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Abstract
In this paper, we propose a novel method for ma-
trix completion under general non-uniform miss-
ing structures. By controlling an upper bound
of a novel balancing error, we construct weights
that can actively adjust for the non-uniformity in
the empirical risk without explicitly modeling the
observation probabilities, and can be computed ef-
ficiently via convex optimization. The recovered
matrix based on the proposed weighted empirical
risk enjoys appealing theoretical guarantees. In
particular, the proposed method achieves stronger
guarantee than existing work in terms of the scal-
ing with respect to the observation probabilities,
under asymptotically heterogeneous missing set-
tings (where entry-wise observation probabilities
can be of different orders). These settings can be
regarded as a better theoretical model of missing
patterns with highly varying probabilities. We
also provide a new minimax lower bound under
a class of heterogeneous settings. Numerical ex-
periments are also provided to demonstrate the
effectiveness of the proposed method.

1. Introduction
Matrix completion is a modern missing data problem where
the object of interest is a high-dimensional and often low-
rank matrix. In its simplest form, a partial (noisy) obser-
vation of the target matrix is collected, and the goal is to
impute the missing entries and sometimes also to de-noise
the observed ones. There are various related applications
in, e.g., bioinformatics (Chi et al., 2013), causal inference
(Athey et al., 2018; Kallus et al., 2018), collaborative filter-
ing (Rennie & Srebro, 2005), computer vision (Weinberger
& Saul, 2006), positioning (Montanari & Oh, 2010), survey
imputation (Davenport et al., 2014; Zhang et al., 2020; Sen-
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gupta et al., 2021) and quantum state tomography (Wang,
2013; Cai et al., 2016). Matrix completion has been pop-
ularized by the famous Netflix prize problem (Bennett &
Lanning, 2007), in which a large matrix of movie ratings is
partially observed. Each row of this matrix consists of rat-
ings from a particular customer while each column records
the ratings to a particular movie.

Matrix completion has attracted significant interest from the
machine learning and statistics communities (e.g., Koltchin-
skii et al., 2011; Hernández-Lobato et al., 2014; Klopp,
2014; Lafond et al., 2014; Hastie et al., 2015; Klopp et al.,
2015; Bhaskar, 2016; Cai & Zhou, 2016; Kang et al., 2016;
Zhu et al., 2016; Bi et al., 2017; Fithian & Mazumder, 2018;
Dai et al., 2019; Robin et al., 2020; Chen et al., 2020). Al-
though many statistical and computational breakthroughs
(e.g., Candès & Recht, 2009; Koltchinskii et al., 2011; Recht,
2011) have been made in this area in the last decade, most
work (with theoretical guarantees) is developed under a
uniform missing structure where every entry is assumed to
be observed with the same probability. However, uniform
missingness is unrealistic in many applications.

The work under non-uniform missingness is relatively
sparse, and can be roughly divided into two major classes.
The first class (e.g., Srebro et al., 2005; Foygel & Srebro,
2011; Klopp, 2014; Cai & Zhou, 2016) focuses on a form
of robustness result, and shows that without actively ad-
justing for the non-uniform missing structure (e.g., simply
applying a uniform empirical risk function R̂uni defined be-
low), nuclear-norm and max-norm regularized methods can
still lead to consistent estimations. Since no direct adjust-
ment is imposed, there is no need to model the non-uniform
missing structure. The second class aims to improve the
estimation by modeling the missing structure and actively
adjusting for non-uniformity. Several works (e.g., Srebro &
Salakhutdinov, 2010; Foygel et al., 2011; Negahban & Wain-
wright, 2012; Mao et al., 2019) fall into this class. However,
many of the underlying models can be viewed as special
low-rank (e.g., rank 1) missing structures. For instance, a
common model is the product sampling model (Negahban
& Wainwright, 2012) where row and column are chosen
independently according to possibly non-uniform marginal
distributions, leading to a rank-1 matrix of observation prob-
ability. The specific model choices of non-uniformity re-
strict the applicability and theoretical guarantees of these
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works. One notable exception is Foygel et al. (2011), which
actively adjusts for a product sampling model via a variant
of weighted trace-norm regularization, but still provides
guarantee under general missing structure. Despite these
efforts, the study of non-uniform missing mechanisms is
still far from comprehensive.

In this work, we propose a novel method of balancing
weighting to actively adjust for the non-uniform empirical
risk due to general unbalanced (i.e., non-uniform) sampling,
without explicitly modeling the probabilities of observation.
This is especially attractive when such model is hard to
choose or estimate. We summarize our major contributions
as follows.

First, we propose a novel balancing idea to adjust for the
non-uniformity in matrix completion problems. Unlike
many existing works, this idea does not require specific
modeling of the observation probabilities. Thanks to the
proposed relaxation of the balancing error (Lemma 1), the
balancing weights can then be obtained via a constrained
spectral norm minimization, which is a convex optimization
problem.

Second, we provide theoretical guarantees on the balancing
performance of the proposed weights, as well as the matrix
recovery via the corresponding weighted empirical risk esti-
mator. We note that the estimation nature of the balancing
weights introduces non-trivial dependence in the weighted
empirical risk, as opposed to the typical unweighted empiri-
cal risk (often assumed to be a sum of independent quanti-
ties). This leads to a non-standard analysis of the proposed
matrix estimator.

Third, we investigate a new type of asymptotic regime
— asymptotically heterogeneous missing structures. This
regime allows observation probabilities to be of different
orders, a more reasonable asymptotic model for the scenar-
ios with highly varying probabilities among entries. Under
asymptotically heterogeneous settings, we show that our
estimator achieves a significantly better error upper bound
than existing upper bounds in terms of the scaling with
respect to the observation probabilities. Such scaling is
shown to be optimal via a new minimax result based on a
class of asymptotically heterogeneous settings. Note that
we focus on the challenging uniform error d2 as opposed
to the weighted (non-uniform) error d̃2 (see Section 5), so
as to ensure entries with high missing rate would be given
non-neglible emphasis in our error measure.

2. Background
2.1. Notation

Throughout the paper, we use several matrix norms: nuclear
norm ‖ · ‖∗, Frobenius norm ‖ · ‖F , spectral norm ‖ · ‖

entry-wise maximum norm ‖ · ‖∞ and max norm ‖ · ‖max.
Specifically, the entry-wise maximum norm of a matrix
B = (Bij) is defined as ‖B‖∞ = maxi,j |Bij |, while the
max norm is defined as

‖B‖max = inf{‖U‖2,∞‖V ‖2,∞ : B = UV ᵀ},

where ‖ · ‖2,∞ denotes the maximum `2-row-norm of a
matrix. See, e.g., Srebro & Shraibman (2005) for the
properties of max norm. The Frobenius inner product and
Hadamard product between two matricesB1 = (B1,ij) and
B2 = (B2,ij) of the same dimensions are represented by
〈B1,B2〉 =

∑
i,j B1,ijB2,ij and B1 ◦B2 = (B1,ijB2,ij)

respectively. For any a ∈ R and any matrixB = (Bij), we
writeB◦(a) = (Baij).

We also adopt the following asymptotic notations. Let
(bn)n≥1 and (cn)n≥1 be two sequences of nonnegative num-
bers. We write bn = O(cn) if bn ≤ Kcn for some constant
K > 0; and bn � cn if bn = O(cn) and cn = O(bn). In
addition, we use polylog(n) to represent a polylogarithmic
function of n, i.e., a polynomial in log n. SoO(polylog(n))
represents a polylogarithmic order in n.

2.2. Setup

We aim to recover an unknown target matrix A? =
(A?,ij)

n1,n2

i,j=1 ∈ Rn1×n2 from partial observation of its noisy
realization Y = (Yij)

n1,n2

i,j=1 ∈ Rn1×n2 . Denote the obser-
vation indicator matrix T = (Tij)

n1,n2

i,j=1 ∈ Rn1×n2 , where
Tij = 1 if Yij is observed and Tij = 0 otherwise. We
consider an additive noise model

Yij = A?,ij + εij , i = 1, . . . , n1; j = 1, . . . , n2,

where {εij} are independent errors with zero mean, and
are independent of {Tij}. Also, {Tij} are independent
Bernoulli random variables with πij = Pr(Tij = 1). We
write Π = (πij)

n1,n2

i,j=1 .

2.3. Uniformity Versus Non-uniformity

Due to complexity of data, it is often undesirable to posit an
additional distributional model for {εij} (such as normality)
in practice. To recoverA?, an empirical risk minimization
framework is commonly adopted with the risk function:

R (A) =
1

n1n2
E
(
‖Y −A‖2F

)
, A ∈ Rn1×n2 .

Under uniform sampling (i.e., πij ≡ π), this motivates the
use of the popular empirical risk

R̂uni(A) =
1

n1n2
‖T ◦ (Y −A)‖2F , A ∈ Rn1×n2 ,

which is unbiased for πR(A) (e.g., Candès & Recht, 2009;
Candès & Plan, 2010; Koltchinskii et al., 2011; Klopp,
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2014). To minimize R̂uni, we can ignore the constant mul-
tiplier π. In such settings, a popular form of estimator is
arg minA∈An1,n2

R̂uni(A), where examples of the hypoth-
esis classAn1,n2

include a set of matrices with rank at most
r (i.e., {A : rank(A) ≤ r}), and a nuclear norm ball of
radius ν (i.e., {A : ‖A‖∗ ≤ ν}). In the latter case, one can
also adopt an equivalent minimization

arg min
A

{R̂uni(A) + λ‖A‖∗},

obtained by the method of Lagrange multipliers.

However, uniform sampling is a strong assumption and of-
ten not satisfied (e.g., Srebro & Salakhutdinov, 2010; Foygel
et al., 2011; Hernández-Lobato et al., 2014). In the empiri-
cal risk minimization framework, it is natural to adjust for
such non-uniformity since R̂uni is no longer unbiased for
R. Interestingly, such biasedness does not lead to an in-
correct estimator in an asymptotic sense (Klopp, 2014), a
form of robustness result (the first category of works under
non-uniformity mentioned in Section 1). This is because
A? still minimizes E{R̂uni(A)} even when πij’s are hetero-
geneous, and, to achieve consistency, the theory requires
that An1,n2

grows asymptotically so that some appropri-
ate “distance” betweenA? and the set An1,n2 converges to
zero. For finite sample, one often encounters some forms
of misspecification (A? is not close to An1,n2). In such
settings, the estimator based on R̂uni(A) is inclined to favor
entries with a higher chance of observation, which is often
not desirable. For movie recommendation, it is generally
not a good idea to neglect those people who rate less fre-
quently, as they might be the customers who do not watch
as frequently, and successful movie recommendation would
help retain these customers from discontinuing movie sub-
scription services. This is highly related to misspecification
in low-dimensional models where misspecification requires
weighting adjustments (Wooldridge, 2007). However, ma-
trix completion problems involve a much more challenging
high-dimensional setup with possibly diminishing observa-
tion probabilities (e.g., Candès & Recht, 2009; Koltchinskii,
2011). That is, πL := mini,j πij → 0 as n1, n2 → ∞. In
fact, the diminishing setting is of great interest and plays a
central role in most analyses, since it mimics high missing
situations such as in the Netflix prize problem (< 1% of
observed ratings).

2.4. Extremely Varying Probabilities: Heterogeneity
Meets Asymptotics

For non-uniform settings, one expects heterogeneity among
the entries of Π. We argue that there exist different levels
of heterogeneity, and only the “simplest” level has been
well-studied. Define

πU := max
i,j

πij and πL := min
i,j

πij .

Existing work (e.g., Negahban & Wainwright, 2012; Klopp,
2014; Lafond et al., 2014; Cai & Zhou, 2016) is based
on an assumption that πU � πL, which enforces that all
observation probabilities are of the same order. We call
this asymptotically homogeneous missing structure. When
the observation probabilities vary highly among different
entries, this asymptotic framework may not reflect the em-
pirical world. Highly varying probabilities are not rare. As
demonstrated in Section 2.3 of Mao et al. (2020), the es-
timated ratio of πU to πL can be high (≥ 20000) in the
Yahoo! Webscope dataset, under low-rank models of Π
(e.g., Negahban & Wainwright, 2012). In our theoretical
analysis (Section 5), we also look into the asymptotically
heterogeneous settings where πU and πL are of different
orders.

3. Empirical Risk Balancing
3.1. Propensity Approaches and their Drawbacks

To deal with non-uniformity, a natural idea is to utilize a
weighted empirical risk:

R̂W (A) =
1

n1n2
‖T ◦W ◦(1/2) ◦ (Y −A)‖2F , (1)

where W = (Wij)
n1,n2

i,j=1 is a matrix composed of weights
such that Wij ≥ 1 for all i, j. A natural choice of W is
(π−1ij )n1,n2

i,j=1 , which leads to an unbiased risk estimator for
R(A), and such method is known as inverse probability
weighting (IPW) in the missing data literature. As {πij}
are unknown in general, most methods with IPW insert the
estimated probabilities based on certain models. These ideas
have been studied in, e.g., Schnabel et al. (2016) under the
form of a nuclear-norm regularized estimator:

arg min
A

{R̂W (A) + λ‖A‖∗}, (2)

where λ > 0 is a tuning parameter. Despite its concep-
tual simplicity, it is well-known in the statistical litera-
ture that IPW estimators could produce unstable results
due to extreme weights (Rubin, 2001; Kang & Schafer,
2007). More problematically for matrix completion, the
estimation quality of a high-dimensional probability matrix
Π = (πij)

n1,n2

i,j=1 could also be worsened significantly by
diminishing probabilities of observation (as n1, n2 → ∞)
(Davenport et al., 2014). To solve this problem, Mao et al.
(2020) imposed a constraint (effectively an upper bound) on
the estimated inverse probabilities, where the constraint has
to be aggressively chosen such that some true inverse proba-
bilities do not necessarily satisfy in finite sample. However,
there are still two general issues in this line of research.
First, the estimation of Π is required. One could come up
with a variety of ways to model Π. But it is not obvious
how to choose a good model for Π. Second, the constraint
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level is tricky to select, and difficult to analyze theoretically.
Indeed, the analysis of the effect of the constriant to matrix
recovery forms the bulk of the analysis in Mao et al. (2020).

The goal of this work is to propose a method that does
not require specific modeling and estimation of Π but still
actively adjust for the non-uniformity in the sampling. This
method aims to directly find a stable weight matrixW that
adjusts for non-uniformity, without enforcing W to be IPW
derived from a specific model.

3.2. Balancing Weights

When εij = 0 for all i, j (only for motivation purpose, not
required for the proposed techniques), we aim to chooseW
such that R̂W (left hand side) approximates the desirable
“fully-observed” one (right hand side):

1

n1n2
‖T ◦W ◦(1/2) ◦ (A? −A)‖2F ≈

1

n1n2
‖A? −A‖2F ,

(3)
for a set ofA (a hypothesis class ofA? which grows with
n1, n2) to be specified below. Indeed, we only need to
determine those Wij such that Tij = 1, since the values
of the remaining Wij play no role in (3). Intuitively, the
weightsW are introduced to maintain balance between the
left and right hand sides of (3). Therefore, we may work
with R̂W as if we were using the uniform empirical risk
R̂uni. The condition (3) can be written as

0 ≈ 1

n1n2
|〈(T ◦W − J) ◦∆,∆〉| , (4)

where ∆ = A−A? and J ∈ Rn1×n2 is a matrix of ones.
We call the right hand side the balancing error of ∆ with
respect toW , denoted by S(W ,∆). Naturally, we want to
find weightsW that minimize the uniform balancing error

F (W ) := sup
∆∈Dn1,n2

S(W ,∆),

for a (standardized) set Dn1,n2
, induced by the hypothesis

class An1,n2
ofA?.

A typical assumption is that A? is low-rank or approxi-
mately low-rank. Various classes are shown to be able to
achieve such modeling. For instance, An1,n2

can be chosen
as a max-norm ball {A : ‖A‖max ≤ β} (e.g., Srebro et al.,
2005; Foygel & Srebro, 2011; Cai & Zhou, 2013; 2016;
Fang et al., 2018), and the induced choice of Dn1,n2 would
be {∆ : ‖∆‖max ≤ 2β}. However, the uniform balancing
error does not have a closed form and so the computation
of the weights would be significantly more difficult and
expensive. Similar difficulty exists for nuclear-norm balls.

To solve this problem, we have developed the following
novel lemma which allows us to focus on a relaxed version
of balancing error that enjoys strong theoretical guarantees
(see Section 5).

Lemma 1. For any matricesB,C ∈ Rn1×n2 , we have

|〈C◦B,B〉| ≤ ‖C‖‖B‖max‖B‖∗ ≤
√
n1n2‖C‖‖B‖2max.

The proof of this lemma can be found in Section A of the
supplemental document. The inequalities in Lemma 1 are
tight in general: if C=aJ andB=bJ where a, b ∈ R and
J is the matrix whose entries are all 1, the two equalities
would hold simultaneously.

By Lemma 1, S(W ,∆) ≤ √n1n2‖T ◦W − J‖‖∆‖2max

for any ∆ ∈ Rn1×n2 , where the right hand side can be
regarded as the relaxed balancing error. If we focus on the
max-norm ball (for An1,n2

and hence Dn1,n2
) as discussed

before, we are only required to control the spectral norm of
‖T ◦W −J‖, which is a convex function ofW . Therefore,
we propose the following novel weights:

Ŵ = arg min
W

‖T ◦W − J‖ (5)

subject to ‖T ◦W ‖F ≤ κ and Wij ≥ 1,

where the optimization is taken only over Wij such that
Tij = 1. Here κ ≥

∑
i,j Tij is a tuning parameter.

The weights {Wij} are restricted to be greater than or equal
to 1, as their counterparts, inverse probabilities, satisfy
π−1ij ≥ 1. The term ‖T ◦W ‖F regularizes W and is
particularly important when εij’s are not zero.

Let h(κ) = ‖T ◦ Ŵ − J‖ where Ŵ is defined by (5)
with the tuning parameter κ. It is proportional to the re-
laxed balancing error with respect to Ŵ . As κ increases,
a weaker constraint is imposed on W . Therefore h(κ) is
non-increasing as κ increases. It can be shown that h(κ)
stays constant for all large enough κ, i.e., h achieves its
smallest value. The percentage of (relaxed) balancing with
respect to a specific κ is defined as [M − h(κ)]/(M −m)
where M := maxκ h(κ) and m = minκ h(κ). One way
to tune κ is to choose κ that achieves certain pre-specified
percentage of balancing. We can also select κ from multiple
values of κ with respect to certain balancing percentages,
via a validation set. In Sections 6 and 7, we compare κ with
respect to balancing percentages 100%, 75%, and 50%, and
select the one with the smallest validation error.

3.3. Computation

The dual Lagrangian form of the constrained problem (5) is

min
Wij≥1

{
‖T ◦W − J‖+ κ′ ‖T ◦W ‖2F

}
, (6)

where κ′ is the dual parameter. DenoteX = T ◦W − J ,
we can obtain the analytic form of the subgradient of the
largest singular value by ∂‖X‖ = uᵀ

1(∂X)v1 where u1

and v1 are the corresponding left and right singular vectors
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with respect to the largest singular value of matrix X . Thus
we have

∂‖X‖
∂Wij

=
∂‖X‖
∂X

∂X

∂Wij
= u1v

ᵀ
1Tij ,

and ∂‖T ◦W ‖2F /∂Wij = 2TijWij . This allows us to
efficiently adopt typical algorithms for smooth optimization
with box-constraints such as “L-BFGS-B” algorithm.

4. Estimation ofA?

Given the weight estimator Ŵ defined by (5), we propose
the following hybrid estimator that utilizes the advantages
of both max-norm and nuclear-norm regularizations:

Â = argmin
‖A‖max≤β

{
R̂

Ŵ
(A) + µ‖A‖∗

}
, (7)

where ‖ · ‖∗ denotes the nuclear norm, and β > 0, µ ≥ 0
are tunning parameters. As explained in Section 3.2, the
balancing weights Ŵ aims to make R̂

Ŵ
behave like the

uniform empirical risk R̂uni over a max-norm ball. Al-
though not entirely necessary, the additional nuclear-norm
penalty can sometimes produce tighter relaxation as shown
in Lemma 1. As discussed in Fang et al. (2018), the addi-
tional nuclear norm bound shows its advantages under the
uniform sampling scheme when the target matrix is exactly
low-rank. We also find that using the hybrid of max-norm
and nuclear-norm regularizations improve the estimation
performance. If one enforces all the elements of Ŵ to be
1 (uniform weighting), then the estimator (7) degenerates
to the estimator defined in Fang et al. (2018). The major
novelty of our work is the stable weights.

We extend the algorithm proposed in Fang et al. (2018) to
handle the weighted empirical risk function, so as to solve
(7). Corresponding details can be found in Section E.1 of
the supplemental document.

5. Theoretical Properties
We provide a non-asymptotic analysis of the proposed es-
timator (7). One major challenge of our analysis is the
estimation nature of the weights. As the same set of data
is used to obtain the weights, the weighted empirical risk
R̂

Ŵ
(A) possesses complicated dependence structure, as

opposed to the uniform empirical risk R̂uni(A) (which is
assumed to be a sum of independent variables), even for a
fixedA. To study the convergence, we carefully decompose
the errors into different components. We utilize the prop-
erties of true weights to control the balancing error term.
Besides, we develop a novel lemma (Lemma S4) to study
the concentration of the dual max-norm of the noise matrix
with entry-wise multiplicative perturbation.

The following two assumptions will be used in our theo-
retical analysis. Recall that πU = maxi,j πij and πL =
mini,j πij .

Assumption 1. The observation indicators {Tij} are inde-
pendent Bernoulli random variables with πij = Pr(Tij =
1). The minimum observation probability πL is positive, but
it can depend on n1, n2. In particular, both πU and πL are
allowed to diminish to zero when n1, n2 →∞.

Assumption 2. The random errors {εij} are independent
and centered sub-Gaussian random variables such that
E(εij) = 0 and maxi,j ‖εij‖ψ2

≤ τ where ‖εij‖ψ2
:=

inf{t > 0 : E[exp(ε2ij/t
2)] ≤ 2} is the sub-Gaussian norm

of εij . Also, {εij} are independent of {Tij}.

We start with an essential result that the estimated weights
Ŵ possess the power to balance the non-uniform empirical
risk. More specifically, in the following theorem, we derive
a non-asymptotic upper bound of the uniform balancing
error evaluated at Ŵ , where the balancing error can be
written as

S(W ,∆) =
1

n1n2

∣∣∣‖T ◦W ◦(1/2) ◦∆‖2F − ‖∆‖2F
∣∣∣ .

Theorem 1. Suppose Assumption 1 holds. Take κ ≥
(2
∑
i,j π

−1
ij )1/2. There exists an absolute constant C1 > 0

such that for any β′ > 0,

sup
‖∆‖max≤β′

S(Ŵ ,∆)

≤ C1
β′2√

πL(n1 ∧ n2)
min

{
[log(n1 + n2)]

1/2, π
−1/2
L

}
,

with probability at least 1 −
exp{−2−1(log 2)π2

L

∑
i,j π

−1
ij } − 1/(n1 + n2).

If ‖A?‖max ≤ β, it is natural to take β′ = 2β, since
‖∆‖max = ‖A − A?‖max ≤ 2β for any A such that
‖A‖max ≤ β. Therefore, we can take β′ = 2β in The-
orem 1 to achieve uniform control over the balancing error
associated with the estimation (7).

With the above balancing guarantee, we are now in a good
position to study Â. Our guarantee for Â is in terms of
the uniform error d2(Â,A?) := (n1n2)

−1‖Â−A?‖2F , in-
stead of the non-uniform error d̃2(Â,A?) = ‖Π◦(1/2) ◦
(Â−A?)‖2F /‖Π◦(1/2)‖2F (e.g., Klopp, 2014; Cai & Zhou,
2016). Note that the non-uniform error d̃2(Â,A?) places
less emphases on entries that are less likely to be observed,
although the guarantee in terms of the non-uniform error
can be stronger and is easier to obtain. In asymptotically
heterogeneous missing settings (i.e., πU and πL are of dif-
ferent orders), entries with probabilities of order smaller
than πU may be ignored within the non-uniform error in
the asymptotic sense. Therefore it is not a good measure
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of performance if the guarantee over these entries are also
important. In the following theorem, we provide a non-
asymptotic error bound of our estimator (7) (based on the
estimated weights).

Theorem 2. Suppose Assumptions 1–2 hold. As-
sume ‖A?‖max ≤ β, and µ = O(min{[log(n1 +

n2)]
1/2, π

−1/2
L }/

√
πL(n1 ∧ n2)). Then there exists an

absolute constant C2 > 0 such that for any κ ≥
(2
∑
i,j π

−1
ij )1/2,

d2
(
Â,A?

)
≤ C2

[
β2√

πL(n1 ∧ n2)

×min
{
[log(n1 + n2)]

1/2, π
−1/2
L

}
+
βτκ
√
n1 + n2

n1n2

]
with probability at least 1 −
exp{−2−1(log 2)π2

L

∑
i,j π

−1
ij } − 2 exp{−(n1 + n2)} −

1/(n1 + n2).

First, we consider the asymptotically homogeneous miss-
ing structures (i.e., πL � πU ) which most existing work
assumes. Under πL � πU , the two errors d2(Â,A?) and
d̃2(Â,A?) are of the same order because

πL
πU

d2(Â,A?) ≤ d̃2(Â,A?) ≤
πU
πL

d2(Â,A?). (8)

Therefore, the upper bound for d̃2(Â,A?) that most existing
work provides can be directly used to derive an upper bound
for d2(Â,A?), which shares the same order. Note that πU
and πL are allowed to be different despite πU � πL. So
certain non-uniform missing structures are still allowed un-
der the setting of asymptotically homogeneous missingness.
This setting has been studied in Negahban & Wainwright
(2012); Klopp (2014); Lafond et al. (2014); Cai & Zhou
(2016). Our bound is directly comparable to the work of
Cai & Zhou (2016) which studies a max-norm constrained
estimation. Their result assumes ‖A?‖∞ ≤ α for some
α, which allows their bound to depend on αβ instead of
β2 as in our bound. The comparision of error bounds be-
tween max-norm-constrained estimation and nuclear-norm-
regularized estimation is given in Section 3.5 of Cai & Zhou
(2016). As for exactly low-rank matrices, we can further
show that our estimator achieves optimal error bound (up
to a logarithmic order). Roughly speaking, if κ is small
(so weights are close to constant), our estimator would be-
have like a standard nuclear-norm regularized estimator, and
hence share the (near-)optimality of such estimator. We pro-
vide the error bound of our estimator under exactly low-rank
setting and asymptotically homogeneous missingness, in
Theorem S1 of the supplemental document.

For non-uniform missing structures, the orders of πU and πL
do not necessarily match. When their orders are different,

we call these missing structures asymptotically heteroge-
neous. We now focus on how the upper bound depends
on πU and πL. As mentioned before, existing results are
scarce. Recently, Mao et al. (2020) (their Section 5.3) pro-
vided an extension of existing upper bounds to possibly
asymptotically heterogeneous settings, with a careful analy-
sis. Corresponding upper bound scales with π−1L π

1/2
U . They

also provided an additional result when one has access to
the true probabilities Π, and show that the upper bound of
the estimator based on the empirical risk defined via the
true probabilities can achieve the scaling π−1/2L , which is
significantly better than π−1L π

1/2
U . However, until now, it

remains unclear whether there exists an estimator with this
scaling of πU and πL, without access to the true probabil-
ities. Interestingly, Theorem 2 provides a positive result,
and shows that the upper bound for the proposed estimator
achieves this scaling π−1/2L under very mild assumption that
πL is diminishing in at least a slow order, more specifically
πL = O(1/ log(n1 + n2)).

Next, we provide a theoretical result indicating that the scal-
ing π−1/2L cannot be improved under the asymptotically het-
erogeneous missing structures. In below, we give a minimax
lower bound based on a class of asymptotically heteroge-
neous settings. To the best of the authors’ knowledge, the
minimax lower bounds under asymptotically heterogeneous
regimes have never been studied.

The heterogeneous class that we consider posits

(n1n2)
−1

n1∑
i=1

n2∑
j=1

πij � πL. (9)

It is clear that (9) does not exclude asymptotically homo-
geneous settings. To demonstrate the heterogeneity, we
provide an example as follows. Suppose there is only a
fixed number of entries with observation probabilities in
constant order, and the observation probabilities of the re-
maining entries are of the same order as πL. Then πU � 1,
and (9) is satisfied. Therefore, for any diminishing πL, this
setting is asymptotically heterogeneous.

Now, we provide the minimax result.

Theorem 3. Let {εij} be i.i.d. Gaussian N (0, σ2) with
σ2 > 0. For any β > 0, assume (9) holds with π−1L =
O(β2(n1 ∧ n2)/(σ ∧ β)2). Then, there exist constants δ ∈
(0, 1) and c > 0 such that

inf
Â

sup
‖A?‖max≤β

Pr

(
d2
(
Â,A?

)
>

c(σ ∧ β)β√
πL (n1 ∧ n2)

)
≥ δ.

In the discussion below, we focus on σ � 1, which, most no-
tably, excludes asymptotically noiseless settings. Theorem
3 shows that the scaling π−1/2L in our upper bound obtained
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in Theorem 2 is essential. Due to the general inequality
(Srebro & Shraibman, 2005):

‖A?‖∞ ≤ ‖A?‖max ≤
√
rank(A?)‖A?‖∞, (10)

β is not expected to grow fast for low-rankA? with bounded
entries. For β = O(polylog(n)), our upper bound matches
with the lower bound in Theorem 3 up to a logarithmic
factor. For general β, our upper bound scales with β2 in-
stead of (σ ∧ β)β despite its matching scaling with respect
to πL. Indeed, a mismatch between the upper bound and
the lower bound also occurs in Cai & Zhou (2016) under
asymptotically homogeneous settings, where their bound is
derived via an additional assumption ‖A?‖∞ ≤ α. Their
upper bound scales with αβ instead of (σ ∧ α)β as in their
minimax lower bound. We leave a more detailed study of
the scaling with respect to β as a future direction.

6. Simulations
In this simulation study, we let the target matrix A? ∈
Rn1×n2 be generated by A? = UV ᵀ, where U ∈
Rn1×r,V ∈ Rn2×r, and each entry of U and V is sam-
pled uniformly and independently from [0, 2]. We set
n1 = n2 = 200 and r = 5. Therefore, the rank of the
target matrix is 5. The contaminated version ofA? is then
generated as Y = A? + ε, where ε ∈ Rn1×n2 has i.i.d.
mean zero Gaussian entries εij ∼ N(0, σ2

ε ). There are three
settings of σε, and they are chosen such that the signal-to-
noise ratios (SNR:= (E‖A?‖2F /E‖ε‖2F )1/2) are 1, 5 and
10.

We consider three different missing mechanisms and gen-
erate observation indicator matrix T from Π = (πij)

n1,n2

i,j=1

that are specified as follows:

Setting 1: This setting is a uniform missing setting πij =
0.25 for all i, j = 1, . . . , 200.

Setting 2: In this setting, we relate the missingness with the
value of the target matrix. For entries that have high values,
they are more likely to be observed. More specifically, we
set

πij =


1/16, if A?,ij ≤ q0.25
0.25, if q0.25 < A?,ij ≤ q0.75
7/16, if A?,ij > q0.75

where qa is the a quantile of A?,ij , i, j = 1, . . . , 200.

Setting 3: This setting is the contrary of Setting 2. For
entries that have high values, they are less likely to be ob-
served.

πij =


7/16, if A?,ij ≤ q0.25
0.25, if q0.25 < A?,ij ≤ q0.75
1/16, if A?,ij > q0.75

where qa is the a quantile of A?,ij , i, j = 1, . . . , 200.

We generate 200 simulated data sets separately for each of
the above settings to compare different matrix completion
methods, including the proposed method (BalWeights)
and five existing matrix completion methods: Mazumder
et al. (2010) (SoftImpute), Cai & Zhou (2016) (CZ),
Fang et al. (2018) (FLT), Koltchinskii et al. (2011) (KLT)
and Negahban & Wainwright (2012) (NW). For all meth-
ods mentioned above, we randomly separate 20% of the
observed entries in every simulated dataset and use it as the
validation set to select tuning parameters.

In addition to the empirical root mean squared error
(RMSE), we also include estimated rank and test error:

TE :=
‖(J − T ) ◦ (Ã−A?)‖F√

n1n2 −N
,

where Ã is a generic estimator of A?; T is the matrix of
observed indicator and N is the number of observed entries.
The test error measures the relative estimation error of the
unobserved entries. Due to the space limitation, we only
present the results for SNR = 5. Results for SNR = 1 and
SNR = 10 can be found in Section F of the supplemental
document. Table 1 summarizes the average RMSE, average
TE, and average estimated ranks for all three settings. In all
three settings, SoftImpute, CZ and KLT do not provide
competitive results as others. For Setting 1, NW achieves
the smallest RMSE and TE, but BalWeights performs
closely to it. When SNR = 1 (shown in supplemental docu-
ment), BalWeights performs best — the average RMSE
of BalWeights is 1.901 while the average RMSE of NW
is 2.012. As for Settings 2 and 3, BalWeights outper-
forms other methods. Also, NW performs significantly worse
than BalWeights in Setting 2. FLT has average RMSE
and TE that are close to BalWeights in Setting 2 but
does not perform well in Setting 3. As a result, we can see
that BalWeights is quite robust across different missing
structures.

7. Real Data Applications
We applied the above methods to two real datasets:

1. Coat Shopping Dataset, which is available at http:
//www.cs.cornell.edu/˜schnabts/mnar/. As
described in Schnabel et al. (2016), the dataset contains
ratings from 290 Turkers on an inventory of 300 items. The
self-selected ratings form the training set and the uniformly
selected ratings form the test set. The training set consists
of 6960 entries and test set consists of 4640 entries.

2. Yahoo! Webscope Dataset, which is available at http:
//research.yahoo.com/AcademicRelations.
It contains (incomplete) ratings from 15,400 users on 1000
songs. The dataset consists of two subsets, a training set and
a test set. The training set records approximately 300,000

http://www.cs.cornell.edu/~schnabts/mnar/
http://www.cs.cornell.edu/~schnabts/mnar/
http://research.yahoo.com/Academic Relations
http://research.yahoo.com/Academic Relations
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Table 1. Simulation results for three Settings when SNR=5. The
average RMSE (RMSE), average TE (TE), and average estimated
ranks (r̄) with standard errors (SE) in parentheses are provided for
six methods (BalWeights, SoftImpute, CZ, FLT, NW and
KLT) in comparison. For the columns related RMSE and TE, we
bold results with the first two smallest errors.

Setting 1
Method RMSE TE r̄

BalWeights 0.679(0.001) 0.700(0.001) 25.150(0.128)
SoftImpute 0.699(0.001) 0.721(0.001) 45.005(0.161)

CZ 0.895(0.002) 0.899(0.002) 51.075(0.121)
FLT 0.682(0.001) 0.703(0.001) 26.705(0.131)
NW 0.668(0.001) 0.688(0.001) 28.04(0.187)
KLT 1.913(0.003) 1.976(0.003) 8.720(0.060)

Setting 2
Method RMSE TE r̄

BalWeights 0.624(0.001) 0.635(0.001) 24.980(0.136)
SoftImpute 0.648(0.001) 0.660(0.001) 41.240(0.104)

CZ 0.922(0.002) 0.945(0.002) 47.170(0.156)
FLT 0.628(0.001) 0.640(0.001) 26.045(0.145)
NW 0.665(0.002) 0.674(0.002) 22.030(0.806)
KLT 1.980(0.006) 1.880(0.004) 1.355(0.141)

Setting 3
Method RMSE TE r̄

BalWeights 0.925(0.002) 1.002(0.002) 24.090(0.138)
SoftImpute 1.143(0.003) 1.254(0.003) 47.240(0.144)

CZ 1.222(0.003) 1.324(0.003) 50.590(0.151)
FLT 1.026(0.002) 1.118(0.003) 32.440(0.131)
NW 0.964(0.002) 1.043(0.002) 18.350(0.319)
KLT 3.174(0.006) 3.477(0.006) 9.575(0.093)

ratings given by the aforementioned 15,400 users. Each
song has at least 10 ratings. The test set was constructed by
surveying 5,400 out of these 15,400 users, such that each
selected user rates exactly 10 additional songs.

For the second dataset, due to its large size, we use a non-
convex algorithm of Lee et al. (2010) to obtain CZ. Also, we
modify this algorithm to incorporate another nuclear-norm
regularization, to obtain BalWeights and FLT. Detailed
algorithm can be found in Section E.2 of the supplemental
document. For both datasets, we separate half of the test
data set as the validation set to select tuning parameters for
all methods. And the remaining half test data set is used as
the evaluation set.

Here, we include the test root mean squared error

TRMSE :=
‖Te ◦ (Ã−A?)‖F√

Ne
,

where Ã is a generic estimator of A?; Te is the indica-
tor matrix for the evaluation set and Ne is the number of
evaluation entries, and the test mean absolute error

TMAE :=

∑
Te,ij=1 |Ãij −A?,ij |

Ne
,

to measure the performance of all the methods. Rank esti-
mation is also provided.

Table 2. Test root mean squared errors (TRMSE), test mean ab-
solute errors (TMAE) and estimated ranks (Rank) based on the
evaluation set of Coat Shopping Dataset and Yahoo! Webscope
Dataset for BalWeights and five existing methods proposed
respectively in Mazumder et al. (2010) (SoftImpute), Cai &
Zhou (2016) (CZ), Fang et al. (2018)(FLT), Negahban & Wain-
wright (2012) (NW) and Koltchinskii et al. (2011) (KLT). For the
columns related TRMSE and TMAE, we bold results with the first
two smallest errors.

Coat Shopping Dataset
Method TRMSE TMAE Rank

BalWeights 0.9888 0.7627 26
SoftImpute 1.1401 0.8485 15

CZ 1.0354 0.8279 31
FLT 0.9980 0.7723 32
NW 1.0553 0.7972 25
KLT 2.0838 1.5733 2

Yahoo! Webscope Dataset
Method TRMSE TMAE Rank

BalWeights 1.0111 0.7739 64
SoftImpute 1.2172 0.9230 31

CZ 1.0339 0.8156 29
FLT 1.0339 0.8156 29
NW 1.0338 0.7954 25
KLT 3.811 1.6589 1

Table 2 shows the TRMSE, TMAE and estimated ranks
for the two datasets with all the methods mentioned above.
For Coat Shopping Dataset, compared with the existing
methods, the proposed method BalWeights achieves best
TRMSE and TMAE. The errors of FLT are similar to that
of BalWeights, but the estimated rank is larger than that
of BalWeights. In other words, BalWeights is sig-
nificantly more efficient in capturing the signal. For Ya-
hoo! Webscope Dataset, BalWeights also has the small-
est errors among all the methods. However, compared with
CZ, FLT and NW whose errors are relatively close to that
of BalWeights, BalWeights has a higher estimated
rank, though 64 is a reasonably small rank for a matrix with
size 1000 by 15400. To confirm the fact that the higher
errors of CZ, FLT and NW are not due to their smaller rank
estimates, we look into the test error sequences obtained
by varying the tuning parameters, for each of these three
methods. We find that the change of test errors (based on the
evaluation set) aligns well with the validation errors (based
on the validation set), and the chosen tuning parameters
indeed correspond to the almost smallest test errors they
can achieve. This suggests that these three estimators are
not able to capture additional useful information and hence
produce a smaller rank estimates. But the proposed estima-
tor is able to capitalize these additional signals to achieve
reduction in errors.
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