ=t2

log ‖β
− 1

2 (τ)�v(τ+1)‖
ρ(τ) =∞.

Lemma 36. The sum of log ‖β
− 1

2 (τ)�v(τ+1)‖
ρ(τ) diverges, that is,

∑∞
τ=t2

log ‖β
− 1

2 (τ)�v(τ+1)‖
ρ(τ) =∞.

Proof.

∞∑
τ=t

log
‖β−

1
2 (τ)� v(τ + 1)‖

ρ(τ)
≥
∞∑
τ=t

log
ρ(τ + 1)

ρ(τ)
− log Πp

i=1

1

β
− 1

2
i (t)

.

The proof is completed since limt→∞ ρ(t) =∞ and log Πp
i=1

1

β
− 1

2
i (t)

is bounded.

Now we can prove the following lemma.

Lemma 37. Let v̄ be any limit point of {v(t)}∞t=1. Then v̄ is a KKT point of optimization problem (P ).
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Proof. Let t1 be any integer time larger than t2. We construct a sequence {ti}∞i=1 by iteration. Suppose t1, · · · , tk−1 have
been constructed. Let sk > tk−1 be a large enough time which satisfies

log Πp
i=1

1

β
− 1

2
i (sk)

≤ 1

k3
,

‖v̂(sk)− v̄‖ ≤ 1

k
,

log

(
γ̂∞
γ̂(sk)

)
≤ 1

k3

‖β−1(sk)‖ ≤ 1 +
1

k − 1
.

Then let (sk)′ (guaranteed by Lemma 36) be the first time greater than sk that
∑(sk)′−1

τ=sk
log ‖β

− 1
2 (τ)�v(τ+1)‖
ρ(τ) ≥ 1

k . By

Lemma 34, there exists a time tk ∈ [sk, (sk)′ − 1], such that ˜cos(θ)
−2
− 1 ≤ 1

k2 .

Moreover,

‖v̂(tk)− v̄‖2 ≤ 2

(
‖ ̂
β−

1
2 (tk)� v(tk)− v̄‖2 + ‖ ̂

β−
1
2 (tk)� v(tk)− v̂(tk)‖2

)
= 2‖ ̂

β−
1
2 (tk)� v(tk)− v̄‖2 + 2

(
2− 2

〈
̂

β−
1
2 (tk)� v(tk), v̂(tk)

〉)
≤ 2‖ ̂β(tk)� v(tk)− v̄‖2 +O

(
1

k

)
≤ 2‖ ̂β(tk)� v(tk)− ̂β(sk)� v(sk)‖2 +O

(
1

k

)
≤ O(1)

1

k
+O(e

1
k )

1

k
→ 0.

The proof is completed.

Therefore, similar to the gradient flow case, we then have the following theorem.

Theorem 13. Let w̄ be any limit point of {ŵ(t)}. Then w̄ is along the direction of a KKT point of the following optimization
problem.

Minimize
1

2
‖h−

1
2∞ �w‖

Subject to: qi(w) ≥ 1.

E. Proof of Multi-class Classification with Logistic Loss
In this section, we prove the result for multi-class classification with logistic loss mentioned in Remark 1. Concretely, the
dataset for this case can be represented as {(xi, yi)}Ni=1, where yi ∈ [C] represents the class xi belongs to. Unlike the
binary classification case, neural network Φ outputs a C-dimension vector as scores for C classes, and we use Φ(w,xi)j as
the j-th component of Φ(w,xi). The empirical loss can then be represented as

L(w) =

N∑
i=1

− log
eΦ(w,xi)yi∑C
j=1 e

Φ(w,xi)j
. (26)

For AdaGrad, RMSProp, and Adam (w/m), limit hA∞, hR∞, hM∞ remains non-zero, and we can then define v, L̃, and β the

same as Theorems 6 and 7 (we use v and L̃ to represent all cases), and Φ̃(v,xi) = Φ(h
1
2∞ � v,xi).
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We can then define margins in the multi-class classification similarly as the binary case: surrogate norm and margin are
defined exactly the same as the binary case; define q̃i(v) = Φ̃(v,xi)yi −maxj 6=yi Φ̃(v,xi)j and normalized margin can
be still defined as q̃min(v)

‖v‖L . The corresponding convergent direction for adaptive gradient flow under multi-class setting can
then be characterized by the following theorem:

Theorem 14. Let v satisfy an adaptive gradient flow F which satisfies Assumption 1. Let v̄ be any limit point of {v̂(t)}∞t=0

(where v̂(t) = v(t)
‖v(t)‖ is normalized parameter). Then v̄ is along the direction of a KKT point of the following L2 max-margin

problem (P ):

min
1

2
‖v‖2

subject to q̃i(v) ≥ 1,∀i ∈ [N ].

Proof of Theorem 14 differs from that of Theorem 2 only by Lemma 18, Lemma 19, and the construction of λi in Lemma
21. We show modifications respectively.

First of all, we show normalized margin γ and surrogate margin γ̃ converge to the same limit:

Lemma 38. Let a function v(t) obey an adaptive gradient flow F which satisfies Assumption 1, with loss L̃ and component
learning rate β(t). Then we have limt→∞

ρ(t)
‖v(t)‖ = 1. Furthermore, if further limt→∞ L̃(t) =∞, we have limt→∞

γ(t)
γ̃(t) =

1.

Proof. By definition of empirical loss (eq. (26)),

L̃(v) =

N∑
i=1

− log
eΦ̃(v,xi)yi∑C
j=1 e

Φ̃(v,xi)j

=

N∑
i=1

− log
1

1 +
∑
j 6=yi e

Φ̃(v,xi)j−Φ̃(v,xi)yi
.

Let q̃′i(v) = log
∑
j 6=yi e

Φ̃(v,xi)j−Φ̃(v,xi)yi . By exact the same routine of Lemma 18, we have

lim
t→∞

γ(t)
q̃′min(v)

ρL

= 1. (27)

On the other hand,
−q̃min(v) ≤ log

∑
j 6=yi

eΦ̃(v,xi)j−Φ̃(v,xi)yi ≤ −q̃min(v) + logN,

which leads to

lim
t→∞

γ̃(t)
q̃′min(v)

ρL

= 1. (28)

Combining eqs. (27) and (28), the proof is completed.

Secondly, we calculate derivative of surrogate norm ρ under multi-class classification setting.

Lemma 39. The derivative of ρ2 is as follows:

1

2

dρ(t)2

dt
= Lν(t) +

〈
v(t),β−

1
2 (t)� dβ−

1
2

dt
(t)� v(t)

〉
,
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where ν(t) is defined as

ν(t) =

N∑
i=1

∑
j 6=yn e

Φ̃(v,xi)j−Φ̃(v,xi)yi (Φ̃(v,xi)yi − Φ̃(v,xi)j)

1 +
∑
j 6=yn e

Φ̃(v,xi)j−Φ̃(v,xi)yi
.

Furthermore, we have that ν(t) >
g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) L̃(v(t)).

Proof. We only need to show
− 〈∂̄L̃(v(t)),v(t)〉 = Lν(t), (29)

and

ν(t) >
g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) L̃(v(t)), (30)

while other parts of the proof follows exact the same as Lemma 19.

By chain rule,

∂̄L̃(v) =

N∑
i=1

∑
j 6=yi e

Φ̃(v,xi)j−Φ̃(v,xi)yi ∂̄(Φ̃(v,xi)j − Φ̃(v,xi)yi)

1 +
∑
j 6=yi e

Φ̃(v,xi)j−Φ̃(v,xi)yi
,

while by homogeneity of Φ̃,

〈∂̄(Φ̃(v,xi)j − Φ̃(v,xi)yi),v〉 = L(Φ̃(v,xi)j − Φ̃(v,xi)yi),

which completes the proof of eq. (29).

As for eq. (30),

ν(t) =

N∑
i=1

e−f(q̃′i(v(t)))f ′(q̃′i(v(t)))

∑
j 6=yi e

Φ̃(v,xi)j−Φ̃(v,xi)yi (Φ̃(v,xi)yi − Φ̃(v,xi)j)∑
j 6=yi e

Φ̃(v,xi)j−Φ̃(v,xi)yi

≥
N∑
i=1

e−f(q̃′i(v(t)))f ′(q̃′i(v(t)))q̃′i(v(t))

≥
g
(

log 1
L̃(v(t))

)
g′
(

log 1
L̃(v(t))

) L̃(v(t)).

The proof is completed.

Finally, we provide construction of λi similar to Lemma 21. The proof follows the same routine as Lemma 21 and we omit
it here.
Lemma 40. Let v obey adaptive gradient flow F with empirical loss L̃ satisfying Assumption 1. Let time t1 be constructed
as Lemma 2. Then, define coefficients in Definition 2 as

λi,j(t) = q̃min(v(t))1−2/L‖v(t)‖ · 1

‖∂̄L̃(v(t))‖2
1 + eΦ̃(v,xi)j−Φ̃(v,xi)yi∑
j 6=yi e

Φ̃(v,xi)j−Φ̃(v,xi)yi
,

(where i ∈ [N ], j ∈ [C]/{i}). Then, for any time t ≥ t1, ṽ(t) = q̃min(v(t))−
1
L v(t) is an (ε(t), δ(t)) KKT point of (P̃ ),

where ε(t), δ(t) are defined as follows:

ε(t) = O(1− cos(θ(t)))

δ(t) = O

(
1

log 1
L̃(v(t))

)
,



The Implicit Regularization for Adaptive Optimization Algorithms on Homogeneous Neural Networks

where cos(θ(t)) is defined as inner product of v̂(t) and − ̂∂̄L̃(v(t)).

F. Experiment Details
In this section, we provide detailed explanation of experiments showed in Section 6 4. This section is divided into two parts
according to Section 6: in Section F.1, we provide details of structure of neural network we use and hyper-parameters. We
also further plot two additional experiments of Adam and SGD to show the influence of momentum; in Section F.3, we
show construction of dataset in Section 6.2 and choose of hyper-parameters. We also show how direction of h−

1
2∞ influence

convergent direction of parameters.

F.1. Experiment on MNIST

F.1.1. CONSTRUCTION OF NEURAL NETWORK AND CHOICE OF HYPER-PARAMETERS

We use the 4-layer convolutional neural network adopted by (Madry et al., 2018) as our model to conduct multi-class
classification on MNIST (LeCun, 1998). Concretely, this convolutional neural network can be expressed in order as
convolutional layer with 32 channel and filter size 5 × 5, max-pool layer with kernel size 2 and stride 2, convolutional
layer with 64 channel and filter size 3× 3, max-pool with kernel size 2, fully connected layer with width 1024, and fully
connected layer with width 10. In order to guarantee this neural network is homogeneous, we further set bias in all layers to
be zero. We use default method in Pytorch to initialize the neural network.

As for hyper-parameters, we set learning rate of AdaGrad to be the default value in Pytorch; while for RMSProp, we set
learning rate and decay parameter b as 0.001 and 0.9, which is suggested by (Hinton et al., 2012) and used as a default value
in Tensorflow; for Adam, we set the learning rate to 0.0001 as default value in Pytorch, and b to be the same as RMSProp.

F.1.2. INFLUENCE OF MOMENTUM

We plot convergent behaviors for SGDm and Adam in this section. Figure 4 shows that adding momentum term will NOT
keep normalized margin from lower bounded, which indicates our theory might be extended to gradient based optimization
methods with momentum. Specifically, for SGD, we use learning rate 0.1 and momentum parameter 0.9; for Adam, we use
the same setting as Adam (w/m) with momentum parameter 0.9.

(a) Training Accuracy (b) Test Accuracy (c) Training Loss (d) Normalized Margin

Figure 4. Observation of convergent behavior after adding momentum for SGD and Adam. One can observe that loss still converge to
zero, and margin will keep lower bounded.

(a) Test Accuracy (b) Normalized margin

Figure 5. Observation of generalization behavior of RMSProp with different ε. One can observe that larger ε leads to larger margin and
smaller generalization error.

4https://github.com/bhwangfy/ICML-2021-Adaptive-Bias
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(a) Visualizing Constructed Dataset (b) Margin varies across runs (c) Training accuracy

(d) Direction of h
− 1

2
∞ in AdaGrad (e) Direction of h

− 1
2
∞ in RMSProp (f) Direction of h

− 1
2
∞ in Adam

Figure 6. Experiment on two layer MLP. In (a), we visualize constructed dataset as vectors, with green vectors standing for data with label
−1, and red stands for data with label 1. In (b), we plot convergent margin of different optimizers across runs. In (c), averaged training

accuracy across runs is shown, and one can observe all training accuracy achieves 100%. (d)-(e) respectively picture h
− 1

2
∞ in AdaGrad

(red vectors), RMSProp (blue vectors) and Adam (black vectors) across runs. While direction of h
− 1

2
∞ in AdaGrad varies across runs,

RMSProp and Adam stay the same and coincide with isotropic direction (green vector) ( 1√
3
, 1√

3
, 1√

3
)

F.2. Influence of ε

We compare the generalization behaviors of RMSProp with different ε selected in Figure 5. It is observed that as ε
decreases, normalized margin gets smaller and the generalization error gets larger, which indicates the importance of ε on
the generalization behavior. When ε is completed removed (i.e., is set to 0), the training does not converge. Therefore, we
do not include the results for ε = 0 here.

F.3. Experiment on Two Layer MLP

F.3.1. DATASET CONSTRUCTION AND CHOICE OF HYPER-PARAMETERS

As mentioned in Section 6.2, we use a two layer MLP Φ with leaky ReLU activation σ defined as Φ(x,w, v) = vσ(〈w,x〉),
where x ∈ R2,w ∈ R2 and v ∈ R and σ(t) is the Leaky ReLU activation function, i.e., σ(t) = t for t ≥ 0 and σ(t) = t

2
for t < 0. We construct binary classification dataset S as {(xi, yi)}100

i=1 as follows:

(xi, yi) = ((cos(0.5), sin 0.5) + εi, 1), i ∈ {1, 2, · · · , 50};
(xi, yi) = ((− cos(0.5),− sin 0.5) + εi,−1), i ∈ {51, 52, · · · , 100},

where εi (i = 1, 2, 3, · · · , 100) are random variables sampled uniformly and i.i.d. from [−0.6, 0.6] × [−0.6, 0.6]. We
visualize the dataset in Figure 6a.

We then run SGD, AdaGrad, RMSProp (and Adam (w/m)) respectively with learning rates η = 0.1, while Weight-decay
hyper-parameter b is set to be 0.9. For each round, we train the model for 5000 epochs to ensure that training accuracy
achieves 100% (see Figure 6c for details); while for each optimizer, we conduct 100 rounds of experiments with random
initialization, Convergent directions of square root of inverse conditioners h−

1
2∞ are plotted in Figures 6d, 6e, and 6f.

Since h−
1
2∞ occurs in optimization target in (PA), different direction of h−

1
2∞ may lead to different convergent direction of

parameters, which further indicates convergent direction of parameters in AdaGrad can be vulnerable to random initialization.


