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Abstract
Despite their overwhelming capacity to overfit,
deep neural networks trained by specific optimiza-
tion algorithms tend to generalize well to unseen
data. Recently, researchers explained it by in-
vestigating the implicit regularization effect of
optimization algorithms. A remarkable progress
is the work (Lyu & Li, 2019), which proves gra-
dient descent (GD) maximizes the margin of ho-
mogeneous deep neural networks. Except GD,
adaptive algorithms such as AdaGrad, RMSProp
and Adam are popular owing to their rapid train-
ing process. However, theoretical guarantee for
the generalization of adaptive optimization algo-
rithms is still lacking. In this paper, we study the
implicit regularization of adaptive optimization
algorithms when they are optimizing the logistic
loss on homogeneous deep neural networks. We
prove that adaptive algorithms that adopt exponen-
tial moving average strategy in conditioner (such
as Adam and RMSProp) can maximize the margin
of the neural network, while AdaGrad that directly
sums historical squared gradients in conditioner
can not. It indicates superiority on generaliza-
tion of exponential moving average strategy in the
design of the conditioner. Technically, we pro-
vide a unified framework to analyze convergent
direction of adaptive optimization algorithms by
constructing novel adaptive gradient flow and sur-
rogate margin. Our experiments can well support
the theoretical findings on convergent direction of
adaptive optimization algorithms.

1. Introduction
Deep learning techniques have been very successful in sev-
eral domains, like computer vision (Voulodimos et al., 2018),
speech recognition (Deng et al., 2013) and natural language
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processing (Young et al., 2018). In practice, deep neural
networks (DNN) learned by optimization algorithms such
as gradient descent (GD) and its variants can generalize well
to unseen data (Witten & Frank, 2005). However, deep neu-
ral networks are non-convex. The non-convex deep neural
networks have been found to have large amount of global
minima (Choromanska et al., 2015), while only few of them
can guarantee satisfactory generalization property (Brutzkus
et al., 2018). Explaining why the highly non-convex model
trained by a specific algorithm can generalize has become
an important open question in deep learning.

Regarding the above question, one plausible explanation is
that optimization algorithms implicitly regularize the train-
ing process (Neyshabur et al., 2015). That is, the optimiza-
tion algorithm tends to drive parameters to certain kinds
of global minima which generalize well, although no ex-
plicit regularization is enforced. Recently, exciting results
have been shown for vanilla gradient descent. A remarkable
progress is the work (Lyu & Li, 2019), which proves that
GD maximizes the margin of homogeneous (non-linear)
deep neural networks.

On the other hand, adaptive algorithms such as AdaGrad
(Duchi et al., 2011), RMSProp (Hinton et al., 2012), and
Adam (Kingma & Ba, 2015) have been in spotlight these
years. These algorithms are proposed to improve the conver-
gence rate of GD (or SGD) by using second-order moments
of historical gradients as conditioner and have been widely
applied in deep learning (Ruder, 2016). Despite the rapid
convergence of adaptive methods, numerous works have pro-
vided empirical evidence that adaptive methods may suffer
from poor generalization performance (Wilson et al., 2017;
Luo et al., 2018). Several works try to improve the perfor-
mance of adaptive optimization algorithms such as AdamW
(Loshchilov & Hutter, 2018), AdaBound (Luo et al., 2018),
AdaBelief (Zhuang et al., 2020). However, there is little the-
oretical analysis for generalization of adaptive algorithms.
These observations and the research for GD motivate us to
study the implicit regularization for adaptive algorithms.

The key factor for the success of adaptive optimization al-
gorithms is to design better conditioners of the gradient.
Adagrad adopts the simple average of the squared values of
the historical gradients in its conditioner, while RMSProp
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and Adam improve the simple average to exponential mov-
ing average strategy. In this paper, we aim to study the
influence of different types of conditioners on convergent
direction of parameters trained by adaptive optimization al-
gorithms. Specifically, we work on the homogeneous neural
networks (including fully connected or convolutional neural
network with ReLU or leaky ReLU activations) with sepa-
rable data under logistic loss (for binary classification) and
cross-entropy (for multi-class classification). For logistic
loss, we focus on characterizing the convergent direction of
parameters (i.e., limt→∞

wt
‖wt‖2 ) with respect to the training

iteration t, which is a key target along this line of researches
(Soudry et al., 2018; Gunasekar et al., 2018b; Lyu & Li,
2019).

Our main result is summarized in Theorem 1, which states
that RMSProp and Adam (w/m) (a variant of Adam without
momentum acceleration)1 maximize margin of the neural
network (equivalent to the optimum of optimization problem
in Eq.(2)) and AdaGrad does not converge to max-margin
solution due to the anisotropic h∞.

Theorem 1. (Informal) We use Φ(w,x) to denote the ho-
mogeneous neural network model with parameter w and
input x. (1) For AdaGrad, any limit point of wt/‖wt‖2 is a
KKT point of the optimization problem

min ‖h−1/2
∞ �w‖2 subject to yiΦ(w,xi) ≥ 1,∀i, (1)

where h∞ = limt→∞ h(t) is the limit of the conditioner
in AdaGrad. (2) For Adam (w/m) and RMSProp, any limit
point of w(t)/‖w(t)‖2 is a KKT point of the optimization
problem

min ‖w‖2 subject to yiΦ(w,xi) ≥ 1,∀i. (2)

Theorem 1 indicates the importance of proper design on
the conditioner, i.e., adaptive algorithms like Adam (w/m)
and RMSProp that adopt exponential weighted average de-
sign on conditioner regularize the training to max-margin
solution, which has low complexity. Therefore, we can ex-
pect good generalization performance for Adam (w/m) and
RMSProp. Furthermore, we illustrate that the convergence
direction of AdaGrad is sensitive to initialization, which
hurts its generalization.

We establish Theorem 1 for both continuous flows of adap-
tive optimization algorithms and their discrete update rules.
The technical contributions to prove Theorem 1 are sum-
marized as follows. (1) We propose adaptive gradient flow,
which is a unified framework to deal with adaptive gradients.
With the adaptive gradient flow, the analysis of convergent

1How momentum influence the convergence of an optimization
algorithm on non-convex deep neural network is still an open
problem. Here, we only study a variant of Adam which sets the
momentum parameter as 0.

direction is transformed from original parameter space to a
normalized parameter space. (2) In the normalized param-
eter space, we construct surrogate margin for the adaptive
algorithms, and with the surrogate margin, we show that the
increasing rate of the parameter norm can be bounded by the
decreasing rate of logarithmic loss and the loss converges to
zero. (3) We prove that any limit direction of the normalized
parameter flow is a KKT point of the margin maximiza-
tion problem in normalized parameter space. Moreover,
we prove the convergent direction is unique if the neural
network is definable (Kurdyka, 1998). The adaptive gra-
dient flow and surrogate margin are designed for adaptive
optimization algorithms, which makes the proof techniques
different from that for vanilla GD in (Soudry et al., 2018;
Lyu & Li, 2019). (4) We further prove the convergent direc-
tion for discrete update rules by characterizing the influence
of the learning rate.

Finally, we conduct experiments to observe the margin of
homogeneous neural network during training of several
adaptive optimization algorithms. For all experiments, the
margins are increasing during training and the final margins
of RMSProp and Adam (w/m) are larger than that of Ada-
Grad. We also observe the convergent direction of adaptive
optimization algorithms under different realizations of ini-
tialization and results show that the convergent direction of
AdaGrad is sensitive to initialization. These observations
can well support our theoretical findings.

2. Related Work
Implicit Regularization of First-order Optimization
Methods. Soudry et al. (2018) proved that gradient de-
scent on linear logistic regression with separable data con-
verges in the direction of the max L2 margin solution of the
corresponding hard-margin Support Vector Machine, and
motivate a line of works on the implicit regularization of
GD on linear model (Nacson et al., 2019b; Ji & Telgarsky,
2019; Li et al., 2019; Xu et al., 2018).

Afterwards, researchers study the implicit regularization
of GD on deep neural networks. Ji & Telgarsky (2018);
Gunasekar et al. (2018b) studied the deep linear network and
Soudry et al. (2018) studied the two-layer neural network
with ReLU activation. Nacson et al. (2019a) proved the
asymptotic direction is along a KKT point of the L2 max-
margin problem for homogeneous deep neural networks.
Lyu & Li (2019) independently proved similar result for
homogeneous neural networks with simplified assumptions.
Based on (Lyu & Li, 2019), Ji & Telgarsky (2020) further
prove that parameters have only one asymptotic direction.

There are also works considering implicit regularization
of other first-order optimization algorithms. Nacson et al.
(2019c) worked on Stochastic Gradient Descent for linear
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logistic regression. Gunasekar et al. (2018a) studied mirror
descent and steepest descent on linear model. Arora et al.
(2019) proved gradient descent on Neural Tangent Kernel
will converge to a global minimum near the initial point.

However, there is little result on the implicit regularization
of adaptive optimization methods.

Theoretical Evidence of Generalization of Adaptive Al-
gorithms. Adaptive algorithms have been in spotlight these
years and many works empirically observe the generaliza-
tion behavior of adaptive algorithms (Keskar & Socher,
2017; Reddi et al., 2018; Chen et al., 2018; Luo et al., 2018).
In comparison, there are few theoretical justifications. Wil-
son et al. (2017) constructed a specific linear regression
task where adaptive optimization algorithms converge to a
solution that incorrectly classifies new data with probability
arbitrarily close to half. Zhou et al. (2020) modeled the
distribution of stochastic noise in Adam, and showed that
SGD tends to converge to flatter local minima. Another
viewpoint is to study the convergent direction of adaptive
optimization algorithms. To the best of our knowledge,
the only work is (Qian & Qian, 2019), which proves the
convergent direction of AdaGrad on linear logistic regres-
sion. In this paper, we study the convergent direction of
adaptive optimization algorithms on deep neural networks
which requires different techniques due to the non-convexity
of deep networks.

Meanwhile, the correlation between margin and gener-
alization error has also been extended to deep networks.
Bartlett et al. (2017) first bound the generalization error of
deep neural networks using (spectrally) normalized margin
by covering number. In parallel, Neyshabur et al. (2018)
adopt normalized margin into the PAC-Bayesian framework
and derive generalization bound with different dependency
on layer width from (Bartlett et al., 2017). Empirically,
Jiang et al. (2019) present a large scale study of different
generalization bounds in deep networks, and find there is
a significant correlation between generalization error and
normalized margin when optimizer is changed. These work
support our study on generalization in deep learning through
the margin theory.

3. Preliminaries
In this paper, we study the logistic regression problem with
homogeneous neural networks. Let training set S defined
as S = {(xi, yi)}Ni=1, where xi ∈ X (i = 1, 2, · · · , N )
are inputs, yi ∈ R (i = 1, 2, · · · , N ) are labels, and N is
the size of S. The empirical loss L with training set S,
neural network classifier Φ, individual loss `(x) = e−f(x)

and parameters w ∈ Rp can be written as follows:

L(w,S) =

N∑
i=1

` (yiΦ(w,xi)) .

In an optimization process, the training set S is fixed. There-
fore, without loss of generality, we abbreviate L(w,S) =
L(w), and yiΦ(w,xi) = qi(w). In this paper, we consider
the exponential loss, i.e., f(qi(w)) = qi(w), and the logis-
tic loss, i.e., f(qi(w)) = − log log(1 + e−qi(w)). Both of
f are monotonously increasing and have an inverse.

We will use Clarke’s Subdifferential ∂̄ (Clarke, 1975) in
this paper as a natural extension of gradient ∇ for locally
Lipschitz functions. For any locally Lipschitz function f :
Rp → R, its Clarke’s Subdifferential ∂̄f at point w0 is
defined as

conv{ lim
k→∞

∇f (wk) : wk → w0,∇f(wk) exists }.

Following (Davis et al., 2020), we also define f admits a
chain rule if for any arc 2 z : R+ → Rp, ∀h ∈ ∂̄f(z(t)),
df(z(t))

dt = 〈h, dz
dt 〉.

3.1. Continuous Flow for Adaptive Algorithms

Adaptive optimization algorithms including AdaGrad, RM-
SProp, Adam are widely used to optimize the loss function
in deep learning. The update rules for these adaptive opti-
mization algorithms can be written as 3

w(k + 1)−w(k) = −ηh(k)� ∂̄L(w(k)), (3)

where k = 1, 2, · · · denotes the iteration index, η denotes a
constant learning rate, h(k) is called the conditioner which
adaptively assigns different learning rates for different coor-
dinates. For AdaGrad, h(k)−1 =

√
ε1p +

∑k
τ=0 ∂̄L(w(τ))2

where ε is a positive constant, and 1p is a length-p vec-
tor with all components to be 1. Here, ∂̄L(w(τ))2 =
∂̄L(w(τ)) � ∂̄L(w(τ)) and � denotes the element-wise
product of a vector. Different from AdaGrad, RMSProp
adopts exponential weighted average strategy in h(k), i.e.,

h(k)−1 =
√
ε1p +

∑k
τ=0(1− b)bk−τ ∂̄L(w(τ))2. Adam

further introduces a bias-correction coefficient 1
1−bk and

h(k)−1 =

√
ε1p +

∑k
τ=0(1−b)bk−τ ∂̄L(w(τ))2

1−bk . In this pa-

per, we use hA(k), hR(k) and hM (k) to distinguish the
term h(k) in AdaGrad, RMSProp and Adam respectively.

Taking η → 0, the continuous time limits (i.e., continuous
flow) of the three optimization algorithms are

dw(t)

dt
= −h(t)� ∂̄L(w(t)), (4)

hA(t)−1 =
√
ε1p +

∫ t
0
∂̄L(w(τ))2dτ , hR(t)−1 =√

ε1p +
∫ t
0

(1− b)e−(1−b)(t−τ)∂̄L(w(τ))2dτ and

2A arc z : R+ → Rp satisfies for any compact set I ⊂ R+, z
is absolute continuous on I .

3In this paper, we only consider no-momentum versions of the
algorithms, i.e., the algorithms without momentum acceleration.
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hM (t)−1 =

√
ε1p +

∫ t
0

(1−b)e−(1−b)(t−τ)∂̄L(w(τ))2dτ

1−bt .

Our study will start with the continuous version of the two
algorithms. Specifically, for the continuous case, we focus
on the following scenario.

Assumption 1. The empirical loss is defined as L(w) =∑N
i=1 e

−f(qi(w)). The following propositions hold:

I (Regularity). For any i, Φ(w,xi) is locally Lipschitz
and admits a chain rule with respect to w;

II (Homogeneity). There exists L > 0 such that ∀α > 0
and i, Φ(αw,xi) = αLΦ(w,xi);

III (Separability). There exists a time t0 such that
f−1(log 1

L(t0) ) > 0.

I, II in Assumption 1 holds for a board class of networks
allowing for ReLU, max pooling, and convolutional layers;
Assumption 1.III holds generally for over-parameterized
neural networks, which can achieve complete correct classi-
fication in training set.

3.2. KKT point

We give a brief introduction to KKT conditions and KKT
points. For a constrained optimization problem defined as

min f(w) subject to: gi(w) ≤ 0, ∀i ∈ [N ],

KKT conditions are necessary conditions for a point w0 to
be optimal in above problem, which require that there exists
non-negative reals λi, such that

∂̄f(w0) +

N∑
i=1

λi∂̄gi(w0) = 0;

N∑
i=1

λigi(w0) = 0. (5)

A weaker notion of KKT condition is (ε, δ) KKT condition,
which requires left sides of eq. (5) to be respectively smaller
than ε and δ. We will formally define (ε, δ) KKT points and
give some of their properties in Appendix A.2.

Notations. In this paper, we use o, O, Θ, and Ω to hide the
absolute multiplicative factors. Concretely, f(t) = o(g(t))

if limt→∞
f(t)
g(t) = 0; f(t) = O(g(t)) if limt→∞

f(t)
g(t) < ∞;

f(t) = Ω(g(t)) if limt→∞
f(t)
g(t) > 0; f(t) = Θ(g(t)) if

f(t) = Ω(g(t)) and f(t) = O(g(t)).

4. Main Results
In this section, we introduce the main results on convergent
direction of adaptive optimization algorithms. In Section
4.1, we propose a unified adaptive gradient flow and prove
that it converges to KKT point of max-margin problem. In
Section 4.2, we apply results for adaptive gradient flow to

AdaGrad, RMSProp and Adam (w/m) to get the convergent
directions of their continuous flow. In Section 4.3, we prove
the convergent directions of the discrete update rules of
adaptive optimization algorithms.

4.1. Adaptive Gradient Flow: Definition and Results

Adaptive optimizers such as AdaGrad, RMSProp and Adam
can be viewed as adding component-wise conditioner to
gradient updates and the limit of the component-wise condi-
tioner may be anisotropic for different components. We first
define adaptive gradient flow whose limit of component-
wise conditioner is isotropic.

Definition 1. A functionw(t) is called to obey an adaptive
gradient flow F with loss L and component learning rate
β(t), if it can be written as the following form

dv(t)

dt
= −β(t)� ∂̄L̃(v(t)),

where β(t) satisfies that limt→∞ β(t) = 1p, and d logβ(t)
dt

is Lebesgue Integrable.

We make some explanations for Definition 1: Conditions
limt→∞ β(t) = 1p and d logβ(t)

dt being Lebesgue Integrable
ensures β(t) converges to 1p without large fluctuation.
These constraints are common, in the sense that AdaGrad,
RMSProp and Adam (w/m) can be transferred into such
flows by simple reparameterization (see Section 4.2); but
are also vital, which guarantee adaptive gradient flows con-
verge to KKT point of max-margin problem as follows:

Theorem 2. Let v obey an adaptive gradient flow F which
satisfies Assumption 1. Let v̄ be any limit point of {v̂(t)}∞t=0

(where v̂(t) = v(t)
‖v(t)‖ ). Then v̄ is along the direction of a

KKT point of the following L2 max-margin problem (P ):

min
1

2
‖v‖2

subject to q̃i(v) ≥ 1,∀i ∈ [N ].

(P ) is equivalent to the L2 max-margin problem: sup-
pose v0 is an optimal point of (P ). Then there exists an
i ∈ [N ], such that, q̃i(v0) = 1 (otherwise, we can let v0

′ =

v0/q̃min(v0)
1
L . Then v0

′ is also a fixed point of (P ) and
have a smaller L2 norm than v0

′, which leads to contradic-
tory). Therefore, q̃min(v0) = 1 (q̃min(v)

4
= mini{q̃i(v)}),

and maximizing the normalized margin q̃min(v)
‖v‖L is equivalent

to minimize ‖v‖2.

Theorem 2 shows that the adaptive gradient flow actually
drives the parameters to solutions of L2 max-margin prob-
lem. We will give the proof skeleton of Theorem 2 in Section
5.
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Remark 1. Our result can be extended to the multi-class
classification with logistic loss and same assumption as As-
sumption 1 except that Φ(w,xi) is a C-dimension vector in
multi-class case with C number of classes. The correspond-
ing L2 max-margin classification problem is then

min
1

2
‖v‖2

subject to (Φ(w,xi))yi − (Φ(w,xi))j ≥ 1,

∀i ∈ [N ], j ∈ [C]/{yi}.

We defer the proof to Appendix E.

While Theorem 2 does NOT guarantee direction of parame-
ters converges as t→∞, we present a theorem in the end
of this section which provides such a guarantee when neural
network Φ is definable with respect to parameters w.
Theorem 3. Let all assumptions in Theorem 2 hold. Assume
further Φ(w,xi) is definable with respect to parameter w
for any i ∈ [N ]. Then direction of parameters {v̂(t)}∞t=0

converges.

We defer the formal definition of definable to Appendix C,
but point out here that definability allows for linear, ReLU,
polynomial activations, max pooling and convolutional lay-
ers, and skip connections. Furthermore, for locally Lips-
chitz definable function, chain rule holds almost everywhere
(Lemma 11).

The proof can be derived by bounding the curve length
of v̂(t) using γ̃(t) and Kurdyka-Lojasiewicz inequalities
developed in (Ji & Telgarsky, 2020), and we defer the details
to Appendix C.

4.2. Results for Adaptive Algorithms: Continuous Case

In this section, we will prove gradient flow of AdaGrad,
RMSProp, and Adam (w/m) can be transferred into adap-
tive gradient flow. We start from proving convergence of
conditioner in AdaGrad and further shows AdaGrad can be
reparameterized as an adaptive gradient flow.
Theorem 4. For AdaGrad flow defined as eq. (4) with
h(t) = hA(t), we have that

• hA(t) converges as t → ∞. Furthermore, h∞ =
limt→∞ h

A(t) has no zero component.

• dvA(t)
dt = −βA(t) � ∂̄L̃A(vA(t)) satisfies definition

of adaptive gradient flow, where

vA(t) = h−1/2
∞ �w(t),βA(t) = h−1

∞ � h
A(t),

L̃A(vA) = L(h
1
2∞ � vA).

We provide some intuitions for proof of Theorem 4. The
former part of the first property is because hA(t) is non-
increasing with respect to t. However, the latter part yields

that integration of square of the gradient converges to a
positive real, which is non-trivial; the second property is
obtained by component-wisely scaling w and direct verifi-
cation; the last property can be obtained by Newton-Leibniz
formula for absolutely continuous function since dβA(t)

dt is
non-negative. We defer the detailed proof to Appendix B.1.

Similar properties also hold for RMSProp and Adam (w/m)
as the following Theorem .
Theorem 5. For RMSProp and Adam flow defined as eq.
(4) respectively with h(t) = hR(t) and h(t) = hM (t), we
have that, for I ∈ {R,M},

• hI(t) converges as t → ∞. Furthermore,
limt→∞ h

I(t) = ε−
1
2 1Tp .

• dvI(t)
dt = −βI(t)� ∂̄L̃I(vA(t)) satisfies definition of

adaptive gradient flow, where

vI(t) = ε
1
4w(t),βI(t) = ε

1
2h(t), L̃I(vI) = L(ε−

1
4 vI).

Both conditioners hR and hM have an exponen-
tial decay term e−(t−τ)(1−b), which drives

∫ t
τ=0

(1 −
b)e−(1−b)(t−τ)∂̄L(w(τ))2dτ to zero, and conditioners to
isotropy. The detailed proof requires a more careful anal-
ysis in measure than the AdaGrad flow. We defer them to
Section B.1.

By Theorems 4 and 5, gradient flow of AdaGrad, RMSProp
and Adam (w/m) can both be transferred into adaptive gra-
dient flows: vI obeys an adaptive gradient flow with loss
L̃I and conditioner βI (I ∈ A,R,M ). Furthermore, As-
sumption 1 also holds for L̃I : for AdaGrad, RMSProp, and
Adam , we can uniformly represent L̃A(vA), L̃R(vR), and

L̃M (vM ) as L(h̃
1
2 � v), where h̃ is a component-wisely

positive constant vector. By Assumption 1, L̃(v) can be
further written as

L̃(v) =L(h̃
1
2 � v) =

N∑
i=1

e−f(qi(h̃
1
2�v)).

If we denote q̃i(v) = qi(h̃
1
2 � v), we have q̃i is also an L

homogeneous function, and L̃(v) =
∑N
i=1 e

−f(q̃i(v)).

Combining Theorem 2 with Theorems 4 and 5, one can
obtain convergent directions of AdaGrad flow and RMSProp
flow by simple parameter substitution of (P ).
Theorem 6. Let w satisfy AdaGrad flow defined as eq. (4)
with h(t) = hA(t). Then, any limit point of {ŵ(t)}∞t=0

(where ŵ(t) = w(t)
‖w(t)‖ is normalized parameter) is along

the direction of a KKT point of the following optimization
problem (PA):

min
1

2
‖h−

1
2∞ �w‖2

Subject to: qi(w) ≥ 1.
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Theorem 7. Let w satisfy RMSProp or Adam flow defined
as eq. (4) respectively with h(t) = hR(t),hM (t). Then,
any limit point of {ŵ(t)}∞t=0 (where ŵ(t) = w(t)

‖w(t)‖ is nor-
malized parameter) is along the direction of a KKT point of
the following optimization problem (PR):

min
1

2
‖w‖2

Subject to: qi(w) ≥ 1.

Intuitively, (PR) is the L2 max-margin problem, which
means RMSProp flow biases parameters to a local mini-
mum with good generalization property; on the other hand,
the target of (PA) has a reliance of h∞, which is a constant
vector in (PA) but can be influenced by the optimization
process and initialization, and may further lead to worse
generalization. We will discuss the difference between con-
vergent directions of AdaGrad and RMSProp in detail in
Section 4.4.

4.3. Results for Adaptive Algorithms: Discrete Case

In practice, gradient descent methods are employed since
calculating exact gradient flow requires huge efforts. In this
section, we show same results hold in Theorems 6 and 7 for
discrete update rules of adaptive algorithms with slightly
different assumptions.

As for the discrete case, two additional assumptions are
needed as follows (For brevity, we put the complete assump-
tion to the appendix):

Assumption 2. I (smooth). For any fixed x, Φ(·;x) is
M smooth (i.e., Φ is twice continuously differentiable
with respect to x and all the eigenvalues of the Hessian
are within [−M,M ]);

II (Learning Rate). For k > k0, ηt ≤ C(t), where C(t)
is a non-decreasing function (defined in Appendix D).
Also, ηt is lower bounded by a positive real, that is,
there exists a constant η̃ > 0, such that, for any k > k0,
ηk ≥ η̃.

We make the following explanations for Assumption 2. As-
sumption 2(I) is needed technically because we need to
consider second order Taylor expansion around each point
along the training {w(k); k = 1, · · · , }. Results based on
this assumption are the state-of-art in the existing literature
of the implicit bias of GD (e.g. [3]). We put loosening this
assumption to future works. Assumption 2(II) guarantees
that the second order Taylor expansion is upper bounded
and the step size is not too small. With Assumption 2, we
have the following theorem:

Theorem 8. With Assumptions 1 and Assumption 2, Theo-
rems 6 and Theorems 7 hold respectively for discrete update
of AdaGrad and discrete updates of RMSProp and Adam.

We put the proof for Theorem 8 to Appendix D.

4.4. Discussions

We make some discussions on the results derived in Section
4.2 and 4.3. First, as shown in (Li et al., 2019), the optimiza-
tion problem PR is equivalent to L2 margin maximization
problem. Theorems 7 and 6 show that RMSProp and Adam
(w/m) converge to max-margin solution, while AdaGrad
may drive the parameters to a different direction. The corre-
sponding optimization problem of AdaGrad has a reliance
on h∞, which is shown to be sensitive to the optimization
path before convergence (shown in Section 6.2), and makes
the convergent direction sensitive (we will discuss this in
detail in Appendix A.5). Because the normalized margin is
used as a complexity norm in generalization literature (i.e.,
larger normalized margin indicating better generalization
performance) (Bartlett & Shawe-Taylor, 1999), our results
indicate the superiority on generalization of exponential
moving average strategy in the design of the conditioner.

Second, two key factors that guarantee generalization of
RMSProp and Adam are exponential weighted average de-
sign on the conditioner and the added constant ε in h(t).
Our results show the benefit of the two factors: it acceler-
ates the training process at early stage of optimization by
adaptively adjusting the learning rate, but it still converges
to max-margin solution because the denominator of condi-
tioner tends to constant ε at later stage. Most of previous
works explain ε to ensure positivity of h(t). Our results
show that ε is important for the convergent direction of the
parameters and the generalization ability.

5. Proof Sketch of Theorem 2
In this section, we present the proof sketch of Theorem 2.
The proof can be divided into three stages: (I) we define sur-
rogate margin and prove that it is lower bounded and equiv-
alent to normalized margin as time tends to infinity; (II) We
use surrogate margin to lower bound the decreasing rate of
empirical loss L, and prove limt→∞ L̃(w(t)) = 0; (III) For
every convergent direction v̄, a series of (εi, δi) KKT point
which converges to v̄ with limi→∞ εi = limi→∞ δi = 0 is
constructed. We then show every convergent direction is a
KKT point of optimization problem (P ).

5.1. surrogate margin on adaptive gradient flow

For adaptive gradient flow ∂̄L̃(v(t)) = −β(t)� dv(t)
dt , we

first deal with the change of ‖v‖. To derive change of

‖v‖, we study the surrogate norm ρ(t)
4
= ‖β(t)−

1
2 � v(t)‖

because ρ(t) = Θ(‖v(t)‖) based on limt→∞ β(t) = 1.

The normalized margin γ(t) = q̃min(t)
‖v(t)‖L connects margin

q̃min(t) with parameter norm ‖v(t)‖. The next lemma ad-
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mits us to define an surrogate margin using L̃.

Lemma 1. If limt→∞ L̃ = 0, we have
f−1(log 1

˜L(v(t))
)

ρ(t)L
=

Θ(γ(t)).

Based on Lemma 1, we define surrogate margin γ̃(t) as

γ̃(t) =
f−1(log 1

L̃(v(t))
)

ρ(t)L
.

Since ρ(t) = Θ(‖v(t)‖), γ̃ actually bridge the norm of
parameters with empirical loss. A desired property for γ̃
is to have a positive lower bound, since with this property,
one can further bound parameter norm using empirical loss.
The following lemma shows that γ̃ is lower bounded for
adaptive gradient flow F with empirical loss L̃ satisfying
Assumption 1.

Lemma 2. Let a function v(t) obey an adaptive gradient
flowF with loss L̃ and component learning rate β(t), where
L̃ satisfies Assumption 1. Then there exists a time t1 ≥ t0,
such that, for any time t ≥ t1, γ̃(t) ≥ e− 1

2 γ̃(t1).

Remark 2. Our surrogate margin can be obtained by re-
placing ‖v(t)‖ by ρ(t) = ‖β(t)−

1
2 �v(t)‖ in the smoothed

margin in [3]. This allows us to lower bound the derivative
of surrogate margin and further lower bound the surrogate
margin as Lemma 2, while the derivative of smoothed mar-
gin for adaptive gradient flow can not be bounded easily.

Here we briefly give a road map of the proof. The derivative
of norm ρ(t) can be split into two parts: one is the increasing
of parameter v, and another is the change of component
learning rate β−

1
2 (t). Applying homogeneity of q̃i and

Cauchy–Schwarz inequality, we bound the first term using
the derivative of f−1

(
log
(

1
L̃(t)

))
; the second term can be

lower bounded by
∑p
i=1

(
d logβ

− 1
2

i (t)

dt

)
+

, whose integration

is bounded by the definition of adaptive gradient flow. The
proof is completed by putting two parts together.

By the discussion above, one can conclude that derivative of
γ̃(t) can be calculated by subtracting a small enough term∑p
i=1

(
d logβ

− 1
2

i (t)

dt

)
+

from a non-negative term. This fact

leads to the the convergence of γ̃(t).

Lemma 3. Suppose a function v obey an adaptive gradient
flow F , which satisfies Assumption 1. Then the surrogate
margin γ̃(t) converges.

5.2. Convergence of Empirical Loss and Parameters

By Lemma 2, we have that for an adaptive gradient flow
F with Assumption 1, the norm ρ(t) can be bounded as
ρ(t) = O(f−1(log( 1

L̃(v(t))
))

1
L ). On the other hand, by

chain rule, the derivative of empirical loss with respect to
time can be calculated as

dL̃(v(t))

dt
= 〈∂̄L̃(v(t)),

dv(t)

dt
〉 = −‖β

1
2 (t)� ∂̄L̃(v(t))‖2

≤ −〈∂̄L̃(v(t)),v(t)〉2

ρ(t)2
,

where the last inequality is derived by the Cauchy inequality
applying to 〈β

1
2 � ∂̄L̃,β−

1
2 �v〉. By the homogeneity of q̃i,

we can further lower bound 〈∂̄L̃,v〉
2

ρ2 using L̃. In other words,
Lemma 2 ensures that the decreasing rate of the empirical
loss L̃ can be lower bounded by a function of itself. Based
on the above methodology, we can prove that empirical loss
will decrease to zero, while parameter norm will converge
to infinity as the following lemma.

Lemma 4. Let a function v(t) obey an adaptive gradient
flowF with loss L̃ and component learning rate β(t), where
L̃ satisfies Assumption 1. Then, limt→∞ L̃(v(t)) = 0, and
consequently, limt→∞ ‖v(t)‖ =∞.

5.3. Convergence to KKT point

We start by proving for any t ≥ t1, v̂(t) = v(t)
‖v(t)‖ is an

approximate KKT point. Based on the surrogate margin
that we construct in Section 5.1, we can further show for
normalized v is an approximate KKT point as the following
Lemma :

Lemma 5. Let v̂ and ̂̄∂L̃(v) be v and ∂̄L̃(v) respec-
tively normalized by their L2 norms. Then v̂(t) is a(
O(1− 〈v̂(t), −̂∂̄L̃(t)〉),O

(
1

log 1
L̃(t)

))
KKT point of op-

timization problem (P ) in Theorem 2.

We made some explanations to Lemma 5: by the results

in Section 5.2, we have limt→∞O
(

1
log 1
L̃(t)

)
= 0. There-

fore, we only need to find a convergent series ṽ(t) with

1 + 〈v̂(t),̂̄∂L̃(t)〉 goes to zero.

For this purpose, we construct an approximate norm ρ̃(t)

as

√
ρ(t)2 − 2

∫ t
t1

〈
v(τ),β−

1
2 (τ)� dβ

− 1
2

dt
(τ)� v(τ)

〉
dτ,

which measures the increasing of v(t). 1− 〈v̂(t),−̂̄∂L̃(t)〉
can then be bound by the next lemma:
Lemma 6. For any t3 > t2 ≥ t1, there exists a ξ ∈ [t2, t3],
such that(
〈v̂(ξ),−̂̄∂L̃(ξ)〉−2 − 1

)
≤ o

(
1

log ρ̃(t3)− log ρ̃(t2)

)
,

and

‖v̂(ξ)− v̂(t2)‖ ≤ O (log ρ̃(t3)− log ρ̃(t2)) .
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(a) Training Accuracy (b) Test Accuracy (c) Training Loss (d) Normalized Margin

Figure 1. Observation of normalized margin and generalization performance of different optimizers on MNIST. While all optimizers end
with training accuracy 100% in (a), 1− test accuracy can reflect the generalization error.

(a) h
− 1

2
∞ in AdaGrad (b) h

− 1
2
∞ in RMSProp (c) h

− 1
2
∞ in Adam (d) Margin

Figure 2. Direction of limit of conditioner in AdaGrad, RMSProp, and Adam (w/m) with different realizations of random initialization. In
(a)-(c), the green vector stands for the isotropic direction ( 1√

3
, 1√

3
, 1√

3
). One red vector in (a) stands for direction of (hA∞)−

1
2 in one

experiment. Blue vector in (b) stands for direction of (hR∞)−
1
2 under different initialization. Black vector in (c) stands for direction of

(hM∞)−
1
2 under different initialization. In (d), final values of the margin for the four algorithms are plotted (Adam (w/m) coincides with

RMSProp).

Therefore, given a sequence of parameter direction
{v̂(ti)}∞i=1 with limit v̂, we can always construct an-

other sequence {t′i}∞i=1 with
(

1− 〈v̂(t′i),−
̂̄∂L̃(t′i)〉

)
and

v̂(ti)− v̂(t′i) converging to zero.

Combining Lemma 5 and 6, for any convergent direc-
tion v̄, we can construct a series of {ti}∞i=1, such that
v̂(ti) is (εi, δi) KKT point, with limi→∞ v̂(ti) = v̄, and
limi→∞ εi = limi→∞ δi = 0. On the other hand, con-
straints of (P ) satisfies Mangasarian-Fromovitz constraint
qualification (see Appendix A.2), which ensures that v̄ is a
KKT point of (P ), and completes the proof.

6. Experiments
6.1. Observations on Normalized Margin and

Generalization Performance

In this section, we conduct experiments to verify the the-
oretical results. We train a homogeneous neural networks
using AdaGrad, RMSProp and Adam (w/m) respectively.
We adopt the homogeneous 4-layer convolutional neural
network used in (Madry et al., 2018) as our model and
use MNIST (LeCun, 1998) as the dataset. We use default
learning rate on PyTorch platform for all the algorithms and
Adam (w/m) adopts the same learning rate as Adam. Be-
cause our theory is established for full batch gradient with-
out randomness, we set minibatch size to be 1024 which

is relatively large to mimic the full batch gradient. We put
more details on the network structure and the settings of
hyper-parameters in Appendix F.1, where we also add stan-
dard SGD (with momentum) and Adam to observe influence
of momentum.

We plot training accuracy, testing accuracy and training loss
in Figure 1a, 1b, and 1c. We also plot the value of the
normalized margin during training in Figure 1d. We have
the following observations: (1) The normalized margins of
AdaGrad, RMSProp and Adam (w/m) are lower bounded
and the final normalized margin of AdaGrad is the lowest.
It is consistent with our theoretical results. (2) The training
loss of AdaGrad, RMSProp and Adam (w/m) goes to zero
and AdaGrad achieves the lower test accuracy (the worse
generalization), which shows the superiority of condition-
ers in RMSProp and Adam (w/m) on generalization. (3)
Although our theory does not include momentum version of
the algorithms, the normalized margin of SGD and Adam
are also lower bounded , which shows potential on extension
of our theory to momentum version.

6.2. Observations on Convergent Direction

In this section, we observe the direction of h∞ on a simple
case to illustrate that h∞ of AdaGrad is anistropic and
sensitive to initialization. The model we use is expressed
as Φ(x,w, v) = vσ(〈w,x〉), where x ∈ R2,w ∈ R2 and
v ∈ R and σ(x) is the Leaky ReLU activation function, i.e.,
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σ(x) = x for x ≥ 0 and σ(x) = x
2 for x < 0.

We repeat AdaGrad, RMSProp and Adam (w/m) for 100
rounds with different random seeds of initialization. We plot
h
− 1

2∞ for AdaGrad, RMSProp and Adam in Figure 2 (a), (b)
and (c), respectively. We can observe that the h−

1
2∞ in Ada-

Grad are different for 100 runs and h−
1
2∞ in RMSProp and

Adam (w/m) are coincide. It indicates that h−
1
2∞ in AdaGrad

is sensitive to initialization. We also plot the value of the
margin for the three algorithms under different initialization
in Figure 2(d). We can observe that the margin of Ada-
Grad fluctuates under different initialization, while that for
RMSProp and Adam (w/m) are smoother. We further show
the relation between h−

1
2∞ and the convergent direction of

parameters in Appendix F.3. These results indicate that the
convergent direction of AdaGrad is sensitive to initialization,
which may hurt its generalization.

7. Conclusion
In this paper, we study the convergent direction of both
continuous and discrete cases of adaptive optimization al-
gorithms on homogeneous deep neural networks. We prove
that RMSProp and Adam (w/m) will converge to the KKT
points of the L2 max-margin problem, while AdaGrad does
not. The main technical contribution of this paper is to
propose a general framework for analyses of adaptive op-
timization algorithms’ convergent direction. In future, we
will study how optimization techniques such as momentum,
weight decay and stochastic noise in optimization algorithm
influence the convergent direction.
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