
Directional Bias Amplification 

Angelina Wang and Olga Russakovsky 
Princeton University 

Abstract 

Mitigating bias in machine learning systems 
requires refining our understanding of bias 
propagation pathways: from societal structures 
to large-scale data to trained models to impact 
on society. In this work, we focus on one aspect 
of the problem, namely bias amplification: the 
tendency of models to amplify the biases present 
in the data they are trained on. A metric for 
measuring bias amplification was introduced 
in the seminal work by Zhao et al. (2017); 
however, as we demonstrate, this metric suffers 
from a number of shortcomings including 
conflating different types of bias amplification 
and failing to account for varying base rates of 
protected attributes. We introduce and analyze 
a new, decoupled metric for measuring bias 
amplification, BiasAmp! (Directional Bias 
Amplification). We thoroughly analyze and 
discuss both the technical assumptions and 
normative implications of this metric. We 
provide suggestions about its measurement by 
cautioning against predicting sensitive attributes, 
encouraging the use of confidence intervals due 
to fluctuations in the fairness of models across 
runs, and discussing the limitations of what 
this metric captures. Throughout this paper, 
we work to provide an interrogative look at the 
technical measurement of bias amplification, 
guided by our normative ideas of what we want 
it to encompass. Code is located at https: 
//github.com/princetonvisualai/ 
directional-bias-amp. 

1. Introduction 

The machine learning community is becoming increasingly 
cognizant of problems surrounding fairness and bias, and 
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correspondingly, a plethora of new algorithms and metrics 
are being proposed (see e.g., Mehrabi et al. (2019) for a sur-
vey). The analytic gatekeepers of the systems often take the 
form of fairness evaluation metrics, and it is vital that these 
be deeply investigated both technically and normatively. In 
this paper, we endeavor to do this for bias amplification. 

Bias amplification occurs when a model exacerbates biases 
from the training data at test time. It is the result of the 
algorithm (Foulds et al., 2018), and unlike some other forms 
of bias, cannot be solely attributed to the dataset. 

Directional bias amplification metric. We propose a new 
way of measuring bias amplification, BiasAmp! (Direc-
tional Bias Amplification),1 that builds off a prior metric 
from “Men Also Like Shopping: Reducing Gender Bias 
Amplification using Corpus-level Constraints” (Zhao et al., 
2017), that we will call BiasAmpMALS. Our metric’s tech-
nical composition aligns with the real-world qualities we 
want it to encompass, addressing a number of the previous 
metric’s shortcomings by being able to: 1) focus on both 
positive and negative correlations, 2) take into account the 
base rates of each protected attribute, and most importantly 
3) disentangle the directions of amplification. 

As an example, consider a visual dataset (Fig. 1) where 
each image has a label for the task T , which is painting 
or not painting, and further is associated with a protected 
attribute A, which is woman or man.2 If the gender of 
the person biases the prediction of the task, we consider 
this A ! T bias amplification; if the reverse happens, then 
T ! A. Bias amplification as it is currently being measured 
merges together these two different paths which have differ-
ent normative implications and therefore demand different 
remedies. This speaks to a larger problem of imprecision 
when discussing problems of bias (Blodgett et al., 2020). 
For example, “gender bias” can be vague; it is unclear if the 
system is assigning gender in a biased way, or if there is a 
disparity in model performance between different genders. 
Both are harmful in different ways, but the conflation of 

1The arrow is meant to signify the direction that bias amplifica-
tion is flowing, and not intended to be a claim about causality. 

2We use the terms man and woman to refer to binarized socially-
perceived (frequently annotator-inferred) gender expression, rec-
ognizing these labels are not inclusive and may be inaccurate. 

https://github.com/princetonvisualai/directional-bias-amp
https://github.com/princetonvisualai/directional-bias-amp
https://github.com/princetonvisualai/directional-bias-amp
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Figure 1. Consider an image dataset where the goal is to classify the task, T , as painting or not painting, and the attribute, A, as woman or 
man. Women are correlated with painting, and men with not painting. In this work we are particularly concerned with errors contributing 
to the amplification of bias, i.e., existing training correlations (yellow and red in the figure). We further disentangle these errors into those 
that amplify the attribute to task correlation (i.e., incorrectly predict the task based on the person’s attribute; shown in yellow) versus those 
that amplify the task to attribute (shown in red). 

these biases can lead to misdirected solutions. 

Bias amplification analysis. The notion of bias amplifica-
tion allows us to encapsulate the idea that systemic harms 
and biases can be more harmful than errors made without 
such a history (Bearman et al., 2009). For example, in 
images, overclassifying women as cooking carries a more 
negative connotation than overclassifying men as cooking. 
The distinction of which errors are more harmful can often 
be determined by lifting the patterns from the training data. 

In our analysis and normative discussion, we look into this 
and other implications through a series of experiments. We 
consider whether predicting protected attributes is necessary 
in the first place; by not doing so, we can trivially remove 
T ! A amplification. We also encourage the use of confi-
dence intervals because BiasAmp!, along with other fair-
ness metrics, suffers from the Rashomon Effect (Breiman, 
2001), or multiplicity of good models. In other words, in 
supervised machine learning, random seeds have relatively 
little impact on accuracy; in contrast, they appear to have a 
greater impact on fairness. 

Notably, a trait of bias amplification is that it is not at odds 
with accuracy. Bias amplification measures the model’s 
errors, so a model with perfect accuracy will have perfect 
(zero) bias amplification. (Note nevertheless that the metrics 
are not always correlated.) This differs from many other 
fairness metrics, because the goal of not amplifying biases 
and thus matching task-attribute correlations is aligned with 
that of accurate predictions. For example, satisfying fairness 
metrics like demographic parity (Dwork et al., 2012) are 
incompatible with perfect accuracy when parity is not met 
in the ground-truth. For the same reason bias amplification 
permits a classifier with perfect accuracy, it also comes with 
a set of limitations that are associated with treating data 
correlations as the desired ground-truth, and thus make it 
less appropriate for social applications where other metrics 
are better suited for measuring a fair allocation of resources. 

Outline. To ground our work, we first distinguish what bias 
amplification captures that standard fairness metrics cannot, 
then distinguish BiasAmp! from BiasAmpMALS. Our key 
contributions are: 1) proposing a new way to measure bias 
amplification, addressing multiple shortcomings of prior 
work and allowing us to better diagnose models, and 2) 
providing a comprehensive technical analysis and normative 
discussion around the use of this measure in diverse settings, 
encouraging thoughtfulness with each application. 

2. Related Work 

Fairness Measurements. Fairness is nebulous and context-
dependent, and approaches to quantifying it include equal-
ized odds (Hardt et al., 2016), equal opportunity (Hardt et al., 
2016), demographic parity (Dwork et al., 2012; Kusner 
et al., 2017), fairness through awareness (Dwork et al., 2012; 
Kusner et al., 2017), fairness through unawareness (Grgic-
Hlaca et al., 2016; Kusner et al., 2017), and treatment equal-
ity (Berk et al., 2017). We examine bias amplification, a 
type of group fairness where correlations are amplified. 

As an example of what differentiates bias amplification, we 
present a scenario based on Fig. 1. We want to classify a per-
son whose attribute is man or woman with the task of paint-
ing or not. The majority groups “(painting, woman)” and 
“(not painting, man)” each have 30 examples, and the minor-
ity groups “(not painting, woman)” and “(painting, man)” 
each have 10. A classifier trained to recognize painting on 
this data is likely to learn these associations and over-predict 
painting on images of women and under-predict painting 
on images of men; however, algorithmic interventions may 
counteract this and result in the opposite behavior. In Fig. 2 
we show how four standard fairness metrics (in blue) vary 
under different amounts of learned amplification: FPR dif-
ference, TPR difference (Chouldechova, 2016; Hardt et al., 
2016), accuracy difference in task prediction (Berk et al., 
2017), and average mean-per-class accuracy across sub-
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Figure 2. Fairness metrics vary in how they respond to model 
errors. In our image dataset (Fig. 1) of predicting someone who 
is a woman or man to be painting or not, we consider a paint-
ing classifier that always predicts the task correctly for men, but 
varies for women. The x-axes correspond to the percentage of 
women predicted to be painting, where the ground-truth is 0.75. 
Below that the model is under-predicting women to be painting, 
and above it the model is over-predicting. The two metrics in 
the first column, FPR and TPR difference, only capture one of 
under- or over-prediction. The next two metrics in the second col-
umn, accuracy difference between attribute subgroups and average 
mean-per-class accuracy across attribute subgroups, are symmetric 
around 0.75, being unable to differentiate. Thus, the bias am-
plification metrics in the last column are needed to distinguish 
between under- and over-prediction (BiasAmpMALS from Zhao 
et al. (2017) in Sec. 3.2, and our proposed BiasAmpA!T in Sec. 4). 
BiasAmpMALS requires attribute predictions, so we assume per-
fect attribute prediction here to make the comparison. 

groups (Buolamwini & Gebru, 2018). However, these four 
metrics are not designed to account for the training correla-
tions, and unable to distinguish between cases of increased 
or decreased learned correlations, motivating a need for a 
measurement that can: bias amplification. 

Bias Amplification. Bias amplification has been measured 
by looking at binary classifications without attributes (Leino 
et al., 2019), GANs (Jain et al., 2020; Choi et al., 2020), 
and correlations (Zhao et al., 2017; Jia et al., 2020). We 
consider attributes in our formulation, which is a classifi-
cation setting, and thus differs from GANs. We dissect in 
detail the correlation work, and propose measuring condi-

tional correlations, which we term “directional.” Wang et al. 
(2019) measures amplification by predicting the sensitive 
attribute from the model outputs, thus relying on multiple 
target labels simultaneously; we propose a decomposable 
metric to allow for more precise model diagnosis. 

The Word Embedding Association Test (WEAT) (Caliskan 
et al., 2017) measures bias amplification in de-
contextualized word embeddings, specifically, non-
conditional correlations (Bolukbasi et al., 2016). However, 
with newer models like BERT and ELMo that have 

contextualized embeddings, WEAT does not work (May 
et al., 2019), so new techniques have been proposed 
incorporating context (Lu et al., 2019; Kuang & Davison, 
2016). We use these models to measure the directional 
aspect of amplifications, as well as to situate them in the 
broader world of bias amplification. Directionality of 
amplification has been observed (Stock & Cisse, 2018; 
Qian et al., 2019), but we take a more systematic approach. 

Causality. Bias amplification is also studied in the causal 
statistics literature (Bhattacharya & Vogt, 2007; Wooldridge, 
2016; Pearl, 2010; 2011; Middleton et al., 2016). However, 
despite the same terminology, the definitions and implica-
tions are largely distinct. Our work follows the machine 
learning bias amplification literature discussed in the pre-
vious section and focuses on the amplification of socially-
relevant correlations in the training data. 

Predictive Multiplicity. The Rashomon Effect (Breiman, 
2001), or multiplicity of good models, has been studied 
in various contexts. The variables investigated that differ 
across good models include explanations (Hancox-Li, 2020), 
individual treatments (Marx et al., 2020; Pawelczyk et al., 
2020), and variable importance (Fisher et al., 2019; Dong 
& Rudin, 2019). We build on these and investigate how 
fairness also differs between equally “good” models. 

3. Existing Bias Amplification Metric 

We describe the existing metric (Zhao et al., 2017) and 
highlight shortcomings that we address in Sec. 4. 

3.1. Notation 

Let A be the set of protected demographic groups: for ex-
ample, A = {woman, man} in Fig. 1. Aa for a 2 A is 
the binary random variable corresponding to the presence 
of the group a; thus P (Awoman = 1) can be empirically 
estimated as the fraction of images in the dataset contain-
ing women. Note that this formulation is generic enough 
to allow for multiple protected attributes and intersecting 
protected groups. Let Tt with t 2 T similarly correspond 
to binary target tasks, e.g., T = {painting} in Fig. 1. 

3.2. Formulation and shortcomings 

Using this notation, Zhao et al. (2017)’s metric is: 
X1

BiasAmpMALS = yatDat (1)|T | 
a2A,t2T  

with yat = P (Aa = 1|Tt = 1) > |A| 
1 

Dat = P (Â 
a = 1|T̂  

t = 1) P (Aa = 1|Tt = 1) 

where Â 
a and T̂  

t denote model predictions for the protected 
group a and the target task t respectively. One attractive 
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property of this metric is that it doesn’t require any ground 
truth test labels: assuming the training and test distributions 
are the same, P (Aa = 1|Tt = 1) can be estimated on the 
training set, and P (Â 

a = 1|T̂  
t = 1) relies only on the 

predicted test labels. However, it also has a number of 
shortcomings. 

Shortcoming 1: The metric focuses only on positive cor-

relations. This may lead to numerical inconsistencies, es-
pecially in cases with multiple protected groups. 

To illustrate, consider a scenario with 3 protected groups 
A1, A2, and A3 (disjoint; every person belongs to one), one 
binary task T , and the following dataset3 : 

• When A1 = 1: 10 exs. of T = 0 and 40 exs. of T = 1  
• When A2 = 1: 40 exs. of T = 0 and 10 exs. of T = 1  
• When A3 = 1: 10 exs. of T = 0 and 20 exs. of T = 1  

From Eq. 1, we see y1 = 1, y2 = 0, y3 = 0. Now consider a 
model that always makes correct predictions of the protected 
attribute Â 

a, always correctly predicts the target task when 
A1 = 1, but predicts T̂ = 0 whenever A2 = 1 and T̂ = 1  
whenever A3 = 1. Intuitively, this would correspond to a 
case of overall learned bias amplification. However, Eqn. 1 
would measure bias amplification as 0 since the strongest 
positive correlation (in the A1 = 1 group) is not amplified. 

Note that this issue doesn’t arise as prominently when there 
are only 2 disjoint protected groups (binary attributes), 
which was the case implicitly considered in Zhao et al. 
(2017). However, even with two groups there are mis-
calibration concerns. For example, consider the dataset 
above but only with the A1 = 1 and A2 = 1 examples. 
A model that correctly predicts the protected attribute Â 

a, 
correctly predicts the task on A1 = 1, yet predicts T̂ = 0  
whenever A2 = 1 would have bias amplification value of 

40 40D1 = = 0.2. However, a similar model that now 40 50 
correctly predicts the task on A2 = 1 but always predicts 
T̂ = 1 on A1 = 1 would have a much smaller bias amplifi-

50 40cation value of D1 = = 0.033, although intuitively 60 50 
the amount of bias amplification is the same. 

Shortcoming 2: The chosen protected group may not be 
correct due to imbalance between groups. To illustrate, 
consider a scenario with 2 disjoint protected groups: 

• When A1 = 1: 60 exs. of T = 0 and 30 exs. of T = 1  
• When A2 = 1: 10 exs. of T = 0 and 20 exs. of T = 1  

⇥ ⇤ 
30 1We calculate y1 = > = 1 and y2 = 0, even 50 2 

though the correlation is actually the reverse. Now a model, 
which always predicts Â 

a correctly, but intuitively amplifies 
bias by predicting T̂ = 0 whenever A1 = 1 and predicting 

3For the rest of this subsection, for simplicity since we have 
only one task, we drop the subscript t so that Tt, yat and �at 

become T , ya and �a respectively. Further, assume the training 
and test datasets have the same number of examples (exs.). 

T̂ = 1 whenever A2 = 1 would actually get a negative bias 
0 30amplification score of = 0.6.30 50 

BiasAmpMALS erroneously focuses on the protected group 
with the most examples (A1 = 1) rather than on the pro-
tected group that is actually correlated with T = 1 (A2 = 1).⇣ ⌘ 

1This situation manifests when min , P (Aa = 1) <|A|⇣ ⌘ 
1P (Aa = 1|Tt = 1) < max |A| , P (Aa = 1) , which 

is more likely to arise as the the distribution of attribute 
Aa = 1 becomes more skewed. 

Shortcoming 3: The metric entangles directions of bias 
amplification. By considering only the predictions rather 
than the ground truth labels at test time, we are unable to 
distinguish between errors stemming from Â 

a and those 
from T̂ . For example, looking at just the test predictions 
we may know that the prediction pair T̂ = 1, Â1 = 1 is 
overrepresented, but do not know whether this is due to 
overpredicting T̂ = 1 on images with A1 = 1 or vice versa. 

3.3. Experimental analysis 

To verify that the above shortcomings manifest in practical 
settings, we revisit the analysis of Zhao et al. (2017) on the 
COCO (Lin et al., 2014) image dataset with two disjoint 
protected groups Awoman and Aman, and 66 binary target 
tasks, Tt, corresponding to the presence of 66 objects in the 
images. We directly use the released model predictions of 
Â 

a and T̂  
t from Zhao et al. (2017). 

First, we observe that in COCO there are about 2.5x as many 
men as women, leading to shortcoming 2 above. Consider 
the object oven; BiasAmpMALS calculates P (Aman = 

11|Toven = 1) = 0.56 > and thus considers this to be2 
correlated with men rather than women. However, com-
puting P (Aman = 1, Toven = 1) = 0.0103 < 0.0129 = 
P (Aman = 1)P (Toven = 1) reveals that men are in fact not 
correlated with oven, and this result stems from the fact that 
men are overrepresented in the dataset generally. Not sur-
prisingly, the model trained on this data associates women 
with ovens and underpredicts men with ovens at test time, 
i.e., P (Â 

man = 1|T̂  
oven = 1) P (Aman = 1|Toven = 1) = 

0.10, erroneously measuring negative bias amplification. 

In terms of directions of bias amplification, we recall that 
Zhao et al. (2017) discovers that “Technology oriented cat-
egories initially biased toward men such as keyboard... 
have each increased their bias toward males by over 0.100.” 
Concretely, from Eqn. 1, P (Aman = 1|Tkeyboard = 1) =  
.70 and P (Â 

man = 1|T̂keyboard = 1) = .83, demonstrating 
an amplification of bias. However, the direction or cause of 
bias amplification remains unclear: is the presence of man 
in the image increasing the probability of predicting a key-
board, or vice versa? Looking more closely at the model’s 
disentangled predictions, we see that when conditioning on 
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the attribute, P (T̂keyboard = 1|Aman = 1) = 0.0020 < 
0.0032 = P (Tkeyboard = 1|Aman = 1), and when condi-
tioning on the task, P (Â 

man = 1|Tkeyboard = 1) = 0.78 > 
0.70 = P (Aman = 1|Tkeyboard = 1), indicating that while 
keyboards are under-predicted on images with men, men 
are over-predicted on images with keyboards. Thus the root 
cause of this amplification appears to be in the gender pre-
dictor rather than the object detector. Such disentangement 
allows us to properly focus algorithmic intervention efforts. 

Finally, we make one last observation regarding the results 
of Zhao et al. (2017). The overall bias amplification is 
measured to be .040. However, we observe that “man” is 
being predicted at a higher rate (75.6%) than is actually 
present (71.2%). With this insight, we tune the decision 
threshold on the validation set such that the gender predic-
tor is well-calibrated to be predicting the same percentage 

Table 1. Bias amplification, as measured on the test set, changes 
across three image conditions: original, noisy person mask, full 
person mask. BiasAmpMALS misleadingly makes it appear as if 
bias amplification increases as the gender cues are removed. In 
reality, A!T decreases with less visual attribute cues to bias the 
task prediction, while it is T!A that increases as the model relies 
on visual cues from the task to predict the attribute. 

cation metric is: 
of images to have men as the dataset actually has. When 
we calculate BiasAmpMALS on these newly thresholded BiasAmp! =

1 X 
yatDat + (1  yat)( Dat)|A||T | predictions for the test set, we see bias amplification drop a2A,t2T 

from 0.040 to 0.001 just as a result of this threshold change, 
outperforming even the solution proposed in Zhao et al. 8 

>>< 

[P (A 

P (T̂  
t = 1|Aa = 1) P (Tt = 1|Aa = 1) 

= 1, Tt = 1) > P (Aa = 1)P (Tt = 1)] yat = a 

(2017) of corpus-level constraints, which achieved a drop to 
if measuring A ! Tonly 0.021. Fairness can be quite sensitive to the threshold Dat = 
P (Â 

a = 1|Tt = 1) P (Aa = 1|Tt = 1) 
if measuring T ! A 

>>:chosen (Chen & Wu, 2020), so careful threshold selection 
should be done, rather than using a default of 0.5. When a 
threshold is needed in our experiments, we pick it to be well-
calibrated on the validation set. In other words, we estimate 
the expected proportion p of positive labels from the train-
ing set and choose a threshold such that on N validation 
examples, the Np  highest-scoring are predicted positive. 
Although we do not take this approach, because at deploy-
ment time it is often the case that discrete predictions are 
required, one could also imagine integrating bias amplifica-
tion across threshold to have a threshold-agnostic measure 
of bias amplification, similar to what is proposed by Chen 
& Wu  (2020). 

4. BiasAmp! (Directional Bias Amplification) 

Now we present our metric, BiasAmp!, which retains the 
desirable properties of BiasAmpMALS, while addressing the 
shortcomings noted in Section 3.2. To account for the need 
to disentangle the two possible directions of bias amplifi-
cation (shortcoming 3) the metric consists of two values: 
BiasAmpA!T corresponds to the amplification of bias re-
sulting from the protected attribute influencing the task pre-
diction, and BiasAmpT !A corresponds to the amplification 
of bias resulting from the task influencing the protected 
attribute prediction. Concretely, our directional bias amplifi-

(2) 

The first line generalizes BiasAmpMALS to include all at-
tributes Aa and measure the amplification of their positive 
or negative correlations with task Tt (shortcoming 1). The 
new yat identifies the direction of correlation of Aa with 
Tt, properly accounting for base rates (shortcoming 2). Fi-
nally, Dat decouples the two possible directions of bias 
amplification (shortcoming 3). Since values may be nega-
tive, reporting the aggregated bias amplification value could 
obscure attribute-task pairs that exhibit strong bias amplifi-
cation; thus, disaggregated results per pair can be returned. 

4.1. Experimental analysis 

We verify that our metric successfully resolves the empirical 
inconsistencies of Sec. 3.2. As expected, BiasAmpA!T 
is positive at .1778 in shortcoming 1 and .3333 in 2; 
BiasAmpT !A is 0 in both. We further introduce a sce-
nario for empirically validating the decoupling aspect of 
our metric. We use a baseline amplification removal idea 
of applying segmentation masks (noisy or full) over the 
people in an image to mitigate bias stemming from human 
attributes (Wang et al., 2019). We train on the COCO clas-
sification task, with the same 66 objects from Zhao et al. 
(2017), a VGG16 (Simonyan & Zisserman, 2014) model pre-
trained on ImageNet (Russakovsky et al., 2015) to predict 
objects and gender, with a Binary Cross Entropy Loss over 
all outputs, and measure BiasAmpT !A and BiasAmpA!T ; 
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Figure 3. Illustrative captions from the Equalizer model (Hendricks 
et al., 2018), which in these captions decreases T ! A bias 
amplification from the Baseline, but inadvertently increases A ! 
T . Green underlined words are correct, and red italicized words are 
incorrect. In the images, the Equalizer improves on the Baseline 
for the gendered word, but introduces biased errors in the captions. 

we report 95% confidence intervals for 5 runs of each sce-
nario. In Tbl. 1 we see that, misleadingly, BiasAmpMALS 
reports increased amplification as gender cues are removed. 
However what is actually happening is, as expected, that as 
less of the person is visible, A!T decreases because there 
are less human attribute visual cues to bias the task predic-
tion. It is T!A that increases because the model must lean 
into task biases to predict the person’s attribute. However, 
we can also see from the overlapping confidence intervals 
that the difference between noisy and full masks does not 
appear to be particularly robust; we continue a discussion 

4of this phenomenon in Sec. 5.2. 

5. Analysis and Discussion 

We now discuss some of the normative issues surrounding 
bias amplification: in Sec. 5.1 with the existence of T!A 
bias amplification, which implies the prediction of sensitive 
attributes; in Sec. 5.2 about the need for confidence intervals 
to make robust conclusions; and in Sec. 5.3 about scenarios 
in which the original formulation of bias amplification as a 
desire to match base correlations may not be the intention. 

5.1. Considerations of T ! A Bias Amplification 

If we think more deeply about these bias amplifications, 
we might come to a normative conclusion that T ! A, 
which measures sensitive attribute predictions conditioned 
on the tasks, should not exist in the first place. There are 

4This simultaneously serves as inspiration for an intervention 
approach to mitigating bias amplification. In Appendix A.4 we 
provide a more granular analysis of this experiment, and how it 
can help to inform mitigation. Further mitigation techniques are 
outside of our scope, but we look to works like Singh et al. (2020); 
Wang et al. (2019); Agarwal et al. (2020). 

very few situations in which predicting sensitive attributes 
makes sense (Scheuerman et al., 2020; Larson, 2017), so 
we should carefully consider if this is strictly necessary for 
target applications. For the image domains discussed, by 
simply removing the notion of predicting gender, we triv-
ially remove all T ! A bias amplification. In a similar 
vein, there has been great work done on reducing gender 
bias in image captions (Hendricks et al., 2018; Tang et al., 
2020), but it is often focused on targeting T ! A rather than 
A ! T amplification. When disentangling the directions 
of bias, we find that the Equalizer model (Hendricks et al., 
2018), which was trained with the intention of increasing 
the quality of gender-specific words in captions, inadver-
tently increases A ! T bias amplification for certain tasks. 
We treat gender as the attribute and the objects as different 
tasks. In Fig. 3 we see examples where the content of the 
Equalizer’s caption exhibits bias coming from the person’s 
attribute. Even though the Equalizer model reduces T ! A 
bias amplification in these images, it inadvertently increases 
A ! T . It is important to disentangle the two directions of 
bias and notice that while one direction is becoming more 
fair, another is actually becoming more biased. Although 
this may not always be the case, depending on the down-
stream application (Bennett et al., 2021), perhaps we could 
consider simply replacing all instances of gendered words 
like “man” and “woman” in the captions with “person” to 
trivially eliminate T ! A, and focus on A ! T bias ampli-
fication. Specifically when gender is the sensitive attribute, 
Keyes (2018) thoroughly explains how we should carefully 
think about why we might implement Automatic Gender 
Recognition (AGR), and avoid doing so. 

On the other hand, sensitive attribute labels, ideally from 
self-disclosure, can be very useful. For example, these labels 
are necessary to measure A ! T amplification, which is 
important to discover, as we do not want our prediction task 
to be biased for or against people with certain attributes. 

5.2. Variance in Estimator Bias 

Evaluation metrics, ours included, are specific to each model 
on each dataset. Under common loss functions such as cross 
entropy loss, some evaluation metrics like average preci-
sion are not very sensitive to random seed. However, bias 
amplification, along with other fairness metrics like FPR 
difference, often fluctuates greatly across runs. Because the 
loss functions that machine learning practitioners tend to 
default to using are proxies for accuracy, it makes sense 
that various local minima, while equal in accuracy, are not 
necessarily equal for other measurements. The phenomena 
of differences between equally predictive models has been 
termed the Rashomon Effect (Breiman, 2001), or predictive 
multiplicity (Marx et al., 2020). 

Thus, like previous work (Fisher et al., 2019), we urge 
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transparency, and advocate for the inclusion of confidence 
intervals. To illustrate the need for this, we look at the facial 
image domain of CelebA (Liu et al., 2015), defining two 
different scenarios of the classification of big nose or 
young as our task, and treating the gender labels as our 
attribute. Note that we do not classify gender, for reasons 
raised in Sec. 5.1, so we only measure A ! T amplification. 
For these tasks, women are correlated with no big nose and 
being young, and men with big nose and not being young. 
We examine two different scenarios, one where our inde-
pendent variable is model architecture, and another where 
it is the ratio between number of images of the majority 
groups (e.g., young women and not young men) and mi-
nority groups (e.g., not young women and young men). By 
looking at the confidence intervals, we can determine which 
condition allows us to draw reliable conclusions about the 
impact of that variable on bias amplification. 

For model architecture, we train 3 models pretrained 
on ImageNet (Russakovsky et al., 2015) across 5 runs: 
ResNet18 (He et al., 2016), AlexNet (Krizhevsky et al., 
2012), and VGG16 (Simonyan & Zisserman, 2014). Train-
ing details are in Appendix A.2. In Fig. 4 we see from 
the confidence intervals that while model architecture does 
not result in differing enough of bias amplification to con-
clude anything about the relative fairness of these models, 
across-ratio differences are significant enough to draw con-
clusions about the impact of this ratio on bias amplification. 
We encourage researchers to include confidence intervals 
so that findings are more robust to random fluctuations. 
Concurrent work covers this multiplicity phenomenon in 
detail (D’Amour et al., 2020), and calls for more application-
specific specifications that would constrain the model space. 
However, that may not always be feasible, so for now our 
proposal of error bars is more general and immediately im-
plementable. In a survey of recently published fairness 
papers from prominent machine learning conferences, we 
found that 25 of 48 (52%) reported results of a fairness met-
ric without error bars (details in Appendix A.2. Even if the 
model itself is deterministic, error bars could be generated 
through bootstrapping (Efron, 1992) to account for the fact 
that the test set itself is but a sample of the population, or 
varying the train-test splits (Friedler et al., 2019). 

5.3. Limitations of Bias Amplification 

An implicit assumption that motivates bias amplification 
metrics, including ours, is that the ground truth exists and 
is known. Further, a perfectly accurate model can be con-
sidered perfectly fair, despite the presence of task-attribute 
correlations in the training data. This allows us to treat the 
disparity between the correlations in the input vs correla-
tions in the output as a fairness measure. 

It follows that bias amplification would not be a good way to 

measure fairness when the ground truth is either unknown 
or does not correspond to desired classification. In this 
section, we discuss two types of applications where bias 
amplification should not necessarily be used out-of-the-box 
as a fairness metric. 

Sentence completion: no ground truth. Consider the fill-
in-the-blank NLP task, where there is no ground truth for 
how to fill in a sentence. Given “The [blank] went on a 
walk”, a variety of words could be suitable. Therefore, 
to measure bias amplification in this setting, we need to 
subjectively set the base correlations, i.e., P (Tt = 1|Aa = 
1), P (Aa = 1|Tt = 1). 

To see the effect of adjusting base correlations, we test 
the bias amplification between occupations and gender pro-
nouns, conditioning on the pronoun and filling in the occu-
pation and vice versa. In Tbl. 2, we report our measured 
bias amplification results on the FitBERT (Fill in the blanks 
BERT) (Havens & Stal, 2019; Devlin et al., 2019) model 
using various sources as our base correlation of bias from 
which amplification is measured. The same outputs from 
the model are used for each set of pronouns, and the in-
dependent variable we manipulate is the source of base 
correlations: 1) equality amongst the pronouns, using two 
pronouns (he/she) 2) equality amongst the pronouns, using 
three pronouns (he/she/they) 3) co-occurrence counts from 
English Wikipedia (one of the datasets BERT was trained 
on), and 4) WinoBias (Zhao et al., 2018) with additional 
information supplemented from the 2016 U.S. Labor Force 
Statistics data. Additional details are in Appendix A.3. 

We find that relative to U.S. Labor Force data on these 
particular occupations, FitBERT actually exhibits no bias 
amplification. Yet it would be simplistic to conclude that 
FitBERT presents no fairness concerns with respect to gen-
der and occupation. For one, it is evident from Fig. 5 that 
there is an overall bias towards “he” (this translates to a bias 
amplification for some occupations and a bias reduction for 
others; the effects roughly cancel out in our bias amplifica-
tion metric when aggregated). More importantly, whether 
U.S. labor statistics are the right source of base correlations 
depends on the specific application of the model and the 
cultural context in which it is deployed. This is clear when 
noticing that the measured BiasAmpT !A is much stronger 
when the gender distribution is expected to be uniform, in-
stead of gender-biased Labor statistics. 

Risk prediction: future outcomes unknown. Next, we 
examine the criminal risk prediction setting. A common 
statistical task in this setting is predicting the likelihood a 
defendant will commit a crime if released pending trial. This 
setting has two important differences compared to computer 
vision detection tasks: 1) The training labels typically come 
from arrest records and suffer from problems like historical 
and selection bias (Suresh & Guttag, 2019; Olteanu et al., 
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Figure 4. We investigate the consistency of various metrics by looking at 95% confidence intervals as we manipulate two independent 
variables: model architecture (left three graphs), and majority to minority groups ratio (right graph). The top row (blue) is for the attribute 
of big nose, and bottom row (orange) is for young. For model architecture, across 5 runs, the accuracy measure of average precision 
retains a consistent ranking across models, but two different fairness measures (FPR difference and A ! T bias amplification) have 
overlapping intervals. This does not allow us to draw conclusions about the differing fairness of these models. However, across-ratio 
differences in bias amplification are significant enough to allow us to draw conclusions about the differing levels of fairness. 

Base Correlation 
Source (# pronouns) 

BiasAmpT !A BiasAmpA!T 

Uniform (2) .1368 ± .0226 .0084 ± .0054 
Uniform (3) .0914 ± .0151 .0056 ± .0036 

Wikipedia (2) .0372 ± .0307 -.0002 ± .0043 
2016 U.S. Labor 

Force (WinoBias) (2) 
-.1254 ± .0026 -.0089 ± .0054 

Table 2. BiasAmp! for different base correlation sources. The
Figure 5. Each point represents an occupation’s probability at be- value-laden choice of base correlation source depends on the down-
ing associated with the pronoun for a man. FitBERT perpetuates stream application. 
gender-occupation biases seen in the U.S. Labor Force, and addi-
tionally over-favors the pronoun for men. 

2019; Green, 2020), and 2) the task is to predict future events 
and thus the outcome is not knowable at prediction time. 
Further, the risk of recidivism is not a static, immutable 
trait of a person. Given the input features that are used to 
represent individuals, one could imagine an individual with 
a set of features who does recidivate, and one who does 
not. In contrast, for a task like image classification, two 
instances with the same pixel values will always have the 
same labels (if the ground truth labels are accurate). 

As a result of these setting differences, risk prediction tools 
may be considered unfair even if they exhibit no bias ampli-
fication. Indeed, one might argue that a model that shows 
no bias amplification is necessarily unfair as it perpetuates 
past biases reflected in the training data. Further, modeling 
risk as immutable misses the opportunity for intervention to 
change the risk (Barabas et al., 2018). Thus, matching the 
training correlations should not be the intended goal (Wick 
et al., 2019; Hebert-Johnson et al., 2018). 

To make this more concrete, in Fig. 6 we show the metrics 
of BiasAmpA!T and False Positive Rate (FPR) disparity 

measured on COMPAS predictions (Angwin et al., 2016), 
only looking at two racial groups, for various values of the 
risk threshold. A false positive occurs when a defendant 
classified as high risk but does not recidivate; FPR disparity 
has been interpreted as measuring how unequally different 
groups suffer the costs of the model’s errors (Hardt et al., 
2016). The figure shows that bias amplification is close to 0 
for almost all thresholds. This is no surprise since the model 
was designed to be calibrated by group (Flores et al., 2016). 
However, for all realistic values of the threshold, there is a 
large FPR disparity. Thus, risk prediction is a setting where 
a lack of bias amplification should not be used to conclude 
that a model is fair. 

Like any fairness metric, ours captures only one perspective, 
which is that of not amplifying already present biases. It 
does not require a correction for these biases. Settings that 
bias amplification are more suited for include those with 
a known truth in the labels, where matching them would 
desired. For example, applicable contexts include certain 
social media bot detection tasks where the sensitive attribute 
is the region of origin, as bot detection methods may be 
biased against names from certain areas. More broadly, it 
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Figure 6. COMPAS risk predictions exhibit FPR disparities, but 
little bias amplification. Bias amplification measures only whether 
the model matches the (biased) training data, not the bias of the 
overall system. 

is crucial that we pick fairness metrics thoughtfully when 
deciding how to evaluate a model. 

6. Conclusion 

In this paper, we take a deep dive into the measure of bias 
amplification. We introduce a new metric, BiasAmp!, that 
disentangles the directions of bias to provide more action-
able insights when diagnosing models. Additionally, we 
analyze and discuss normative considerations to encourage 
exercising care when determining which fairness metrics are 
applicable, and what assumptions they are encoding. The 
mission of this paper is not to tout bias amplification as the 
optimal fairness metric, but rather to give a comprehensive 
and critical study as to how it should be measured. 
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