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A. Network Architecture
With the complex observation and action structures, the
design of the policy network architecture is critical, in order
to extract the right information from the raw observation
and issue the proper action. The overall architecture of
the policy network of SCC is shown in Fig. 4, which was
designed based on the performance in supervised learning.
With the same input and output interfaces provided by the
game engine, the overall policy structure of SCC is similar
to that of AlphaStar, while there are some key components
that are different, which will be discussed in detail below.

A.1. Minimap Size

As part of the observation, the minimap consists of 6 planes
of spatial information, i.e., height, visibility, player relative,
alerts, pathable and buildable, which is directly provided by
the raw interface and its size can be specified. AlphaStar
uses minimaps of size 128 × 128, as it is the only part of
spatial input, it also consists most of the data size. We reduce
the minimap size from 128×128 to 64×64, which reduces
the per sample data size by around 49.5%. We compared
the overall performance of the two settings in supervised
learning, and observed that the two different minimap sizes
lead to almost identical training and evaluation results. As a
result, we finally adopt minimap of size 64×64, for smaller
storage and higher computational efficiency.

A.2. Group Transformer

Among all parts of the observations, the set of units is most
informative, with each one consists of the unit type, owner,
position and many other fields. The whole set of units can be
divided into three groups, namely my units, enemy units and
neutral units. In AlphaStar, all three groups of units are put
together and is then processed by transformer. In our point
of view, the three groups of units are naturally separate and
processing them separately allows a more comprehensive
expression. It will also facilitate the processing later, for
example, the selected units head can only select units from
my units.

For each group of units, one multi-head self attention block
is applied with the unit feature vectors in the same group
as the queries, keys and values, and two multi-head cross
attention block are applied with the queries being the unit
feature vectors in the same group and that of the other two
unit groups being the keys and values (Vaswani et al., 2017).
For each of the multi-head attention blocks, there are two
heads each of size 32, and the outputs of the three multi-
head attention blocks are concatenated together. The whole
process is repeated three times to yield the final encoded
unit features for the three groups of units, which will act as
the attention keys being used in the selected units and the

target unit heads, and also be reduced into a single vector
being fed into the LSTM.

A.3. Attention-based Pooling

To reduce the extracted unit feature vectors of each group
into a single vector, a simple average-pooling is applied in
AlphaStar. In a similar scenario, the max-pooling is utilized
in OpenAI five. Both operators are non-trainable which
potentially limits their expressive capability. Inspired by the
attention-based multiple instance learning (Ilse et al., 2018),
we propose the trainable attention-based pooling based on
the multi-head attention. More specifically, the extracted
unit feature vectors are treated as the keys and values in a
multi-head attention, and multiple trainable weight vectors
are created as the queries. The outputs of the multi-head
attention are then flattened to yield the reduced vector, with
the dimension being defined by the number of query weight
vectors, and also the number of head and head size of the
multi-head attention. It is observed that this trainable reduce
operator gives better performance in supervised learning.

A.4. Conditional Structures

With the observations encoded into vector representations,
concatenated and processed by a residual LSTM block, the
action is then decided based on the LSTM output. To man-
age the structured, combinatorial action space, AlphaStar
uses an auto-regressive action structure in which each sub-
sequent action head conditions on all previous ones, via an
additive auto-regressive embedding going through all heads.
During the design of SCC, we found that it is critical for all
other heads to condition on the selected action, which de-
fines what to do, for example, moving, attacking, or training
a unit, and for the two heads that decide the target unit or
position, it is also helpful to condition on the selected units.
However, for all other heads, it is not necessary to condition
on each other, thus the order of these heads, say the skip
frames and queued heads, also does not matter. In addition,
in view of the limited expressive capability of the additive
operator, we adopt the structure of concatenation followed
by a fully connected layer, to provide full flexibility for the
network to learn a better conditional relationship.

Due to the importance of the selected action for some action
heads, we propose to condition on it further via the condi-
tioned concat-attention. To be specific, the concat-attention
is applied in the target unit head to output the probability
distribution from which the target unit is sampled. In the
original concat-attention (Luong et al., 2015), the attention
score is computed as follows:

score(q,ui) = vT tanh(W[q;ui]),

where q is the query, ui is the encoded unit feature vector
serving as the key, W and v are the weights to be trained.
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In the proposed conditioned concat-attention, we replace
the single weight vector v by the embedding of the sampled
selected action. Since there are different embeddings for
different selected actions, the conditioned concat-attention
provides the capability of defining different function map-
pings for different selected actions. It makes sense intu-
itively, since different selected actions may need totally
different criteria for selecting the target, for example, the
repair action may want to target damaged alliance units and
the attack action may want to target nearby enemy units.
The same conditioned concat-attention is also applied inside
the pointer network in the selected units head, in place of
the original simple dot product attention, to also further
condition on the selected action.

B. Training Platform
We developed a highly scalable training system based on
the actor-learner architecture. The diagram of the training
process for one agent is shown in Fig. 5. In our system,
there are a number of Samplers, each of which continuously
runs a single SC2 environment and collects training data.
When a rollout of training data is generated, it will be sent
to a Trainer over the network and saved into a local buffer.
When there are sufficient training data in the local buffer,
Trainer starts to execute a training step, during which it
repeatedly samples a batch of training data, computes the
gradient, and executes MPI all-reduce operation. When the
training data has been utilized some number of times, this
training step is terminated and the local buffer is cleared.
After that, Trainers distribute updated network parameters
to Predictors through network. Predictor provides batched
inference service on GPU for Samplers to make efficient use
of resource. For each agent, we run about 1000 (AlphaStar
16,000) concurrent SC2 matches, and can collect a sample
batch of total size 144,000 and perform a training step in
about 180 seconds. So about 800 (AlphaStar 50,000) agent
steps can be processed per second on average.

To support the whole league training, we also build a league
system as shown in Fig. 6, which consists of four compo-
nents, i.e., Storage, Predictor, Scheduler and Evaluator. We
introduce each component in the following.

• Storage: we use a MySQL DB service to store league
information, like agent-id, agent-type, model-path and
so on. The evaluation results of win rates between
agents are also saved into the storage.

• Predictor: we use a single cluster of Predictors to pro-
vide inference service for all agents in the league, and
the cluster is shared by training agents. Not only GPUs,
CPUs are also used as Predictors.

• Scheduler: Scheduler maintains the predictors and pro-
vides naming service, which receives agent-id and re-

turns an available Predictor (allocate one if not exists).
As the number of agents in league keeps growing, there
is no guarantee for each agent with at least one GPU
Predictor, in that case the CPU Predictors are used
instead. The distribution of requests over agents also
changes in the training process, Scheduler is also re-
sponsible to auto scale the Predictor number for agents
according to the request amount.

• Evaluator: an Evaluator is needed to get the win rates
between agents in league. The evaluation results are
saved into Storage and will be used to calculate the
matchmaking distribution.
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Figure 4. Overview of the policy network architecture of SCC.
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Figure 6. Diagram of the league training.


