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A. Proof of Lemma 1

Proof of Lemma 1. We first list two properties of max norm as follows. (i) As shown in Srebro & Shraibman (2005),
| B« < /ninz||Bl|max- (i) By an equivalent definition of max norm due to Lee et al. (2008) (also see equation (8) in
Jalali & Srebro (2012)), we have ||C o B|| < ||C|||| B||max- Together with the duality of nuclear norm, we can show that

(CoB,B)| <||CoB||Bl. < |C[[[Bllmax||Bl|« D
< s ||C|l| Bl

B. Proofs of Theorems 1, 2 and 3

Let e;(n) € R™ be the canonical basis vector, i.e., the i-th element of e;(n) is 1 and the remaining elements are 0. We can
define similar standard basis elements for n;-by-no matrices: J;; = ei(nl)e; (ng), which will be used in the applications
of matrix Bernstein inequality in our proofs. For any § > 0, define the class of matrices Byax (3) to be the max-norm ball
with radius 3, i.e.,

Bmax(ﬂ) = {A S R™M X7z HAHmax § 6}

We also define
F={uwv’ iue{-1,+1}" v e {~1,+1}"2},

the set of rank-one sign matrices. Denote by K¢ € (1.67,1.79) the Grothendieck’s constant. From Srebro & Shraibman
(2005),
conv.F C Buax(1) € Kgconv.F. (S2)

Moreover, the cardinality of F is | F| = 2m1 721,

i.j- There exists a constant

Lemma S1. Suppose Assumption 1 hold. Let W, = (wo’i,j) € R™""2 where Wo ;5 = m
Cy > 0 such that with probability at least 1 — 1/(nq + n2),

1 1 1/2
ToWo—J||SC1min{ og _(m + n2) V”1+"2}.

ning \/7TL(77,1 /\Tlg)?’ll?’Lg, TLN1N2

Proof of Lemma S1. We use two different proof techniques to show the bounds. Depending on the rate of 77, one of these
two bounds is faster.

First, we show the proof for deriving the second bound. As {T”} are Bernoulli random variables, each entry T;; W, ; ; — 1
of matrix T' o W,, — J is sub-Gaussian random variable. Thus according to the definition of the ¥5 norm, we have

Eexp{log(2) - (T;;Wo,i; — 1)*/(n;; —1)°} < 2,

]

which implies that || T3 W i j — 1|y, < log™"/? 2 (7;;' = 1) < 2(m;' — 1).

By Theorem S2 in Section D, taking K = max; ; || TijWe,ij — 1|y, < 277" and t = (nq + n2)'/? in Theorem S2, there
exists an absolute constant C; > 0 such that

[T oW, — J| < Givm +na

TL

)
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with probability at least 1 — 2 - exp(—(n1 + ns)).

Next, we consider applying the Matrix Bernstein inequality to derive the first bound. For (ning)~1||T o W, —
1224 (TijWo,i,j—1)J5j/(nin2) ||, where J;; has 1 for (i, j)—th, but O for all the remaining entries, let M; ; = (T;;Wo; j—
Ddij,i=1,...,n1,5 = 1,...,ng, then (nyng) ~|T o W, — J|| = |[(man2) ™" 32, ; M; j||. We can easily verify that
E(M; ;) = 0and || M; ;|| < max{r;' — 1,1} for each 4, j by Assumption 1.

I =

Since E(T;;Wo,;,; — 1) = ;' — 1, we can show that
1
E (M, MT E (M]
ninsg Z ( ninsg Z (
j 0.
1
<n1n2 max 12%}7(112|1/7T” , ani); Z|1/7TU

1/mr — 1],
7n1An2\ [mr =1

where the first inequality comes from Corollary 2.3.2 in Golub & Van Loan (1996).
By Theorem S3 in Section D, with probability at least 1 — 1/(ny + ng), we have

1 2(1/m, — 1|1 1 log®/?
—— [|T o W, — J|| < 2max [/ = 1]10g (m + na) 2max{—1,1}0g(n1+nQ) .
n1Ng (n1 Ang)ning T n1Ng
Overall, the conclusion follows. O

Lemma S2. Suppose Assumption 1 holds. With probability at least 1 — exp{—2"'(log 2)7% >, ; 7@1 ,
7o Wl <23 i)t

(2%

In particular, the probability is lower bounded by 1 — exp{—2~*(log 2)77,177,27‘(%71’51}.

Proof of Lemma S2. Note that || T o W,||2 = . Let ¢ > 0. By Markov inequality, for any ¢ > 0,

—2
Zi,j Tw”ij

Pr (HT o Wo|% > t) =Pr {exp(£IIT o Wo|%) > exp(ﬁt)} < exp(—¢t)Eexp fZTijﬂif
%]
= exp(—¢t) [ [ Eexp(¢T35m;;7).
%,
For each (i, 7), due to the inequality 1 + 2 < exp(x) for z > 0,

Eexp(¢Tyym;;°) = 14 {exp(ém;;?) — 1}my; < exp[{exp(ém;;?) — 1}hmj).

Combining with the above result and taking ¢t =2 i oy

Pr | ||T o W,|J% > 2 Zﬂ'i;l < exp —2527@1 + Z{exp(gﬂ'i_f) —1}my
4,J (2] 2%
=exp |— Z mi; {1+ 2§7TZ.;2 - exp(ﬁﬂ'lf)}
2%
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Note the above inequality holds for any £ > 0.

Next, we focus on the term g({wij) where g(x) = 1+ 2z — exp(z) for x > 0. It is easy to show that g attains its maximum
atz = log 2, and g(log2) = 2log2 — 1 > 0. Also, g(z) is increasing for 0 < z < log 2.

Take £ = (log 2)7%. Then 0 < fwif < log 2, and hence g(fwif) > 0, for all ¢, j. The lower bound of g(fwif) is crucial
in determining the order of the probability bound. Since g(z) > x/2 for 0 < z < log 2,

log2 5 _,

glér?) = g(nim;*log2) > STy Vi

‘We conclude that

_ _ log 2 _ log 2 _
Z mi; {1+ 2§7rij2 - exp(§7rij2)} > § 2 Zﬂijl > g nonemiTy
i, 4,7
which leads to the desired result. ]

With these two lemmas, we are posed to prove Theorem 1.

Proof of Theorem 1. By Lemma S2, we can show that with probability at least 1 — exp{—2"*(log 2)7% i, wi’jl}, |T o
Wollr < (232, wfjl)l/ 2 and hence W, is feasible for the constrained optimization (5).

Based on the definition of the proposed estimator W, we have

— 1 —
S(W,A): ‘<A,(TOW—J)OA>’
ning
1 2
< ToW,—J||A
< o IToWe =TI AIL,
12
< ToW,—J|.
< e ITow,—J]
The desired result then follows from Lemma S1. O

Our theoretical result of the final estimator A will be based on a key lemma (Lemma S4), which establishes the dual of max
norm of random matrix € with general entry-wise scaling. Before we prove Lemma S4, we now show a comparison theorem
between sub-Gaussian complexity and Gaussian complexity. This result (Lemma S3) extends Theorem 8 in Banerjee et al.
(2014) to allow arbitrary entrywise scaling.

Define the Gaussian width and Gaussian complexity of the set A respectively as

w(.A)zEg[sup <A,G>] and w(A)zEG[

sup (4,6) @ |

sup |
AcA
where G = (G,;) and each {G;; } are independent standard Gaussian random variables. In our study, A is a max-norm ball,
and so is symmetric. Therefore Gaussian width and Gaussian complexity are equivalent.
Lemma S3 (Extension of Theorem 8 in Banerjee et al. (2014)). Suppose Assumption 2 holds. Let B = (B;;) € R™*"2 be
a fixed matrix such that B;; > 0 for each i, j. Then

E[|B o €[lpax] < moTE[I1B o Gl fnax] »

where || - ||} .x is the dual norm of max norm, G = (G;;) has independent standard Gaussian entries which are also
independent of the random errors {¢;; }, and 1o > 0 is an absolute constant.

Proof of Lemma S3. Since the desired result obviously holds if B = 0, we assume B # 0 in the rest of this proof. By
definition, [|C/[},,. = sup|x|,...<1 (X, C) forany C' € R™ *"2. Therefore our goal is to bound a scaled sub-Gaussian
complexity via the corresponding scaled Gaussian complexity. We now extend the proof of Theorem 8 of Banerjee



Matrix Completion with Model-free Weighting

et al. (2014) to allow an additional entrywise scaling parameter B. We start with considering the sub-Gaussian process
Yx = (X, Boe) and the Gaussian process Zx = (X, BoG), both indexed by X € Byax(1). Forany X1, Xo € Buax(1),
by the general Hoeffding’s inequality given in Theorem 2.6.3 of Vershynin (2018), we have

Ct?
Pr(|Yx, —Yx,| >t)<2-exp| — , t>0, (S3)
' ’ 72|Bo (X1 - Xo)| 7

where C > 0 is an absolute constant. One can show that E(Zx, — Zx,)? = || B o (X1 — X2)||%. According to Theorem
2.1.5 of Talagrand (2006), we can apply the generic chaining argument for upper bounds on the empirical processes v/cYx /7
and Zx . This yields

EE sSup |YX1 - YX2| = anw(Bmax(l))v (S4)

X1,X2EBmax(1)

<mtEg sup  Zx,
X1€Bmax(1)

where 7 is an absolute constant. Further, we can see that if X € Bp,ax(1), then —X € Byax(1). Then we have

sup Yx, — Yx,| = sup (Yx, -Yx,)= sup Yx, + sup (—Yx,)
X1,X2EBmax(1) X1,X2EBmax(1) X1EBmax(1) X2EBmax(1)
= sup Yx, + sup ((—X3,Boe€))=2 sup Yx,.
X1 E€Bmax(1) —X2EBmax (1) X1 EBmax(1)

By taking the expectation on € on both side, we have

E. sup |Yx, — Yx,|| = 2E. sup Yx, (S5)
Xl 7X2661nax(1) Xl EBmax(l)
As aresult, with ng = 11 /2, we have
E. sup (Boe X)| =E. sup  Yx | <notw(Bmax(1))- (S6)
X €Bmax(1) X EBmax(1)
That completes the proof. O

Lemma S4. Suppose Assumption 2 holds. Let B = (B;;) € R"*"2 be a fixed matrix such that B;; > 0 for each i, j.
There exists an absolute constant Co > 0 such that, with probability at least 1 — 2 exp{—(n1 + n2)},

1B © €l[fyax < Co7[|B]pv/n1 + no.
Proof of Lemma S4. Define the set
Buax(8) = {B o X : X € Byax(B)} C R™ "2,

Note that we have

Ec sup (BoG, X)] =E¢g l sup  (G,BoX)| = w(Bumax(1)).
X €Bmax(1) X €Bmax(1)

Write F = {B o X : X € F}. By the the relationship (S2), we have
F C Buax(1) C{Bo X : X € Kgconv (F)} = Ka{Bo X : X € conv(F)} = Kg conv(F).
Due to the properties of Gaussian width (see, e.g., Appendix A.1 of Banerjee et al., 2014), we have

wW(Bmax(1)) < w(Kg conv(F)) = Kgw(conv(F)) = Kgw(F).

As for any X € F, we have
|BoX|r=|BlF,
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and so (G, B o X) ~ N(0, || B||%). Recall that the | F| = 2121, By Proposition 3.1(ii) of Koltchinskii (2011), we

have _
w(}") < CgHBHF\/TLl + ng.

where ('3 is a absolute constant. By Lemma S3, we conclude that

E. sup (Boe, X)| <ntEg sup (BoG,X)
X €Bmax(1) X €Bumax(1)

= WOTw(BmaX(l)) < KGWOTW(]:)
< C3Kgnot|Bllpvni + na. (S7)

Let p(Z) = sup| x|,...<1(BoZ, X) forany Z € R™*"2. We aim to provide the concentration of ©(€) to its expectation.
For notational simplicity, we will focus on the setting with B;; > 0 for all 7, j; otherwise, one can reduce the support of
( to those entries corresponding to non-zero B;;. Due to the possibly unbounded support of €, we adopt an extension of
McDiarmid’s inequality Kontorovich (2014) with unbounded diameter. For any Z1 = (Z1;5), Z2 = (Z2,,;) € R"*"2,

p(Z1) = p(Z2)] < op [(BoZy,X)—(BoZ X)|
X||max<1

< sup Y ByylXyl|Zii; — Zajl
X [lmax <1757

< sup Y Byl Xyl 21y — Zajl
X eKgconv(F) 4.7

S q(Z17 Z2)7

where ¢(Z,, Zs3) =: Z” 4ij (21,35, Z245) =: Z” KGBij|Z1,:j — Z3,4| is a metric. Therefore ¢ is 1-Lipschitz with
respect to the metric ¢. Let &} ; be an independent copy of ¢;;, and ;; be an independent Rademacher random variable.
We can show that the subgaussian norm of v;;¢;; (&5, e;j) is bounded by C47b;; for some absolute constant Cy > 0. By
Theorem 1 of Kontorovich (2014), we conclude that

t2
Pllte) ~ Epl0)] > 0) < 208 (=g ) 20
F

Combining with (S7), we achieve the desired result.
O

Lemma S5. Suppose Assumptions I and 2 hold. There exists an absolute constant Cy > 0 such that with probability at
least 1 — 2 exp{—(n1 + n2)},

HTOWOG‘ < Cotrv/N1 + No.

max

Proof of Lemma S5. Notice that € is independent of 7", and ‘/7[7 is a function of T'. By Lemma S4, conditioned on T, we
have

HTO‘//‘\/OE SC’QTHTOWHF\/nl—an, (S8)
with conditional probability at least 1 — 2 exp{—(n; + n2)}. Since the probability bound does not depend on T", (S8) holds
with the same probability bound unconditionally. By construction, | T o W || < k, we have the desired result. O

Proof of Theorem 2. Tt follows from the definition of A that for A, € R"*"2 with |Ax || max < 5,

1
nin2

1
nin2

HToﬁ?oWo (ﬁfy)HzF < HToﬁ\/°1/2o(A*fY)H;+u(||A*I|*f IA]l.). (S9)

Since we can rewrite the first term in the left hand side of (S9) as

1 1

nin2 ninz

frowne (3w = e (Ao aea v



Matrix Completion with Model-free Weighting

the inequality (S9) leads to

oW ze (A=A < 2 (ToW /e (A= A) ToW 2o (¥ — ) + (A~ I4].)
=2 (- AT Woe) +ullAdl. - Al

Therefore, due to Theorem 1, Lemma S5 and condition of p, with the property that || A, ||« < \/n1n2|| As|/max, We have

1~ 2 ~ _ ~ 1 . N
— < — — — o(1/2) _ 2
ning HA A* F~ nineg <A A*, (TO w J> ° (A* A)> + ning ||TO w ° (A A*)HF
SSW, A=A+ |2 (A= A, ToWoe) +pu(lAl. — | All.)
~ o~ 2 —~ —~ *
<SW,A-A)+— HA—A* ToWoe‘ + | Al
172 max max
< Cy(B + B) min log"?(n1 + ny) V1 ¥ na n 4C2BTRV/ N1 + o (S10)
= VrrL(ng Ang) " Try/Ming ning
< C’1(ﬁ2) min 1og1/2(n1 +n2) N1+ ng L 4CyBTRA/N1 + No S11)
B VL (ng Ang) T Tp/ning ning ’
with probability at least 1 — exp{—2""(log2)77 >, ;m;;'} — 2exp{—(n1 + n2)} — 1/(n1 + na). O

Proof of Theorem 3. Without loss of generality, we assume that n; > ns. For some constant 0 < v < 1 such that
B =072(c A B)?/(?) is an integer and B < na, define

C, = {A = (Ay) eERM*B A € {098} V1 <i<my,1<j< B},
and consider the associated set of block matrices
A@)={a=(A]...|Ap) ermrm: A},

where 0 denotes the ny X (ng — B|na/B]) zero matrix.

It is easy to see that for any A € A(C;), we have that || A||pax < VB||A| s < 8. Due to Lemma 2.9 in Tsybakov (2009),
there exists a subset A’ C A(C;) containing the zero n; x ny matrix 0 where Card(.A%) > 25™1/8 1 1 and for any two
distinct elements A; and A, of A°,

9 B [ 5 9 |N2 ningy? B2
— > - = > ! 7
|A1 — Aol > 3 {7 B {BJ} 16 . (S12)

For any A € A" from the noisy observed model in section 2.2, the probability distribution P4 =
II; ;[(2702) ~1/2 exp{—(Vi; — A;j)?/(20%)}]T55. Take Py = II; ;[(270%)~1/2 exp{—Y;3/(20*)}]". Thus the Kullback-
Leibler divergence K (Pg, P4 )= Ep, (log(Po/Pa)) between Py and P 4 satisfies

BZninamy,

Azzj — 24,V HH01/2 © AH? < 7252 Z?:H Z;’il Tij
202 ’

K (Po,Pa) =Ep, | Y_ T =

42
<C
” 202 202 - 202 =5

for some positive constant C;. The last inequality is due to the condition that nynemy, =< > 1, Z;Lil Tij-

From above we deduce the condition

1

Card(A% —1 > K (Po,Pa) < Alog (Card(A%) — 1), (S13)

AcA°
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The above condition is valid when we take

B2ngmy,

for some constant Cg that depends on . Also, one can verify that under the conditions 77 " = O(8%(n1 Anz)/(o A B)?)

and 7}/% = O((ny Ang)/202/[B(c A B))], 7 < 1 and B < ny. Then we subsitute 42 in the bound of $12 and we achieve
the final bound as the one showed in the Theorem.

Together with the similar argument when ne > nj, the result now follows by application of Theorem 2.5 in Tsybakov
(2009). This completes the proof. O

Lemma S6. Suppose Assumption 2 hold. For a fixed matrix B = (B;j) € R™ "2 where B;; > 0, there exists an absolute
constant Cs > 0 such that, with probability at least 1 — 2 exp(—(n1 + n2)),

1B oell < Coll Blloor (v + via).
Proof. By the definition of || - ||,,,
max [| Bijeij s, < | BllooT

Apply Theorem S2 in Section D, and take t = \/n; + /12 in Theorem S2. Then conclusion follows.

C. Non-asymptotic Error Bound under Low-rank Settings and Asymptotically Homogeneous
Missingness
Theorem S1. Suppose Assumption 2 hold and 7w, =<my=<m. Assume || Ay ||max<S and A, has rank R. If k' = k — || T||F is

bounded and (= \/{7'27'(' log (n1+n2) H{(n1Ang) ning} —1, then there exists a constant Cg > 0, such that with probability
at least 1—3(n1+no) 1,

CeR(T*V[|AL|1%,) log(n1 + na)
[m(n1Ang)] 1

d*(A,A,) <

Proof outline. From the basic inequality, we have

(A— A, ToWoe) + | Al — p| Al

1 — - 2
IT o W20 (A~ A3 <

nin2 nin2

Note that weights are restricted to be greater than 1. We then have

1 N 1 —~ N 2 — N
I To(A—A)E< —|[ToWYV260(A-A)|Z< " ||A—A,|.||ToW Al = AL,
nanH o ( )IIF_anH o o ( )IIF_nm2|| [T 0 W o e + p(]|Axlls — [|All+)

Due to the constraint of ', | W || is bounded, we can use Lemma S7 to derive the bound of | T o W o €|. The remaining
argument is rather standard and the same as the proof for No-weighted estimators with nuclear norm regularization (Klopp,
2014). O

Lemma S7. Suppose assumptions in Corollary S1 hold. Then there exists a constant C7 > 0 such that, with probability at
least 1 — (ny + n2),

1

_ 21
||ToWoe§C7\/T 7log (ny + no)

(n1 AN 77,2) ning

ning

Proof. The proof is very similar as the proof in Lemma S1.
We consider applying the Matrix Berinstein inequality for random matrices with bounded sub-exponential norm.

Due to the constraint of «/, there exists a constant Cg such that | W ||o < Cs.
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For (nyno) ~Y|T o Wo el =12 (T”W i€ij)Jij/(ning)]||, where J;; has 1 for (¢, j)—th, but O for all the remaining
entries, let M; ; = (E]Wwe,J)Jw, then (nyny)~||T o Wo el = ||(ning)~t >i; M j||. We can easily verify that
E(M,; ;) = 0. Note that ¢;; are sub-Gaussian random variables and therefore sub-exponential random variables. Then
max;_; iilllwy < max; ;|| Ti; Wi j€ijllp, < Cot, where || - ||, is the sub-exponential norm of a random variable and
Cy is some constant depending on the Cg.

Since E(T;; W” el-j)2 < 00827%'7'2 for some absolute constant ¢, we can show that

E E M MT = E E M M”)
nin2 nin2
ni

< max { max g CoTijT ,max E cyrlj
nins 1<7,<n1 <j<n2

037'2
—_ Tr?

ny /\’ng

for some constant cs.

By Proposition 11 in Klopp (2014), there exsits a constant C'7, such that with probability at least 1 — 1/(n; + ns),

2 /
HTOWOGH <C7max{\/T wlog (ny + n2) Tlog(l/f)(nlw}_

ning (Tbl A\ 712) ning ning

Opverall, the conclusion follows. O

D. Useful Results

Theorem S2 (Theorem 4.4.5 of Vershynin (2018)). Let A be an ny X ny random matrix whose entries A;; are independent,
mean zero, sub-gaussian random variables. Then, for any t > 0 we have

| Al < CK (/1 + y/ng + 1)

with probability at least 1 — 2 exp(—t?). Here K = max;; || A;j||y, and C is an absolute constant.

Proof. The proof can be found on Page 91 in Vershynin (2018). O
Theorem S3 (Proposition 1 of Koltchinskii et al. (2011)). Let Zy, ..., Zn be independent random matrices with dimensions
n1 X ng that satisfy EZ; = 0 and || Z;|| < U almost surely for some constant U and all i = 1,. .. ,n. Define

1/2 1/2

N
1
07 = max HN Z: E(Z,zZ])

1 N
N Y E(Z]z))
=1

Then, for all t > 0, with probability at least 1 — exp(—t) we have

Zi+ 4 Z tr1 t+1
H 1+N+ NH§2max{az\/ +Og(]7\’;1+n2)7U +0g(]7\;1+n2)}7

Proof. The proof can be found on Page 2325 in Koltchinskii et al. (2011). O
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E. Algorithm
E.1. Convex Algorithm for Solving (7)

Follow Fang et al. (2018) and Cai & Zhou (2016), we consider an equivalent form objective function in (7) below.

1 —~
min 1T o W2 o (Y = Z1a) |3 + u(I, X)),

X,Z ning
Subjectto X =0, X =Z, Z € Pg

where Z, X € R(mtn2)x(m+n2) G g the class of all symmetric matrices in R(1+72)x(n1+n2) Psg = {C € S :
diag(C) > 0,||C||ec < 8}, I is an identity matrix and

7 — |: le Z12

le E Rnlxnl Z22 E anxnz
ZIQ Z22 :| b bl

The derivation of above representation mainly comes from two facts: 1. The nuclear norm of Z5 is the the smallest possible
sum of elements on the diagonal of Z given Z > 0 (Fazel et al., 2001); 2. The max norm of matrix Z is the smallest
possible maximum element on the diagonal of Z given Z = 0 (Srebro et al., 2005).

The augmented Lagrangian function can be written as

1
nin2
Subject X=0, Z € Pg,

LX.ZV) = —|To WD o (Y = Ziy)|f} + L. X) + (V. X - Z) + £| X - 2|},

where V' € R(71+72)%(n14n2) is the dual variable and p > 0 is a hyper-parameter.

Then the alternating direction method of multipliers (ADMM) algorithm solves this optimization problem by minimizing
the augmented Lagrangian with respect to different variables alternatingly. More explicitly, at the (¢ 4 1)-th iteration, the
following updates are implemented:

XM =1{Z" +p (V' + ul)},
Z®) — arg min L

ZePg NiN2
Vit = v rp( X - ZtH),

Xt-‘,—l 4 p—lvt}7

ITo WO o (Y = Zi2) [} + 5112 = X' = p7 VI [F = Bry g W

where II(+) is the projection to the space {C' € S : C = 0}, and is defined in Definition S1. Detailed derivation

can be found in Fang et al. (2018) and Cai & Zhou (2016).

T.Y,W,8

Definition S1. We use C(i, j) to represent the element on the i-th row and j-th column of a matrix C. For the matrix
C e Rmtn2)x(mit+n2) s can be partitioned into

. Cll Cl? nyXni N2 XNa
C|:Cir2 022:|,CH€R ,Co € R

Then

T,Y,va,ﬂ(C)U

Py 5C1 @
o . C) — T)Y W3 )
r.v,w,5(C) [ 7v,w,5(C)2

7.y w 3Ol
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where
QT,Y,W,B(C)ll(i’J) = mln{67max{cll(l7.])7 ﬂ}} if 4 7& Js
®T,Y7W,5<C)ll(i7j> = mll’l{ﬁ, max{cll(imj)? 0}} lfl =1
®T,Y,V/[7,B<C)22(i7j> - mll’l{ﬁ7 maX{C2 (L])? _ﬂ}}7 if ¢ 7& I
¢T,Y,V/V,B(C)22(i7‘7) = mll’l{ﬁ7 max{022(27j)7 O}} if i = j7

1y 7.5(C)12(i, j) = min {5, max { Y(”)v‘i{;EZj; J+r Zc(i,j) , _5}} if T(i,j) =1,

®ry 5.5(C12(i,§) = min{B, max{Cha(i, j), =B} } if i #j i T(i,j) =0.

We summarize the algorithm in Algorithm 1. Some piratical implementations to adaptively tune p and accelerate the
computation can be found in Section 3.3 and 3.4 in Fang et al. (2018).

Algorithm 1 ADMM algorithm

Input: Y, T, B, u, W, p=0.1, 7 = 1.618, K
Initialize X°, Z°, VO R
fort =1to K —1do

X T Z + p~ 1 (VE+ ud)}

Z(t+1) — (I)T,Y,W,B{Xt—i_l + p—lvt}

Vitl « V4 rp( XL — ZHL)

Stop if objective value changes less than tolerance
end for

E.2. Nonconvex Algorithm for Solving (7)

The nonconvex algorithm for max-norm regularization developed in Lee et al. (2010) base on the equivalent definition of
max-norm via matrix factorizations:

||C||max =

where || - ||2,00 denotes the maximum /o row norm of a matrix.

:C=UVT},
To incorporate the nuclear norm regularization, we also notice an equivalent definition of the nuclear norm:
't
ICl = int S {IUIF + V|7 : C=UVT}.

Then we have the following relaxation of the objective function in (7). Take

f(LaR) -

ITo W2 o (v — LRY)|3 + L(ILI3 + |IRI3),
ning 2

and we obtain

min f(L, R),
|

This optimization form is exactly the one in Lee et al. (2010) except that we add another nuclear penalty in the objective
function f.

Subject to max {||L

Like what Lee et al. (2010) considered, the projected gradient descent method can be applied to iteratively solve this problem.
We define the project Pp as the Euclidean projection onto the set {M : || M||2,oc < B}. This projection can be computed

by re-scaling the rows of current input matrix whose norms exceed B so their norms equal B. Rows with norms less than B
are unchanged by the projection. We summarize the algorithm in Algorithm 2.
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Algorithm 2 Projected gradient descent algorithm

Input: Y, T, 3, u, ﬁ\/, step size 7, K

Initialize LY, RO,

fort=1to K — 1do
LHH*H%LfT%>

R+ Py (R-72%)

Stop if objective value changes less than tolerance

end for

F. Additional Simulation Results

The simulation results for SNR = 1 and SNR = 10 are shown in Table S1 and S2 respectively.

Table S1. Similar to Table 1, but for SNR = 1.

Setting 1
Method RMSE TE T
Proposed 1.901(0.004) 1.918(0.004)  13.69(0.097)
SoftImpute | 1.944(0.004) 1.961(0.004) 19.55(0.092
Cz 2.052(0.004)  2.044(0.004) 27.695(0.128)
FLT 1.927(0.004) 1.946(0.004) 15.265(0.105)
NW 2.012(0.004)  2.01(0.004)  25.61(0.069)
KLT 2.439(0.005) 2.492(0.005) 10.175(0.063)
Setting 2
Method RMSE TE T
Proposed 1.716(0.004) 1.669(0.004)  14.73(0.113)
SoftImpute | 1.721(0.004) 1.685(0.004) 16.335(0.107)
Cz 1.86(0.004)  1.799(0.004)  25.965(0.115)
FLT 1.711(0.004)  1.674(0.004) 14.565(0.102)
NW 1.805(0.005)  1.747(0.005)  37.82(0.422)
KLT 2.16(0.005)  2.093(0.005)  2.065(0.110)
Setting 3
Method RMSE TE F
Proposed 2.412(0.006) 2.586(0.007) 12.495(0.098)
SoftImpute | 2.923(0.007) 3.113(0.007)  29.15(0.112)
CZ 2.641(0.006) 2.812(0.006) 28.695(0.109)
FLT 2.878(0.007)  3.097(0.007)  20.105(0.105)
NW 2.668(0.006) 2.779(0.007)  33.115(0.066)
KLT 3.667(0.007)  3.969(0.007)  9.765(0.067)

G. Code

The code for implementing the proposed method can be found in https://github.com/Jjiayiwangl017/

MC-weighting—-code.
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