
Quantum Algorithms for Reinforcement Learning with a Generative Model

A. Correctness and Complexity of SolveMdp1 (Algorithm 1)
A.1. Proof of Proposition 1

We first consider the failure probability. As all estimations are carried out with maximum failure probability f := δ/4KLSA
and there are 3KSA+KLSA < 4KLSA estimations (Lines 7, 8 and 12), the probability that there exists an incorrect
estimate (up to the specified error) is at most δ by the union bound.

We henceforth assume the qEst steps are all correct and proceed to prove Eq. (8) and Eq. (9), which we recall are:

vk,l ≤ vπk,l ≤ v∗, (8)
qk,l ≤ qπk,l ≤ q∗. (9)

The second inequalities in Eq. (8) and Eq. (9) are clear from the definitions of v∗ and q∗. We therefore only show the first
inequalities below and refer to them when referring to Eq. (8) and Eq. (9). The main idea is to use Lemma 1 together with
the inequalities

xk ≤ Pvk,0, (17)
∆k,l ≤ Pvk,l − Pvk,0, (18)

that are immediate from the definitions of xk and ∆k,l on Lines 8 and 12 respectively because the subtracted terms equal the
estimation errors.

To show Eq. (8), it suffices to show
vk,l ≤ T πk,l(vk,l). (19)

Equation (8) then follows from repeatedly applying T πk,l on both sides of Eq. (19), and using the fact that T πk,l is monotone
increasing and is a contraction with unique fixed point vπk,l .

We proceed to show Eq. (19) by induction on n := (k − 1)L + l. The base case n = 0 is true because v1,0 := 0 ≤
T π1,0(v1,0) = r. The case n = 1 is also true because v1,1 = v(q1,0) = 0 ≤ T π1,1(v1,1) = r, where we used q1,0 := 0. In
addition, note that vk,L ≤ T πk,L(vk,L) is the same as vk+1,0 ≤ T πk+1,0(vk+1,0) by definitions on Line 15. This means that
once we have established the truth of Eq. (19) at k = k′, l = L, we can assume its truth at k = k′ + 1, l = 0.

Now consider n > 1. We prove Eq. (19) element-wise for each s ∈ S by considering the following two cases that could
happen at the if-clause on Line 10.

1. Case v(qk,l−1)[s] ≥ vk,l−1[s]. Then

vk,l[s] := v(qk,l−1)[s]

= qk,l−1[s, πk,l[s]]

= max{r[s, πk,l(s)] + γ(xk[s, πk,l[s]] + ∆k,l−1[s, πk,l[s]]), 0}
≤ r[s, πk,l(s)] + γ(Pvk,l−1)[s, πk,l(s)]

= T πk,l(vk,l−1)[s]

≤ T πk,l(vk,l)[s],

(20)

where the second line uses πk,l[s] := π(qk,l−1)[s] in this case, the third line uses definition of qk,l−1 (for n > 1), the
fourth line uses Eq. (17) and Eq. (18) and 0 ≤ vk,l−1 (Lemma 1) to remove the max, and the last line uses vk,l−1 ≤ vk,l
(Lemma 1).

2. Case v(qk,l−1)[s] < vk,l−1[s]. Then

vk,l[s] := vk,l−1[s] ≤ T πk,l−1(vk,l−1)[s] ≤ T πk,l−1(vk,l)[s] = T πk,l(vk,l)[s], (21)

where the first inequality is by the inductive hypothesis, the second inequality uses vk,l−1 ≤ vk,l (Lemma 1), and the
last equality uses πk,l[s] := πk,l−1[s] in this case.

Quantum Algorithms for Reinforcement Learning with a Generative Model

Therefore, we have established Eq. (19), and so Eq. (8).

Equation (9) then follows from
qk,l ≤ r + γPvk,l ≤ r + γPvπk,l = qπk,l , (22)

where the first inequality again uses Eq. (17) and Eq. (18) and 0 ≤ vk,l (Lemma 1), and the second inequality uses Eq. (8)
which we have just established.

A.2. Proof of Proposition 2

By reusing the first paragraph in the proof of Proposition 1, we can readily set aside consideration of the failure probability.

We henceforth again assume the qEst steps are all correct and proceed to prove Eq. (10) and Eq. (11), which we recall are:

v∗ − εk ≤ vk,L, (10)
q∗ − εk ≤ qk,L. (11)

We proceed by induction on k ≥ 0 with the inductive hypothesis comprising both inequalities above for all indices strictly
less than k. The base case k = 0 can be established by defining ε0 := Γ, v0,L := 0, and q0,L := 0. Note that these
definitions will be consistent with the induction steps below.

Now consider k > 0. The main idea is to use Theorem 1 and the inequalities

xk ≥ Pvk,0 − 2c(1− γ)1.5ε
√
yk + b, (23)

∆k,l ≥ Pvk,l − Pvk,0 − 2c(1− γ)εk, (24)

that are immediate from the definitions of xk and ∆k,l on Lines 8 and 12 respectively.

We first show Eq. (11). Define vector ξk ∈ RSA by

ξk := 2c(1− γ)1.5ε
√
yk + b+ 2c(1− γ)εk, (25)

then we have

q∗ − qk,l = r + γPπ
∗
q∗ −max{r + γ(xk + ∆k,l), 0}

≤ γPπ
∗
q∗ − γ(xk + ∆k,l)

≤ γPπ
∗
q∗ − γ(���Pvk,0 + Pvk,l −���Pvk,0 − 2c(1− γ)1.5ε

√
yk + b− 2c(1− γ)εk)

≤ γPπ
∗
q∗ − γPvk,l + 2c(1− γ)1.5ε

√
yk + b+ 2c(1− γ)εk

= γPπ
∗
q∗ − γPvk,l + ξk

≤ γPπ
∗
q∗ − γPv(qk,l−1) + ξk

≤ γPπ
∗
(q∗ − qk,l−1) + ξk,

(26)

where the fourth line uses γ ≤ 1, the sixth line uses v(qk,l−1) ≤ vk,l (Lemma 1), and the last line uses Pπ
∗
qk,l−1 ≤

Pv(qk,l−1) which follows from definitions.

Recursing Eq. (26) with respect to l ≥ 1 gives

q∗ − qk,l ≤ γl(Pπ
∗
)l(q∗ − qk,0) +

l−1∑
i=0

γi(Pπ
∗
)iξk

≤ γlΓ + (I − γPπ
∗
)−1ξk,

(27)

where the last line uses q∗ − qk,0 ≤ q∗ ≤ Γ as qk,0 ≥ 0 by definitions on Line 4 and Line 13. The first term, γlΓ, can be
bounded when l = L− 1, L:

γLΓ ≤ γL−1Γ ≤ exp(−(L− 1)(1− γ))Γ ≤ ε/4 ≤ εk/2, (28)

Quantum Algorithms for Reinforcement Learning with a Generative Model

where the second inequality uses x ≤ exp(−(1 − x)) for all x ∈ R, the third inequality uses the definition L :=
Γdlog(4Γ/ε)e+ 1, and the last inequality uses ε ≤ 2εK ≤ 2εk for all k ∈ [K] which follows from K ≤ log2(Γ/ε) + 1.

We now bound the second term, (I − γPπ∗)−1ξk. To this end, we first bound the term
√
yk + b appearing in ξk. From the

definition of yk, there exists a b′ with |b′| ≤ b such that√
yk + b ≤ max{(Pv2

k,0 + b− (Pvk,0 + (1− γ)b′)2)1/2,
√
b}

≤ (σ2(vk,0) + b+ 2(1− γ)|b′|Pvk,0)1/2

≤
√
σ2(vk,0) + 3b

≤ σ(vk,0) +
√

3b

≤ σ(v∗) + σ(v∗ − vk,0) +
√

3b,

(29)

where the second line uses 0 ≤ vk,0 (Lemma 1) to remove the max, the third line uses vk,0 ≤ Γ (Proposition 1), and the
last line uses the fact that, for any random variables X and Y , we have Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X,Y] ≤
(
√

Var[X] +
√

Var[Y])2.

But we have vk,0 − v∗ ≤ 0 from Eq. (8) of Proposition 1 and v∗ − vk,0 = v∗ − vk−1,L ≤ εk−1 by the inductive hypothesis.
Therefore, σ(vk,0 − v∗) ≤ ‖vk,0 − v∗‖ ≤ εk−1 = 2εk, and therefore√

yk + b ≤ σ(v∗) + 2εk +
√

3b. (30)

Therefore, recalling ξk := 2c(1− γ)1.5ε
√
yk + b+ 2c(1− γ)εk from Eq. (25), we have

(I − γPπ
∗
)−1ξk = 2c(1− γ)1.5ε(I − γPπ

∗
)−1
√
yk + b+ 2c(1− γ)εk(I − γPπ

∗
)−1 1

≤ 2c(1− γ)1.5ε(I − γPπ
∗
)−1(σ(v∗) + 2εk +

√
3b) + 2c(1− γ)εk(I − γPπ

∗
)−1 1

≤ 2c(1− γ)1.5ε(I − γPπ
∗
)−1σ(v∗) + 2c

√
1− γ ε 2εk + 2c

√
1− γ ε

√
3b+ 2c εk

≤ 2c
√

2 ε+ 2c
√

1− γ ε 2εk + 2c ε
√

3b+ 2c εk

≤ 2c (2
√

2 + 2 + 2
√

3b+ 1)εk

< εk/2,

(31)

where the third line uses (I − γPπ∗)−1 1 ≤ (1− γ)−1, the fourth line crucially uses Theorem 1 with π set to π∗, the fifth
line uses ε ≤ 2εk for all k ∈ [K] and the input assumption

√
1− γ ε ≤ 1, i.e., ε ≤

√
Γ, and the last line uses definitions

b := 1 and c := 0.01.

Using Eq. (28) and Eq. (31) to bound the first and second terms in Eq. (27) respectively, we find

q∗ − qk,L ≤ εk, (32)
q∗ − qk,L−1 ≤ εk. (33)

The top equation is one inequality we wish to show in our induction. The bottom equation can be used to establish the other
inequality as follows. For all s ∈ S, we have

vk,L[s] ≥ v(qk,L−1)[s] = max
a
{qk,L−1[s, a]} ≥ max

a
{q∗[s, a]− εk} = v∗[s]− εk, (34)

where the first inequality is by Lemma 1. Hence vk,L ≥ v∗ − εk, as desired.

A.3. Proof of Theorem 5 (Complexity of SolveMdp1)

As in the correctness analysis, we assume that all estimations are correct, up to the specified error, because the probability
that this does not hold is at most δ. This means we can assume all results obtained during the correctness analysis. In the
following, we will use K = O(log(Γ/ε)) and L = O(Γ log(Γ/ε)) without further remarks.

Let C be the complexity of SolveMdp1 as if all estimations were carried out with maximum failure probabilities set
to constant. Then, since the actual maximum failure probabilities are set to f := δ/4KLSA, the actual complexity of
SolveMdp1 is

O(C log(KLSA/δ)) = O(C log(SAΓ log(Γ/ε)/δ)). (35)

Quantum Algorithms for Reinforcement Learning with a Generative Model

Now we bound C by examining each line involving qEst in turn and using Theorem 2.

On Line 7, we can bound 0 ≤ vk,0 ≤ v∗ ≤ Γ. Therefore, we can use quantum mean estimation algorithm qEst1 in
Theorem 2, which results in an overall query cost of order

SAK(Γ2 b−1 +
√

Γ2 b−1 + Γ(1− γ)−1b−1 +
√

Γ(1− γ)−1b−1) = O(SAΓ2 log(Γ/ε)). (36)

On Line 8, we see that σ2(vk,0)[s, a] ≤
√
yk[s, a] + b. We also note that 0 < (1− γ)1.5ε

√
yk[s, a] + b < 4

√
yk[s, a] + b.

Therefore, we can use quantum mean estimation algorithm qEst2 in Theorem 2, with error set to (1− γ)1.5ε
√
yk[s, a] + b

and variance upper bound set to yk[s, a] + b, which results in an overall query cost of order

K
∑

(s,a)∈S×A

w[s, a] log2(w[s, a]) = O(SAΓ1.5ε−1 log3(Γ/ε)), (37)

where, importantly, w[s, a] :=
(
������√
yk[s, a] + b

)(
(1− γ)1.5ε������√

yk[s, a] + b
)−1

= Γ1.5/ε.

On Line 12, we can bound 0 ≤ vk,l − vk,0 ≤ v∗ − vk,0 ≤ εk−1 = 2εk. Therefore, we can use quantum mean estimation
algorithm qEst1 in Theorem 2, which results in an overall cost of order

LSA

(
2��εk

c(1− γ)��εk
+

√
2��εk

c(1− γ)��εk

)
= O(SAΓ2 log(Γ/ε)). (38)

Adding together Eq. (36), Eq. (37), and Eq. (38), and noting that all logarithmic terms are at most log3(Γ/ε), shows that

C = O(SA(Γ1.5ε−1 + Γ2) log3(Γ/ε)). (39)

Combining the above equation with Eq. (35) shows that the overall quantum query complexity of SolveMdp1 is

O(SA(Γ1.5ε−1 + Γ2) log3(Γ/ε) log(SAΓ log(Γ/ε)/δ)) = O(SA(Γ1.5ε−1 + Γ2) log4(Γ/ε) log(SAΓ/δ)), (40)

as desired.

B. Correctness and Complexity of SolveMdp2 (Algorithm 2)
Failure probability aside, our strategy for proving the correctness of SolveMdp2 (Theorem 6) is to observe the similarity
between SolveMdp2 and SolveMdp1 and then reuse the arguments used to prove the correctness of SolveMdp1.

As mentioned in the main text, SolveMdp2 is similar to SolveMdp1 with k set to 1. In particular, the vectors zl, ql ∈ RSA,
defined entry-wise by

zl[s, a] := zl,s[a], (41)
ql[s, a] := ql,s[a], (42)

are analogous to the vectors x1 + ∆1,l and q1,l appearing in SolveMdp1 respectively. Moreover, the ṽl[s] :=
maxa{ql−1,s[a]} = maxa{ql−1[s, a]} appearing in SolveMdp2 corresponds exactly to the v(q1,l−1)[s] :=
maxa{q1,l−1[s, a]} appearing in SolveMdp1.

Having observed the similarity between SolveMdp2 and SolveMdp1, the following analogue of Lemma 1 due to the
if-then-else statement is clear.

Lemma 2. For all l ∈ [L], the vls are monotone increasing, that is vl−1 ≤ vl, and moreover we have vl ≥ v(ql−1).

B.1. Proof of Theorem 6 (Correctness of SolveMdp2)

We first consider the failure probability. The analysis is similar to the previous one except that we now need to analyze
quantum oracles that may fail. To do this, we appeal to basic facts about unitary matrices, in particular, a quantum
version of the union bound stating that the failure probabilities of quantum operators, i.e., unitary matrices, add linearly.

Quantum Algorithms for Reinforcement Learning with a Generative Model

On Line 10, because Uzl,s is created using qEst with failure probability f , it is 2Af -close to its “ideal version”. More

precisely, we mean that there exists a quantum oracle U ideal
zl,s

encoding (̂Pvl)[s, a]− (1− γ)ε/4, where (̂Pvl)[s, a] satisfies

|(̂Pvl)[s, a]− (Pvl)[s, a]| ≤ (1− γ)ε/4, such that ‖U ideal
zl,s
− Uzl,s‖op ≤ 2Af . Since Uql,s can be created using one call to

Uzl,s and one call to U−1
zl,s

, it is 4Af -close to its ideal version (defined similarly). Then, on Line 6, qArgmax uses the oracle
Uql,s at most cmax

√
A log(1/δ) times. By the quantum union bound and substituting in the definition of f , this means the

quantum operation implemented by qArgmax is (cmax

√
A log(1/δ) · 4Af = δ/LS)-close to its ideal version. This means

that the output of qArgmax is incorrect with probability at most δ/LS. Since qArgmax is invoked a total of LS times, we
see that the overall probability of failure is at most δ by the (usual) union bound.

We henceforth assume the qEst and qArgmax steps are all correct and proceed to prove Eq. (15), which we recall is:

v∗ − ε ≤ v̂ ≤ vπ̂ ≤ v∗. (15)

The last inequality, vπ̂ ≤ v∗, is clear.

To prove the middle inequality, v̂ ≤ vπ̂, we can directly reuse the proof of Proposition 1 provided we have zl ≤ Pvl. But
this is clear because xl is equal to an estimate of Pvl with the estimation error subtracted off.

To prove the first inequality, v∗ − ε ≤ v̂, we can reuse the proof of Proposition 2, provided we have zl ≥ Pvl − (1− γ)ε/2,
which is true. Defining ξ = (1− γ)ε/2 · 1 ∈ RSA, we see from the proof of Proposition 2 that

q∗ − qL−1 ≤ γL−1Γ + (1− γPπ
∗
)−1ξ ≤ ε, (43)

since L := Γdlog(4Γ/ε)e+ 1. Therefore, for all s ∈ S, we have

vL[s] ≥ v(qL−1)[s] = max
a
{qL−1[s, a] ≥ max

a
{q∗[s, a]− ε} = v∗[s]− ε. (44)

B.2. Proof of Theorem 7 (Complexity of SolveMdp2)

Like the proof of Theorem 5, we can assume all results obtained from the correctness analysis.

We again let C be the complexity of SolveMdp2 as if all estimations and maximum finding were carried out with maximum
failure probabilities set to constant. Then the actual complexity of our algorithm is

O(C log(LSA/δ)) = O(C log(SAΓ log(Γ/ε)/δ)), (45)

since the actual maximum failure probabilities are set to f := δ/4cmaxLSA
1.5 log(1/δ) and L = O(Γ log(Γ/ε)).

Now we bound C. Note that, for all l ∈ [L], we have

0 ≤ vl ≤ v∗ ≤ Γ. (46)

By using qEst1 of Theorem 2 to do the qEst on Line 10, the query complexity of Uzl,s is

Γ

(1− γ)ε/4
+

√
Γ

(1− γ)ε/4
= O(Γ2/ε), (47)

provided ε = O(Γ2). But we have (trivially) assumed ε ≤ Γ on the input ε, so this holds.

As Uql,s uses one call to Uzl,s and one call to its inverse U−1
zl,s

, the query complexity of Uql,s is twice that of Uzl,s .

By means of the quantum maximum finding algorithm (Theorem 3) we only incur a multiplicative factor of O(
√
A) when

we invoke qArgmax over an action space of size A. That is, for each l ∈ [L] and s ∈ S, qArgmax makes O(
√
A) queries

to Uql,s to find argmaxa{ql−1,s[a]}. There are also L iterations, so

C = O(LS
√
AΓ2ε−1) = O(S

√
AΓ3ε−1 log(Γ/ε)), (48)

Quantum Algorithms for Reinforcement Learning with a Generative Model

because L = O(Γ log(Γ/ε)). Combining the above equation with Eq. (45) shows that the overall quantum query complexity
of SolveMdp2 is

O(S
√
AΓ3ε−1 log(Γ/ε) log(SAΓ log(Γ/ε)/δ)) = O(S

√
AΓ3ε−1 log2(Γ/ε) log(SAΓ/δ)), (49)

as desired.

C. Lower Bounds
We first establish the lower bound for an MDP with S = 2 and A = 1. Note that when A = 1, there is only one action per
state, so it is trivial to compute the optimal policy. So we can only show hardness for computing q∗ or v∗, which will be the
same because there is only one action.

Figure 1. The MDP we use for the lower bound with S = 2 and A = 1. Distinguishing between p ≤ p0 and p ≥ p0 + α is hard.

Lemma 3. Fix any γ ∈ [0.9, 1). Let Γ := (1−γ)−1 ≥ 10 and fix any ε ∈ (0,Γ/4). There exists an MDP shown in Figure 1
with 2 states and 1 action, for which computing v∗ (or equivalently, q∗) to error ε requires Ω(Γ3/ε2) queries to a classical
generative oracle or Ω(Γ1.5/ε) queries to a quantum generative oracle.

Proof. The MDP shown in Figure 1 has two states we call s and t. State t is a sink and the only transition from there is
back to t with no reward. Hence v∗(t) = 0. State s is a source, and on taking action a, there is a reward r(s, a) = 1. The
transition is probabilistic and controlled by an unknown probability p ∈ (0, 1). With probability p we come back to s, and
with probability 1 − p we move to t. We can compute v∗(s) using the equation v∗(s) = 1 + γ(pv∗(s) + (1 − p)v∗(t)),
which yields

v∗(s) =
1

1− γp
. (50)

Now further assume that we are promised that p ≤ p0 or p ≥ p0 + α, where

p0 = 1− 1

Γ
and α =

3ε

Γ2
. (51)

Note that p0 + α < 1 because of the way we have chosen the range of ε.

We claim that computing v∗(s) to additive error ε will allow us to distinguish these two cases. To see this, note that the
difference between the two values of v∗(s) is at least

1

1− γ(p0 + α)
− 1

1− γp0

=
γα

(1− γ(p0 + α))(1− γp0)

>
γα

(1− γp0)2
≥ 0.9α

(1.1/Γ− 1/10Γ2)2

≥0.9αΓ2/1.21 ≥ αΓ2/1.35 ≥ 2ε.

(52)

Thus computing v∗ to additive error ε will allow us to distinguish these two possibilities.

Quantum Algorithms for Reinforcement Learning with a Generative Model

Now we just have to show that distinguishing a coin with probability of heads at most p0 or at least p0 + α given samples
from this coin is as hard as claimed in the lower bound. We prove this via query complexity.

Suppose that instead of having sample access to a coin, we have query access to an n-bit string x with the promise that either
at most p0 fraction of its bits is equal to 1 or at least p0 + α fraction of its bits is equal to 1. Both quantumly and classically,
we can query any bit xi of x using 1 query. It is easy to see that we can generate a sample from our coin with probability of
heads equal to |x|/n (the fraction of 1s in x) with only 1 query to x. This works both classically and quantumly.

So we have shown a reduction from the problem of computing v∗ to error ε to the problem of deciding whether |x|/n ≤ p0

or |x|/n ≥ p0 + α given query access to an n-bit string x. This is the approximate counting problem. If we count the
number of 0s, we want to distinguish 1/Γ 0s from (1/Γ− 3ε/Γ2) 0s. We need to approximate the count to multiplicative
precision O(ε/Γ). Finally, we can invoke the known lower bounds for approximate counting summarized in Lemma 4.
These give a classical lower bound of Ω(Γ3/ε2) and a quantum lower bound of Ω(Γ1.5/ε) as claimed.

We formally state the approximate counting lemma used in the previous proof. The quantum bounds are due to (Nayak &
Wu, 1999) and (Brassard et al., 2000).

Lemma 4 (Approximate counting). Let x ∈ {0, 1}n be a string to which we have standard classical or quantum query
access (i.e., we can query the ith bit and receive xi). Then deciding whether |x| ≤ k or |x| ≥ k(1 + ε) for k < n/2, requires
Θ(n

ε2k) classical queries or Θ(1
ε

√
n
k) quantum queries.

We can now extend the lower bound to larger S and A. Before doing so, we will need some structural theorems about
quantum query complexity and randomized query complexity. For a function f , let R(f) and Q(f) denote their randomized
and quantum query complexities. The first result shows that computing the logical OR of k copies of a problem scales with
k. The classical result is due to (Göös et al., 2017) and the quantum result follows from a general composition theorem
for quantum query complexity in (Reichardt, 2011). The second result, known as a direct sum result, can also be found in
(Reichardt, 2011).

Lemma 5. Let ORk be the logical OR function on k bits and f be an arbitrary Boolean function. Then the complexity of
the composed function ORk ◦f , which is defined as the logical OR of the k outputs of k independent instances of f is related
to the complexity of f as follows: Q(ORk ◦ f) = Ω(

√
k Q(f)) and R(ORk ◦ f) = Ω(kR(f)). In addition, computing all

k outputs of k independent instances of f requires Ω(k R(f)) queries classically and Ω(k Q(f)) queries quantumly.

Note that the “in addition” result can be viewed as a result about the query complexity of f composed with the function
Identityk : {0, 1}k → {0, 1}k; x 7→ x.

We are now ready to prove the main lower bound theorem.

...... actions
in total

......

Figure 2. The MDP we use for the lower bound with S = 2 and arbitrary A. For each i, pi is promised to be either ≤ p0 or ≥ p0 + α.
Any action i ∈ A taken from state t always returns to t with zero reward.

Quantum Algorithms for Reinforcement Learning with a Generative Model

C.1. Proof of Theorem 8

We start by keeping S = 2 and allowing arbitrarily large A ≥ 2. For notational convenience, we identify A with {1, . . . , A}.

We will use essentially the same instance as in Fig. 1 but now with A outgoing actions from state s, each with transition
probability pa for a ∈ A. The modified instance is illustrated in Fig. 2. We again consider the case where all the pa satisfy
the promise that they are either small (≤ p0) or large (≥ p0 + α). As argued in the previous proof, deciding if a given pa is
small or large has a classical lower bound of Ω(Γ3/ε2) and a quantum lower bound of Ω(Γ1.5/ε).

Now consider the problem of deciding whether any of the pa is small or large. This is the logical OR of A independent
problems, each of which we have already shown a lower bound for. If we could compute v∗ to error ε, then we would be
able to solve this problem. Hence using Lemma 5, we get a classical lower bound of Ω(AΓ3/ε2) and a quantum lower
bound of Ω(

√
AΓ1.5/ε) for the problem of computing v∗.

Similarly, consider the problem of deciding which of the pa is large, promised that exactly one of them is large and the
rest are small. This is similar to logical OR, except the goal is to identify the location of a 1 promised that it exists. This
problem is as hard as logical OR, and we get the same lower bounds. For such an instance, computing π∗ to error ε will
allow us to distinguish the two cases, since π∗(s) should equal the unique action for which pa is large. This gives us the
claimed lower bounds for π∗.

Similarly, consider the problem of learning which pas are large and which are small for all a (without any promise on the
number of each type). This is the problem of solving A independent instances of a problem for which we have already
proved a lower bound. For quantum and classical algorithms, this increases the complexity by a factor of A as stated in the
second part of Lemma 5. Thus we get a classical lower bound of Ω(AΓ3/ε2) and a quantum lower bound of Ω(AΓ1.5/ε)
for this problem. But if we could compute q∗ to error ε, then we would be able to solve this problem since such an estimate
encodes whether each pa is large or small. This gives us the claimed lower bounds for q∗.

Thus we have established all the lower bounds for S = 2 and arbitrary A. Finally, to extend the lower bounds to arbitrarily
large S, we can just use S/2 copies of the MDP in Fig. 2. Computing any one of the quantities q∗, v∗, or π∗ on this MDP
instance means solving S/2 independent copies of the problems discussed above. As stated in the second part of Lemma 5,
for both classical and quantum algorithms, this increases the complexity by a factor of Ω(S). This yields the claimed lower
bounds for general S and A.

