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Abstract

We investigate the robustness of stochastic ap-
proximation approaches against data poisoning
attacks. We focus on two-layer neural networks
with ReLU activations and show that under a spe-
cific notion of separability in the RKHS induced
by the infinite-width network, training (finite-
width) networks with stochastic gradient descent
is robust against data poisoning attacks. Interest-
ingly, we find that in addition to a lower bound
on the width of the network, which is standard
in the literature, we also require a distribution-
dependent upper bound on the width for robust
generalization. We provide extensive empirical
evaluations that support and validate our theoreti-
cal results.

1. Introduction
Machine learning models based on neural networks power
the state-of-the-art systems for various real-world appli-
cations, including self-driving autonmous vehicles (Grig-
orescu et al., 2020), speech recognition (Afouras et al.,
2018), reinforcement learning (Li, 2017), etc. Neural net-
works trained using stochastic gradient descent (SGD) per-
form well both in terms of optimization (training) and
generalization (prediction). However, with great power
comes great responsibility, and as several recent studies
indicate, systems based on neural networks admit vulnera-
bilities in the form of adversarial attacks. Especially in over-
parametrized settings (wherein the number of parameters is
much larger than training sample size), which is typical in
most applications, neural networks remain extraordinarily
fragile and amenable to depart from their expected behavior
due to strategically induced perturbations in data. One such
limitation is due to arbitrary adversarial corruption of data
at the time of training, commonly referred to as data poison-
ing. Such attacks present a challenging problem, especially
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in settings where an adversary can affect any part of the
training data. Therefore, in this paper, we are interested in
quantifying the maximal adversarial noise that is tolerable
by SGD when training wide ReLU networks.

One of the earliest works to consider provably tolerant algo-
rithms to a quantifiable error in training examples was that
of Valiant (1985), motivated by a need to understand the
limitations of the PAC learning framework. This was fol-
lowed by a series of works that considered computationally
unbounded adversaries and posed the question of bounding
the error rate tolerable by a learning algorithm in a worst
case model of errors (Kearns & Li, 1993; Guruswami &
Raghavendra, 2009). These hardness results were later com-
plemented by positive results (Klivans et al., 2009; Awasthi
et al., 2014; Diakonikolas et al., 2019a), which give learn-
ing algorithms that enjoy information theoretically optimal
noise tolerance. Much of this prior work focuses on learning
halfspaces (i.e., linear separators) in Valiant’s PAC learn-
ing model (Valiant, 1984). Instead, we consider Vapnik’s
general learning, and are interested in convex learning prob-
lems and over-parametrized neural networks with ReLU
activations. While our theoretical understanding of deep
learning has increased vastly in the last few years with sev-
eral results characterizing the ability of gradient descent to
achieve small training loss in over-parameterized regime,
our understanding of robustness of such methods to attacks
such as data poisoning remains limited.

Arguably, a simplest model of data poisoning is one in
which the input features are perturbed, additively, by norm-
bounded vectors. A more challenging scenario is where both
input features and labels can be corrupted – this is essen-
tially the noise model considered by Valiant (1985); Kearns
& Li (1993); Awasthi et al. (2014). A related model stud-
ied by Cesa-Bianchi et al. (2011) is one where the learner
observes only a noisy version of the data, in a streaming set-
ting, with noise distribution changing arbitrarily after each
round. A yet another poisoning attack, studied extensively
in the literature, is where the adversary can plant a fraction
of the training data; for example, consider movie ratings
contributed by malicious users in matrix completion. Recent
works have studied numerous other practical data poisoning
methods including backdoor attacks, data injection, clean
label attacks, and flip-label attacks (we discuss these further
in related work).



Robust Learning for Data Poisoning Attacks

While several defenses have been proposed, each tailored to
a specific data poisoning attack, there is no unified, robust
learning framework against such attacks. Furthermore, the
proposed defenses often depart significantly from the prac-
tice of modern machine learning, which increasingly relies
on stochastic approximation algorithms such as stochas-
tic gradient descent (SGD), stochastic mirror descent, and
variants. Therefore, it is natural to ask whether stochastic
approximation algorithms, such as SGD, impart robustness
to learning against adversarial perturbations of training data.

In this paper, we investigate the robustness of SGD against
various data poisoning attacks for convex learning problems
as well as training two-layer over-parameterized neural net-
works with ReLU activations. Surprisingly, our results show
that SGD achieves optimal convergence rates on the excess
risk, despite data poisoning, with only a mild deterioration
in overall performance, even as the overall noise budget
of the adversarial attack grows with the sample size, albeit
sublinearly. Our main contributions in this paper are as
follows.

• In Section 2, we first consider the clean label attack,
where the adversary can additively perturb the input
features but not the target labels. In this setting, we
show that stochastic gradient descent robustly learns a
classifier as long as the overall perturbation is sublinear
in the sample size. We extend our results to a more
general class of data poisoning attacks and study them
in a unified framework of oracle poisoning.

• In Section 3, we extend our results to two-layer over-
parameterized neural networks with ReLU activations.
We discuss clean label attack and label flip attack sep-
arately, and establish guarantees for SGD in three
regimes under a data-dependent margin assumption.
Our bounds hold in the regime where neural networks
are moderately wide but not too wide, supporting the
conjecture that extreme over-parametrization may ren-
der learning susceptible to data poisoning. This is in
stark contrast to existing results in deep learning theory
that argue for wider networks for better generalization.

• We validate our theoretical results with empirical evalu-
ations on real datasets in Section 5. We confirm that the
clean-test accuracy exhibits an inverted U-curve when
the training data is poisoned in all of the noisy regimes
we consider. In the process, we also discover a new
loss function that yields stronger poisoning attacks,
which might be of independent interest in itself.

1.1. Problem Setup

We focus on the task of binary classification in presence of
data poisoning attacks. We denote the input and the label

spaces, respectively, by X ⊆ Rd and Y = {−1,+1}. We
assume that the data (x, y) are drawn from an unknown joint
distribution D on X × Y . In a general (clean-data) learning
framework, the learner is provided with n i.i.d. samples
S = {(xi, yi)}ni=1 ∼ Dn, and the goal is to learn a function
fw : X → Y , parameterized by w in some parameter space
W , with a small generalization error, i.e., small 0-1 loss with
resepct to the population, L(w) := P(x,y)∼D(yfw(x) ≤ 0).

We model the data poisoning attacks as a malicious adver-
sary who sits between the distribution and the learner. The
adversary receives an i.i.d. sample S := {(xi, yi)}ni=1 Dn
of size n, generates the poisoned sample S̃ := {(x̃i, ỹi)}ni=1,
and passes it over to the learner. For example, in clean label
attack, the adversary perturbs the input as x̃i = xi + δi,
where each perturbation δi belongs to a perturbation space
∆, and leaves the labels intact, i.e. ỹi = yi. Note that in
this model, no distributional assumptions are made on the
adversarial perturbations. Another example is the label flip
attacks, whereby the adversary does not poison the input, i.e.
x̃i = xi, but it flips the sign of the labels with probability β.
More precisely, ỹi = −yi with probability β and ỹi = yi
otherwise. We focus on the setting where the adversary
has access to the clean data S and is computationally un-
bounded. In other words, adversary chooses to attack the
optimal model (e.g., the empirical risk minimizer), given the
sample. However, the adversary has no knowledge of the
random bits used by the learner, e.g., when training using
stochastic gradient descent.

A common approach to the clean-data learning problem is
solving the stochastic optimization problem

min
w∈W

F (w) := ED[`(yf(x; w))],

where ` : R → R≥0 is a convex surrogate loss for the 0-1
loss. In practice, this is usually done using first-order op-
timization techniques such as stochastic gradient descent
(SGD) and its variants. The statistical and computational
learning theoretic aspects of such methods has been exten-
sively studied in the literature; however, their robustness to
data poisoning attacks is yet not well-understood. There-
fore, the central question we ask is the following: “can SGD
robustly and efficiently learn certain hypothesis classes?”

In full generality, of course, the answer to the above question
is negative – no learning is possible if we don’t impose any
restrictions on the perturbations, i.e., the set ∆. Therefore,
in this paper, we identify conditions on the perturbations
under which SGD can efficiently and robustly learn impor-
tant hypothesis classes such as linear models as well as
two-layer neural networks. In particular, our analysis cru-
cially depends on the following measures of perturbations:
1) the per-sample corruption budget B := maxi ‖δi‖; 2)
the overall corruption budget S :=

∑n
i=1 ‖δi‖; or 3) the

probability of label flip β.
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We denote scalars, vectors and matrices, respectively, with
lowercase italics, lowercase bold and uppercase bold Roman
letters, e.g. u, u and U. The `2 norm is denoted by ‖ · ‖.
Throughout, we use the standard O-notation (O and Ω).
Further, we use . andO interchangeably. We use Õ to hide
poly-logarithmic dependence on the parameters.

1.2. Related Work

In this section, we survey related prior work on data poi-
soning attacks and defense strategies, and on convergence
analysis of gradient descent based methods for training wide
networks.

Data poisoning attacks and defenses. A data poisoning
attack, or causative attack, aims at manipulating training
samples or model architecture, which leads to misclassifi-
cation of subsequent input data associated with a specific
label (a targeted attack) or manipulate predictions of data
from all classes (an indiscriminate attack). A popular data
poisoning attack is backdoor attack, where the adversary
injects strategically manipulated samples (referred to as a a
backdoor pattern, with a target label into the training data.
At prediction time, samples that do not contain the trigger
pattern can be categorized correctly, but samples that carry
the trigger are likely misclassified as belonging to the target
label class (Gu et al., 2017; Liu et al., 2017; Chen et al.,
2017). One of the shortcomings of the standard backdoor
attack is that the poisoned samples are clearly mislabeled,
which can arouse suspicion if subjected to human inspec-
tion. This lead to what are known as clean label attacks
research (Koh & Liang, 2017; Shafahi et al., 2018; Zhu
et al., 2019), which focus on adding human imperceptible
perturbations to input features without flipping labels of the
corrupted inputs. Another attack category is that of label-flip
attacks, where the adversary can change labels of a constant
fraction of the training sample (Biggio et al., 2011; Xiao
et al., 2012; Zhao et al., 2017).

Several defense mechanisms have been proposed to counter
the data poisoning attacks described above. For the label-
flip attacks, (Awasthi et al., 2014) focus on malicious noise
model and construct an algorithm to find the optimal halfs-
pace that achieves ε error while tolerating Ω(ε) noise rate for
isotropic log-concave distributions. Recently, (Diakonikolas
et al., 2019a) proposes a poly (d, 1/ε) time algorithm to
solve the same problem under Massart noise. For backdoor
attacks, (Liu et al., 2018; Tran et al., 2018) propose strate-
gies to identify the trigger pattern and target the poisoned
samples. Several other works have followed up on this idea
of data sensitization (outlier removal) (Barreno et al., 2010;
Suciu et al., 2018; Jagielski et al., 2018; Diakonikolas et al.,
2019b; Wang et al., 2019). For certified defense, (Steinhardt
et al., 2017) analyze oracle defense and data-dependent de-
fenses by constructing an approximate upper bound on the

loss. Recently (Rosenfeld et al., 2020) apply randomized
smoothing to build certifiable robust linear classifier against
label-flip attack.

Convergence analysis of gradient descent for wide net-
works. Our analysis builds on recent advances in theoreti-
cal deep learning literature, which focuses on analyzing the
trajectory of first-order optimization methods in the limit
that the network width goes to infinity (Li & Liang, 2018;
Du et al., 2019b;a; Allen-Zhu et al., 2018; Zou et al., 2018;
Cao & Gu, 2019). The main insight from this body of work
is that when training a sufficiently over-parameterized net-
work using gradient descent, if the initialization is large and
the learning rate is small, the weights of the network remain
close to the initialization; therefore, the dynamics of the
network predictions is approximately linear in the feature
space induced by the gradient of the network at the initializa-
tion (Li & Liang, 2018; Chizat et al., 2018; Du et al., 2019b;
Lee et al., 2019). We are particularly inspired by a recent
work of (Ji & Telgarsky, 2019), which studies the setting
where the data distribution is separable in this feature space,
an assumption that was first introduced and studied in (Ni-
tanda & Suzuki, 2019). While our assumptions and proof
techniques are similar to this line of work, we are distinct
in that – to the best of our knowledge – none of these prior
works study the robustness of SGD to adversarial perturba-
tions. Furthermore, while the existing results suggest that
generalization error decreases as the width of the network
increases, curiously, we find that robust generalization error
exhibits a U-curve as a function of the network width. Our
guarantees, accordingly, involve a lower bound and an upper
bound on the size of over-parametrization of the network.

2. Warm-up: Convex Learning Problems
In convex learning problems, the parameter spaceW is a
convex set, and the loss function `(·) is convex in w. This
framework includes a simple yet powerful class of machine
learning problems such as support vector machines and ker-
nel methods. Here, we seek to understand the robustness
of SGD based on corrupted (likely biased) gradient esti-
mates ∇`(ỹf(x̃; w)) computed on poisoned data (x̃, ỹ). We
begin with a simple observation that under standard regu-
larity conditions, a bounded perturbation in the input/label
domain translates to a bounded perturbation in the gradi-
ent domain; for example, in the clean label attacks, when
f(x; w) = 〈w, x〉 is a linear function, the following holds.

Proposition 2.1. Assume ‖w‖ ≤ D for all w ∈ W ⊆ Rd,
‖x‖ ≤ R for all x ∈ X ⊆ Rd, and the loss function `(·) is
L-Lipschitz and α-smooth. Then, for any linear function
f(x; w) = 〈w, x〉, w ∈ W, the following holds for any
(x, y) ∈ X × Y, and δ ∈ Rd.

‖∇`(yf(x + δ; w))−∇`(yf(x; w))‖ ≤ (αDR+ L)‖δ‖.
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In fact, other poisoning attacks such as label flip attack
can also be viewed in terms of poisoning of the first or-
der information about the stochastic objective. In other
words, various data poisoning attacks can be studied in a
unified framework of oracle poisoning which we define
formally, next.

Definition ((G,B)-PSFO). Given a function F :W → R,
a poisoned stochastic first-order oracle for F takes w ∈ W
as input and returns a random vector g̃(w) = ĝ(w) + ζ,
where E[ĝ(w)] ∈ ∂F (w), E‖ĝ(w)‖2 ≤ G2, and ζ is an
arbitrary perturbation that satisfies ‖ζ‖ ≤ B.

Given a step size η > 0 and an initial parameter w0 ∈
W , SGD makes T queries to the PSFO, receives poisoned
stochastic first-order information g̃t := g̃(wt) = ĝ(wt) +
ζt, and generates a sequence of parameters w1, . . . ,wT ,
where wt+1 = ΠW(wt− ηg̃t) for t ∈ {1, . . . , T}, and ΠW
projects onto the convex setW . With this introduction, we
prove the following robustness guarantee for SGD.

Theorem 2.2 (Robustness of SGD). Let F : W → R
be a convex function. Assume that all w ∈ W satisfy
‖w‖ ≤ D. Let w̄ := 1

T

∑T
t=1 wt be the average of the SGD

iterates after T calls to a (G,B′)-PSFO for F , with step
sizes η = D√

T (G+B′)
, starting from arbitrary initialization

w0 ∈ W . Then it holds that

E[F (w̄)]− F (w∗) ≤
5D(G+B′)

2
√
T

+
2D
∑T
t=1 ‖ζt‖
T

.

The proof of Theorem 2.2 can be found in Appendix B.1.
Theorem 2.2 implies that SGD can robustly learn convex
learning problems as long as the cumulative perturbation
norm due to the PSFO is sublinear in the number of oracle
calls. In particular, when

∑T
t=1 ‖ζt‖ = O(

√
T ), the poison-

ing attack cannot impose any significant statistical overhead
on learning problem.

Furthermore, the upper bound presented in Theorem 2.2 is
tight in an information-theoretic sense.

Theorem 2.3 (Optimality of SGD). There exists a function
F : [−1, 1] → R, and a (1, 1)-PSFO for F , such that any
optimization algorithm making T calls to the oracle incurs
an excess error of

E[F (w̄)]− F (w∗) ≥ Ω

(
1√
T

+

∑T
t=1 ‖ζt‖
T

)
.

We note that inexact first-order oracles has been studied
in several previous papers (Schmidt et al., 2011; Honorio,
2012; Devolder et al., 2014; Hu et al., 2016; Dvurechensky,
2017; Hu et al., 2020; Ajalloeian & Stich, 2020). Most of
these works, however, make strong distributional assump-
tions on the perturbations, which are impractical in real

adversarial settings. In a closely related line of work, (Hu
et al., 2016; 2020; Amir et al., 2020; Ajalloeian & Stich,
2020) focus on biased SGD, and give convergence guar-
antees for several classes of important machine learning
problems. However, we are not aware of any previous work
studying robustness of SGD in neural networks, which is
the subject of the next section.

3. Neural Networks
Next, we focus on two-layer neural networks with ReLU
activation function and characterize sufficient conditions
under which SGD can efficiently and robustly learn the
network. A two-layer ReLU net, parameterized using a pair
of weight matrices (a,W), computes the following function:

f(x; a,W) :=
1√
m

m∑
s=1

asσ(w>s x).

Here, m corresponds to the number of hidden nodes, i.e.,
the network width, W = [w1, . . . ,wm], a = [a1, . . . , am],
and σ(z) := max{0, z} is the ReLU. We initialize the top
layer weights, as ∼ unif({−1,+1}), and keep them fixed
through the training. The bottom layer weights are ini-
tialized as ws,0 ∼ N (0, Id) and are updated using SGD
on the logistic loss `(z) := log(1 + e−z). We denote
the weight matrix at the tth iterate of SGD as Wt and the
incoming weight vector into the sth hidden node at iter-
ation t as ws,t. Since a is fixed during the training, for
the simplicity of presentation, we denote the network out-
put on the ith clean and perturbed sample, respectively, as
fi(W) := f(xi; a,W) and f̃i(W) := f(x̃i; a,W). There-
fore, at time t, the network weights are updated according
to Wt+1 = Wt − ηt∇`(ỹtf̃t(Wt)).

In this section, we assume that the data is normalized so that
‖x‖ = 1. This assumption is standard in the literature of
over-parameterized neural networks (Du et al., 2019b; Allen-
Zhu et al., 2018; Cao & Gu, 2019; Ji & Telgarsky, 2019);
however, the results can be extended to the setting where the
norm of the data is both upper- and lower-bounded by some
constants. Moreover, following Ji & Telgarsky (2019), we
assume that the distribution is separable by a positive margin
in the reproducing kernel Hilbert space (RKHS) induced by
the gradient of the infinite-width network at initialization.

Assumption 1 ((Ji & Telgarsky, 2019)). Let z ∼ N (0, Id)
be a d-dimensional standard Gaussian random vector. There
exists a margin parameter γ > 0, and a linear separator v̄ :
Rd → Rd satisfying (A) Ez[‖v̄(z)‖2] <∞; (B) ‖v̄(z)‖2 ≤
1 for all z ∈ Rd; and (C) yEz[〈v̄(z), x1[z>x ≥ 0]〉] ≥ γ for
almost all (x, y) ∼ D.

We note that the assumption above pertaining the linearly
separability of data after mapping it into a high-dimensional
non-linear feature space is mild and reasonable – this very
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idea has been the cornerstone of kernel methods using the
radial basis function (RBF) kernel, for example, and for
learning with neural networks.

Next, we specify three data poisoning regimes under which
SGD can efficiently and robustly learn two-layer ReLU
networks under Assumption 1. Recall that the misclas-
sification error due to f(·; a,W) is denoted by L(W) :=
PD(yf(x; a,W) ≤ 0) – note that a is fixed after the initial-
ization and hence is dropped from the arguments of L.

3.1. Regime A (clean label attacks): large per-sample
perturbation, small overall perturbation

Our first result concerns the setting where each individual
sample can be arbitrarily poisoned as long as the overall
perturbation budget is small compared to the sample size.
Theorem 3.1 (Regime A). Under Assumption 1, for any
δ ∈ (0, 1), with probability at least 1 − δ over random
initialization and the training samples, the iterates of SGD
with constant step size η = 1

(1+B)2
√
n

satisfy

1

n

∑
i<n

L(Wi) .
ln2(
√
n/4) + ln(24n/δ)√

nγ2
,

provided that B ≤ Õ(γ/
√
d) and

ln(nδ ) + ln2(n)

γ8
. m .

n ln4(n) + n ln2(nδ )

γ4S2
.

We note that both the generalization error rate as well as
the lower- and upper-bounds on the width depend on B, the
per-sample perturbation budget; we refer the reader to the
detailed expressions in Theorem B.8 in the appendix. For
the width lower- and upper-bounds in Theorem 3.1 to be
consistent, i.e. allowing a non-empty range for the width,
the overall perturbation budget S needs to be . γ2

√
n (thus,

small cumulative perturbation). This requirement is indeed
the same as what we observed in convex learning problems,
i.e. S = O(

√
n), given by Theorem 2.2 in Section 2. No-

tably, the per-sample perturbation budget can be large since
it is independent of the width, and the sample size.

3.2. Regime B (clean label attacks): small per-sample
perturbation, large overall perturbation

Our next result shows that SGD can still succeed even if the
overall budget grows linearly with the sample size, provided
that the per-sample perturbations are small.
Theorem 3.2 (Regime B). Under Assumption 1, for any
δ ∈ (0, 1), with probability at least 1 − δ over random
initialization and the training samples, the iterates of SGD
with constant step size η = (1 +B)−2 satisfy

1

n

∑
i<n

L(Wi) ≤
ln2(
√
n/4) + ln(24n/δ)

nγ2

for m=Ω

(
1
γ8

(
ln(n/δ)+ ln2(n)

))
, provided

B . min{ 1√
md+

√
m ln(mδ )

,
γ

γ +
√
d+

√
ln(mnδ )

}.

In this regime, we only allow a small per-sample perturba-
tion . 1/

√
md; however, the cumulative perturbation can

grow linearly with the sample size, i.e. S = Θ(n).

3.3. Regime C (label flip attacks)

Next, we show that SGD can withstand label flip attacks in
small amounts.

Theorem 3.3 (Regime C). Under Assumption 1, for any
δ ∈ (0, 1), with probability at least 1 − δ over random
initialization and the training samples, the iterates of SGD
with constant step size η = 1/

√
n satisfy

1

n

∑
i<n

L(Wi) .
ln2(
√
n/4) + ln(16n/δ)√

nγ2
,

provided that β . ln(n/δ)+ln2(n)

(
√

ln(n/δ)+ln( γ2
√
n

ln(n/δ)+ln2(n)
))γ
√
n

, and

m = Ω

(
1
γ8

(
ln(n/δ) + ln2(n)

))
.

We conclude this section with a couple of remarks.

First, note that the generalization bounds obtained in
Regimes A and C, given in Theorems 3.1 and 3.3, are es-
sentially of the same rate of O(1/

√
n). While the nature of

the clean label attacks and label flip attacks corresponding
to Regimes A and C are very different, the effective over-
all perturbation budget in both regimes are almost of the
same order of Õ(

√
n). We emphasize that there is a tension

between the generalization error rate and the perturbation
budget, and that different trade-offs can be obtained where
faster or slower error rates correspond to smaller or larger
perturbation budgets, respectively. On the contrary, The-
orem 3.2 in regime B allows a larger overall perturbation
budget of order O(n), and offers faster generalization error
rate of Õ(1/n). We note, however, that the per-sample per-
turbation budget in this regime is significantly smaller than
regimes A, especially for high-dimensional inputs. There-
fore, the results above cover substantially different practical
settings and are not directly comparable.

Second, note that in Theorem 3.3, we require β ≤ O(1/m)
(ignoring other terms) which bounds m from above in terms
of other parameters. Similarly, there is an implicit upper
bound on m in terms of B in Theorem 3.2. In other words,
in all three regimes that we consider, the generalization
bounds hold if the width is bounded from both above and
below.



Robust Learning for Data Poisoning Attacks

4. Proof sketch
Our analysis is motivated by recent advances in the litera-
ture of over-parameterized neural networks. In particular, a
nascent view of the modern over-parameterized models sug-
gests that infinitely wide neural networks behave like linear
functions in the reproducing kernel Hilbert space induced by
the gradient of the network at the initialization, i.e. the fea-
ture map φ : x 7→ ∇f(x; w0) (Jacot et al., 2018; Lee et al.,
2019; Du et al., 2019a). Therefore, the dynamics of SGD are
approximately linear and are governed by the neural tangent
kernel (NTK): k(x, x′) := 〈∇f(x; w0),∇f(x′; w0)〉.

It is easy to see that the feature map φx : z 7→ x1[z>x ≥ 0]
is closely related to the gradient of network at initializa-
tion through ∂f(x;W0,a)

∂ws,0
:= 1√

m
asφx(ws,0). Define Ū =

[ū1, · · · , ūm] where ūs := 1√
m
asv̄(ws,0), and observe that:

y〈Ū,∇f(x; W, a)〉 = y · 1

m

m∑
s=1

〈v̄(ws,0), x1[x>ws,0 ≥ 0]〉

which is a finite-width estimation of the margin quantity in
part (C) of Assumption 1.

We denote the instantaneous loss on the clean sample and
the poisoned sample as Ri(W) := `(yi〈∇fi(Wi),W〉) and
R̃i(W) := `(ỹi〈∇f̃i(Wi),W〉), respectively. Therefore, in
the tth iterate of SGD, the network weights are updated
according to Wt+1 = Wt − ηt∇R̃t(Wt).

4.1. Proof sketch of Theorem 3.1 and Theorem 3.2

1. Let Qi(W) := −`′(yi〈∇fi(Wi),W〉) be the deriva-
tive of the instantaneous loss Ri(W). An interesting
property of Qi(W) is that it upperbounds the zero-
one loss, and is upperbounded by Ri(W). This prop-
erty has been used in several previous works (Cao &
Gu, 2020; Ji & Telgarsky, 2019) to upperbound the
average misclassification error as 1

n

∑
i<n L(Wi) <

1
n

∑
i<nQ(Wi). Using a martingale concentration ar-

gument we then show that 1
n

∑
i<nQi(Wi) is close

to 1
n

∑
i<nQ(Wi), where Q(Wi) is the expectation of

Qi(Wi) with respect to data distribution. Finally, since
the instantaneous loss upperbounds its derivative, we
arrive at 1

n

∑
i<n L(Wi) <

8
n

∑
i<nRi(Wi) + ε.

2. To bound 1
n

∑
i<nRi(Wi), we argue that under the

perturbation budgets considered in our theorems,
Ri(Wi) is close to R̃i(Wi). In regime A, we appeal
to convexity of the loss function and Lipschitzness of
the network to bound the difference Ri(Wi)− R̃i(Wi)
as O(

√
md‖δi‖), which gives sufficient conditions on

the perturbation budget in Regime A. For regime B, we
use the convexity of the loss and the fact thatQi(W) ≤
Ri(W) to show that (1 − O(

√
mdB))Ri(Wi) ≤

R̃i(Wi). Therefore, as long as O(
√
mdB) is not

small, we can bound 1
n

∑
i<nRi(Wi) in terms of

1
n

∑
i<n R̃i(Wi).

3. We then follow (Ji & Telgarsky, 2019) to bound
1
n

∑
i<n R̃i(Wi). The separability assumption 1 is

crucial for this step.

4.2. Proof sketch of Theorem 3.3

1. We first observe that the zero-one loss of (x, y)
is the same as the zero-one loss of the ex-
pectation of (x, ỹ) with respect to the random-
ness of label flips, i.e. 1

n

∑
i<n L(Wi) =

P(Eỹf(x; Wi) ≤ 0), and is upperbounded by
−2E(x,y)∈D`

′(Eỹf(x; W)). Using a martingale con-
centration argument, we arrive at 1

n

∑
i<n L(Wi) ≤

− 8
n

∑
i<n `

′(Eỹifi(Wi)) + ε, which can be fur-
ther bounded by 8

n

∑
i<n `(Eỹifi(Wi)) + ε because

−`′(·) ≤ `(·). Since ` is convex, using Jensen’s in-
equality, we further bound the generalization error as
1
n

∑
i<n L(Wi) <

8
n

∑
i<n E`(ỹifi(Wi)) + ε.

2. We leverage an interesting property of the logistic
loss, the fact that `(−z) − `(z) = z, to reduce the
expected instantaneous loss above to E`(ỹifi(Wi)) =
`(yi〈∇f̃i(Wi),W〉) + βyi〈∇f̃i(Wi),W〉. While the
first term can be bounded using the proof techniques
in (Ji & Telgarsky, 2019), the second term requires β
to be sufficiently small, which gives the required upper-
bound on the probability of label flips in the statement
of the theorem.

5. Experimental Results
The goal of this section is to provide experimental support
for our theoretical findings in Section 2 and Section 3. Code
is available on Github 1. First, we describe the experimental
setup.

Datasets. We utilize the MNIST and the CIFAR10
datasets for the empirical evaluation. MNIST is a dataset
of 28 × 28 greyscale handwritten digits, containing 70K
samples in 10 classes, with 60K training images and 10K
test images. CIFAR10 is a dataset of 32× 32 color images,
containing 60K samples in 10 classes, with 50K training
images and 10K test images.

Model specification. We utilize four different models: a
linear model trained on MNIST, an AlexNet model trained
on CIFAR10, and two convolutional neural networks, with
width ranging from 10 to 100, 000, trained on MNIST and
CIFAR. For the MNIST dataset, we use a model with two

1https://github.com/bettyttytty/robust_
learning_for_data_poisoning_attack

https://github.com/bettyttytty/robust_learning_for_data_poisoning_attack
https://github.com/bettyttytty/robust_learning_for_data_poisoning_attack
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convolutional layers followed by max-pooling layers, as
well as two fully connected layers, with ReLU activation.
The first and the second convolutional layers have [input
channel, output channel, kernel size] equal to [1, 10, 5]
and [10, 20, 5], respectively. The first and the second fully
connected layers have [input, output] dimensions equal to
[320, width] and [width, 10], respectively. For CIFAR10
dataset, we use a network with two convolutional layers
with [input channel, output channel, kernel size] equal to
[3, 6, 5] and [6, 16, 5], and three fully connected layers with
[input, output] dimensions equal to [400, 120], [120, width],
[width, 10]. The architecture of AlexNet is the same as
(Luo, 2018). We initialize the networks using Pytorch ini-
tialization and train them using cross-entropy loss. We track
the test accuracy of the networks as a function of the width
to verify our theorems.

Attack strategy. When generating poisoning attacks us-
ing projected gradient ascent, we discovered that a simple
modification of the cross-entropy loss generates stronger
poisoning attacks, both qualitatively and quantitatively. This
new loss function, which we call negated loss, is obtained
by flipping the sign on both the model prediction and the
cross-entropy loss. For example, in the binary classifica-
tion case, the negated loss is given by `−−(z) :=−`(−z)=
− log(1+exp(z)), where z is the model prediction. Among
other properties, this loss is concave in z, and lower bounds
the zero-one loss, which makes it a useful “surrogate” loss
for finding adversarial perturbations.

To generate the poisoned data in regimes A and B (i.e., clean
label attacks), we first use mini-batch SGD with batch size
128 to learn the model parameters (w∗) on the clean data.
The poisoned data is then generated by taking a stochastic
gradient ascent step on the negated loss to maximize the
negated loss function `(·; w∗), followed by a projection onto
the constraints – the `2,1 for regime A- or the `2,∞-norm
ball for regime B. In particular, for regime A, we specify
the overall noise budget S = C

√
n, and project the overall

perturbation iteratively onto the `2,1-norm ball. Here n is
the number of training samples and C is the corruption rate.

We generalize the label flip attack in regime C to the mul-
ticlass classification setting by switching the label, with
probability β, of any given training data point from the true
class i to (i+ 1) mod 10.

We now present our main empirical findings.

Negated loss vs. the original loss. Figure 1 compares the
data poisoning attacks generated by PGA on the proposed
negated loss against the original cross entropy loss under
regime A. The top row compares the (clean) test accuracy
under two loss functions as a function of corruption rate
(C). The left panel corresponds to a linear model trained

Figure 1. Data poisoning attacks generated by PGA on the pro-
posed negated loss (orange) against the original cross entropy loss
(blue). Left: a linear model trained on MNIST, right: AlexNet
trained on CIFAR10. The top row shows the (clean) test accuracy
of the model trained on poisoned data. The bottom row shows the
histogram of L2 norm of perturbation vectors generated using the
two loss functions.

Figure 2. The excess loss F (w∗
n)− F (w∗) (left); and the excess

error L(w∗
n)− L(w∗) (right), as a function of sample size n with

different corruption parameterC ∈ {50, 100, 200, 300, 400, 500}
under regime A. Here, w∗

n denotes the optimal parameters on the
given sample of size n.

on the MNIST dataset and the right panel corresponds to
AlexNet trained on CIFAR10. We observe similar plots for
ResNet18 – please refer to Appendix A for more details.

We note that the cross entropy is only an upper-bound on the
zero-one loss, and hence, a proper surrogate for minimizing
the classification error. However, we seek to maximize the
zero-one loss when generating the poisoning attacks. There-
fore, given a fixed perturbation budget, there is no advantage
in perturbing a sample beyond the point that it is misclas-
sified, which can very much happen when maximizing the
original cross entropy loss. On the contrary, the negated loss
strictly lower-bounds the zero-one loss.

The bottom row of Figure 1 compares the distribution of
the L2 norm of per-sample perturbation generated by the
two loss functions; the left and right panels correspond to a
linear model and AlexNet, respectively. We see that PGA on
the original loss tends to allow an excessive amount of per-
sample perturbations at the cost of leaving a large portion
of the samples virtually untouched. For example, for the
MNIST dataset, a perturbation of size 5 is more than enough
to make label prediction hard, e.g., by planting a solid “1” in
any image, whereas the poisoning attack using the original
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loss “wastes” a lot of the budget on making a few samples
“more wrong”.

Convex learning problems. We first train a linear model
on the clean MNIST dataset and denote it with w∗. We
then train several linear models under poisoning attacks for
various sample sizes in range n ∈ [500, 60000], which we
denote by w∗n. Figure 2 shows the excess loss F (w∗n) −
F (w∗) as well as the excess error L(w∗n) − L(w∗) as a
function of sample size n, for different corruption rates
C ∈ {50, 100, 200, 300, 400, 500}.

It is not surprising that both the excess loss as well as the
excess error are smaller for larger sample sizes or smaller
corruption rates, as predicted by Theorem 2.2. More inter-
estingly, the plots suggest a phase transition between the
convergence behavior of the curves at C ≈ 250 ≈

√
n,

which corresponds to the maximum corruption rate under
which Theorem 2.2 still yields a non-trivial (decaying with
sample size) generalization error bound.

Wide neural networks. Recall that our theoretical results
in Section 3 guarantee a small generalization error for net-
works trained with poisoned data only when the network
width falls in a certain range specified in the theorems.
While it is not clear whether these bounds are necessary,
we observe that the clean test accuracy of models trained
on poisoned data exhibits an inverted U curve. In other
words, the generalization accuracy decreases if the models
are not wide enough or if they are too wide. In Figure 3, we
see that for clean data training corresponding to the green
curves, the accuracy improves monotonically with the net-
work width. However, in presence of data poisoning attacks,
in both left (MNIST) and right (CIFAR10) panels, we ob-
serve that the test accuracy is non-monotonic in terms of
the network width. In each of the regimes A, B, and C, we
see that the accuracy improves as we initially increase the
network width. It then hits a plateau and eventually starts
to fall as we further increase the width. This observation
challenges the nascent view in the deep learning literature
that larger models generalize better (Neyshabur et al., 2014;
Zhang et al., 2016), at least under adversarial perturbations.

6. Discussion and Future Work
In this paper we study the robustness of SGD to data poi-
soning attacks in two-layer neural networks. In particu-
lar, under a separability assumption in the feature space
induced by the gradient of the infinite-width network at
initialization, we characterize several practical data poison-
ing scenarios where SGD efficiently learns the network,
provided that the network width is sufficiently but not ex-
cessively large. In sharp contrast with clean-data training
where the generalization error decreases as the width of

the network increases (Zhang et al., 2016; Neyshabur et al.,
2014), curiously, our empirical findings indicate that robust
generalization error exhibits a U-curve as a function of the
network width.

There are several natural directions for future work. First,
although we observe in practice that ultra-wide neural net-
works are more vulnerable to data poisoning attacks, our
theoretical results do not directly imply that too large of a
network width can actually hurt the generalization perfor-
mance under data poisoning attacks. Therefore, a natural
question that remains open is to prove that SGD fails at
robustly learning ultra-wide neural networks in presence of
adversarial perturbations such as those considered in this
work. We would like to highlight that in a very recent work,
Bubeck et al. (2020) conjecture that over-parameterization
may be necessary for robustness; while our results do not
contradict theirs, it certainly calls for further investigation
into the role of over-parameterization in imparting or de-
grading robustness.

Second, our theory heavily depends on the separability as-
sumption and cannot be trivially extended to deeper archi-
tectures; yet, our empirical findings go beyond two-layer
networks, and hold for natural datasets where the separabil-
ity assumption is no longer true. It remains to be seen if we
can relax the margin assumption and generalize our results
to richer network architectures.

Third, our paper focuses on the role of the width; however,
it is not immediately clear from our results if the U-curve
phenomena is specific to the network width, or if it can more
broadly happen for ultra-large networks. It would be inter-
esting to explore the role of other architectural parameters,
such as the network depth, in robust learning.
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