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Abstract
Selective labels are a common feature of high-
stakes decision-making applications, referring to
the lack of observed outcomes under one of the
possible decisions. This paper studies the learning
of decision policies in the face of selective labels,
in an online setting that balances learning costs
against future utility. In the homogeneous case in
which individuals’ features are disregarded, the
optimal decision policy is shown to be a threshold
policy. The threshold becomes more stringent as
more labels are collected; the rate at which this
occurs is characterized. In the case of features
drawn from a finite domain, the optimal policy
consists of multiple homogeneous policies in par-
allel. For the general infinite-domain case, the
homogeneous policy is extended by using a prob-
abilistic classifier and bootstrapping to provide
its inputs. In experiments on synthetic and real
data, the proposed policies achieve consistently
superior utility with no parameter tuning in the
finite-domain case and lower parameter sensitivity
in the general case.

1. Introduction
The problem of selective labels is common to many high-
stakes decision-making scenarios affecting human subjects.
In these scenarios, individuals receive binary decisions,
which will be referred to generically as acceptance or re-
jection. If the decision is to accept, then an outcome label
is observed, which determines the utility of the decision.
However if the decision is to reject, no outcome is observed.
In lending for example, the decision is whether to offer or
deny the loan, and the outcome of repayment or default is
observed only if the loan is made. In pre-trial bail decisions,
the outcome is whether a defendant returns to court with-
out committing another offense, but there is no opportunity
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to observe it if bail is denied. In hiring, a candidate’s job
performance is observed only if they are hired.

The prevalence and challenges of selective labels were re-
cently emphasized by Lakkaraju et al. (2017), who studied
the evaluation of machine learning models in comparison to
human decision-makers using data labelled selectively by
the human decisions themselves. The subject of the present
paper is the learning of decision policies in the face of se-
lective labels. This problem was addressed indirectly by
De-Arteaga et al. (2018), who proposed label imputation
in regions of high human confidence, and more deeply by
Kilbertus et al. (2020). In the latter paper, the goal is to max-
imize expected utility (possibly including a fairness penalty)
over a held-out population, given data and labels collected
selectively by a suboptimal existing policy. Kilbertus et al.
(2020) showed that an existing policy that is deterministic,
commonly achieved by thresholding the output of a predic-
tive model, may condemn future policies to suboptimality.
However, if the existing policy is stochastic and “explor-
ing”, then the optimal policy can be learned and a stochastic
gradient ascent algorithm is proposed to do so.

This paper studies an online formulation of the selective
labels problem, presented in Section 2, that accounts for
the costs of decisions taken during learning and seeks to
maximize discounted total reward. This contrasts with Kil-
bertus et al. (2020) where learning costs do not enter into
the objective of held-out utility. Also unlike Kilbertus et al.
(2020), there is no need for labelled data from an existing
exploring policy. The online formulation brings the problem
closer to one of contextual bandits, with which comparisons
are made throughout the paper.

The approach taken herein is to first solve a simpler spe-
cial case and then explore the extent to which this solution
can generalize. Specifically, in Section 3, it is assumed
that individuals are drawn from a homogeneous population,
without features to distinguish them. By formulating the
problem as a partially observable Markov decision process
(POMDP) and applying dynamic programming, the opti-
mal acceptance policy is shown to be a threshold policy on
the estimated probability of success. Properties of the opti-
mal policy are derived. These show that the policy becomes
more stringent (i.e., the rejection set grows) as more observa-
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tions are collected, which is reminiscent of upper confidence
bound (UCB) policies (Auer et al., 2002; Chu et al., 2011;
Abbasi-Yadkori et al., 2011). The rate of convergence of the
decision threshold is characterized.

Generalizing from the homogeneous case to one with fea-
tures X , Section 4 shows that the optimal decision policy
for any finite feature domain X consists of multiple optimal
homogeneous policies in parallel, one for each x ∈ X , and
each with an effective discount factor that depends on the
probability distribution of X . For infinite and continuous
domains, Section 5 proposes to leverage the optimal homo-
geneous policy, using a probabilistic classifier (e.g. logistic
regression) and bootstrap estimates of uncertainty to supply
the inputs required by the homogeneous policy.

The proposed policies are evaluated in experiments (re-
ported in Section 6) on synthetic data and two real-world
datasets featuring high-stakes decisions. Several conven-
tional, selective labels, and contextual bandit baselines are
used for comparison; efforts are made to re-implement or
adapt some of these. In the finite-domain case, while one
of the baselines can achieve optimal utility, the advantage
of the optimal policy of Section 4 is that it does so without
parameter tuning. In the general case, the extended homo-
geneous policy of Section 5 exhibits the highest utility and
lower parameter sensitivity than the next best alternatives.

Other related work In addition to contextual bandits
(Bietti et al., 2020; Foster et al., 2018; Agarwal et al., 2014;
Joseph et al., 2016), the selective labels problem is related
to policy learning (Dudı́k et al., 2011; Swaminathan &
Joachims, 2015; Athey & Wager, 2017; Kallus, 2018) and
causal inference (Hernán & Robins, 2020) in that only the
outcome resulting from the selected action is observed. It is
distinguished by there being no observation at all in the case
of rejection. Notwithstanding this difference, it is possible
to view the online formulation considered herein as a sim-
pler special kind of bandit problem, as noted in Section 2.
This simplicity makes it amenable to an optimal dynamic
programming approach as opted for in this paper.

Limited feedback phenomena similar to selective labels
have been considered in the literature on social aspects of
ML, specifically as they relate to fairness and performance
evaluation (Kallus & Zhou, 2018; Coston et al., 2020) and
applications such as predictive policing (Lum & Isaac, 2016;
Ensign et al., 2018). Notably, Bechavod et al. (2019) study
a similar selective labels problem and the effect of group
fairness constraints on regret. These problems, in which
algorithm-driven decisions affect subsequent data observa-
tion, fit into a larger and growing literature on dynamics
induced by the deployment of ML models (Liu et al., 2018;
Hashimoto et al., 2018; Hu & Chen, 2018; Mouzannar et al.,
2019; Heidari et al., 2019; Zhang et al., 2019; Perdomo
et al., 2020; Creager et al., 2020; Rosenfeld et al., 2020;

Tsirtsis & Gomez-Rodriguez, 2020; Zhang et al., 2020).
One distinction is that limited feedback problems such as
selective labels are present independent of whether and how
humans respond to ML decisions.

2. Problem Formulation
The selective labels problem studied in this paper is as fol-
lows: Individuals i = 0, 1, . . . arrive sequentially with
features xi ∈ X . A decision of accept (ai = 1) or
reject (ai = 0) is made based on each individual’s xi
according to a decision policy Π : X 7→ [0, 1], where
Π(x) = Pr(A = 1 | x) is the probability of acceptance.
The policy is thus permitted to be stochastic, although it
will be seen that this is not needed in some cases. If the
decision is to accept, then a binary outcome yi is observed,
with yi = 1 representing success and yi = 0 failure. If the
decision is to reject, then no outcome is observed, hence the
term selective labels. Individuals’ features and outcomes
are independently and identically distributed according to a
joint distribution p(x, y) = p(y | x)p(x).

Decisions and outcomes incur rewards according to ai(yi −
c) for c ∈ (0, 1), following the formulation of Kilbertus et al.
(2020); Corbett-Davies et al. (2017), i.e., a reward of 1− c
if acceptance leads to success, −c if acceptance leads to
failure, and 0 if the individual is rejected. The assumptions
underlying this formulation deserve further comment. As
noted by Kilbertus et al. (2020), the cost of rejection, whose
general form is (1 − ai)g(yi), is unobservable due to the
lack of labels (although rejection is presumably negative for
the individual). It is assumed therefore that g is constant,
the reward from success is greater than g, and the reward
(i.e. cost) from failure is less than g. Domain knowledge
can inform the reward/cost of success/failure relative to
rejection. For example in lending, the decision-maker’s
(lender’s) rewards are fairly clear: interest earned in the case
of success (repayment), loss of principal (or some expected
fraction thereof) in the case of failure (default), and little to
no cost for rejection. The individual’s rewards may also be
taken into account although harder to quantify, for example
accomplishing the objective of the loan (e.g. owning a home)
or damage to creditworthiness from a default (Liu et al.,
2018). It might even be possible to learn the cost of rejection
through an alternative feedback mechanism. For example, a
lender could follow up with a subset of its rejected applicants
to understand the impact on their lives. In any case, once
the three reward values are determined, they can then be
linearly transformed to 1 − c, −c, and 0 without loss of
generality.

The objective of utility is quantified by the expectation of
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the discounted infinite sum of rewards,

E

[ ∞∑
i=0

γiai(yi − c)

]
= E

[ ∞∑
i=0

γiΠ(xi)(ρ(xi)− c)

]
(1)

for some discount factor γ < 1, where we have defined the
conditional success probability ρ(x) := p(Y = 1 | x). The
right-hand side of (1) results from taking the conditional ex-
pectation given xi, leaving an expectation over xi ∼ p(x).
The right-hand expectation indicates that the problem of
determining policy Π(x) can be decomposed (at least con-
ceptually) over values of X . This is clearest in the case of
a discrete domain X , for which the expectation is a sum,
weighted by p(x). The decomposition motivates the study
of a simpler problem in which x is fixed or dropped, re-
sulting in a homogeneous population. This “homogeneous”
problem is the subject of Section 3. We then consider how
to leverage the solution to the homogeneous problem in later
sections.

It is also possible to treat the selective labels problem as a
special contextual bandit problem with two possible actions
(accept/reject), where the reward from rejection is further-
more taken to be zero as discussed above. The following
sections show that the approach of starting with the homo-
geneous setting allows the optimal policy to be determined
in the case of finite X . An empirical comparison with con-
textual bandit algorithms is reported in Section 6. It should
also be noted that while the cost of rejection is assumed to
be a constant, the relative utility of rejection is c − ρ(xi)
from (1), which is not constant and requires estimation of
ρ(x).

Kilbertus et al. (2020) formulate a fairness objective in
addition to utility but this will not be considered herein.

3. The Homogeneous Case
In the homogeneous case with no features X , the success
probability reduces to a single parameter ρ := p(yi = 1). If
ρ is known, then the policy that maximizes (1) is immediate:
Π∗(ρ) = 1(ρ > c), where 1(·) is the indicator function that
yields 1 when its argument is true. The optimal utility is

V ∗(ρ,∞) =

∞∑
i=0

γi max{ρ− c, 0} =
max{ρ− c, 0}

1− γ
.

(2)
As will be explained more fully below, the∞ in V ∗(ρ,∞)
denotes exact knowledge of ρ, i.e. from an infinite sample.

The challenge of course is that ρ is not known but must be
learned as decisions are made. The approach taken herein is
to regard the case of known ρ as a Markov decision process
(MDP) with state ρ and no dynamics (i.e. ρi+1 = ρi). The
case of unknown ρ is then treated as the corresponding
partially observable MDP (POMDP) using a belief state for

ρ (Bertsekas, 2005, Sec. 5.4).

To define the belief state, a beta distribution prior is placed
on ρ: ρ0 ∼ B(σ0, ν0 − σ0), where the shape parameters
α = σ0, β = ν0 − σ0 are expressed in terms of a num-
ber σ0 of “pseudo-successes” in ν0 “pseudo-observations”.
Since ρ is the parameter of a Bernoulli random variable,
the beta distribution is a conjugate prior. It follows that the
posterior distribution of ρ before individual i arrives, given
ν′i =

∑i−1
j=0 aj outcomes and σ′i =

∑i−1
j=0 ajyj successes

observed thus far, is also beta, ρi ∼ B(σi, νi − σi), with
σi = σ0 + σ′i and νi = ν0 + ν′i. Thus we define the pair
µi := σi/νi = E [ρi] and νi as the belief state for ρ, equiv-
alently using the mean µi in place of σi. The acceptance
policy is also made a function of the belief state, Π(µi, νi).

The initial state (µ0, ν0), i.e. the parameters of the prior, can
be chosen based on an initial belief about ρ. This choice is
clearer when outcome data has already been collected by
an existing policy, in which case ν0 can be the number of
outcomes observed and µ0 the empirical mean.

Define V Π(µ, ν) to be the value function at state (µ, ν) un-
der policy Π, i.e., the expected discounted sum of rewards
from following Π starting from state (µ, ν). The index i
is dropped henceforth because the dependence is on (µ, ν),
irrespective of the number of rounds needed to attain this
state. In Appendix A.1, the dynamic programming recursion
that governs V Π(µ, ν) is derived. By optimizing this recur-
sion with respect to the acceptance probabilities Π(µ, ν),
we obtain the following result.

Theorem 1. For the homogeneous selective labels prob-
lem, the optimal acceptance policy that maximizes dis-
counted total reward (1) is a threshold policy: Π∗(µ, ν) =
1(V ∗(µ, ν) > 0), where the optimal value function
V ∗(µ, ν) satisfies the recursion

V ∗(µ, ν) = max

{
µ− c+ γ

[
µV ∗

(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V ∗

(
µν

ν + 1
, ν + 1

)]
, 0

}
. (3)

Theorem 1 shows that the optimal homogeneous policy does
not require stochasticity. It also shows that the problem is
one of optimal stopping (Bertsekas, 2005, Sec. 4.4): in
each state (µ, ν), there is the option (Π(µ, ν) = 0) to stop
accepting and thus stop observing, which freezes the state
at (µ, ν) thereafter with zero reward. The optimal policy is
thus characterized by the stopping or rejection set, the set
of (µ, ν) at which it is optimal to stop because the expected
reward from continuing is negative.

In the limiting case as ν →∞, V ∗(µ, ν) and Π∗(µ, ν) are
known explicitly. This is because the mean µ converges to
the true success probability ρ, by the law of large numbers.
We therefore have Π∗(µ,∞) = 1(µ > c) and V ∗(µ,∞) as
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given in (2), explaining the previous notation. The corre-
sponding stopping set is the interval [0, c].

Connection to one-armed bandit The above formula-
tion and dynamic programming solution are related to the
“one-armed bandit” construction of Weber (1992) and its
corresponding Gittins index. Specifically, upon defining
belief state (µ, ν), the homogeneous problem conforms to
the formulation of Weber (1992): (µ, ν) is the state (xj(t)
in Weber’s notation), rewards are a function of this state,
and (µ, ν) evolve in a Markov fashion upon each accep-
tance. One might expect therefore that the optimal ho-
mogeneous policy of Theorem 1 is equivalent to the Git-
tins index policy, and indeed this is the case. For a “one-
armed bandit” where the cost of the “reject” arm is taken
to be zero, it suffices to determine whether the expected
discounted total reward that appears in the Gittins index,
supτ E

[∑τ−1
t=0 γ

tRj(xj(t)) | xj(0) = x
]
, is positive. Here

the supremum is taken over stopping times τ . The proposed
dynamic programming approach summarized by Theorem 1
can be seen as an explicit way of computing the supremum
(which Weber does not discuss): we either stop at τ = 0, or
continue so that τ is at least 1 and consider the same stop-
ping question for the possible next states xj(1), weighted
appropriately.

Approximation of optimal policy For finite ν, a natural
way of approximating V ∗(µ, ν) is as follows: Choose a
large integer N , which will also index the approximation,
V N (µ, ν), and set V N (µ,N +1) = V ∗(µ,∞), the infinite-
sample value function (2). Then use (3) with V N in place of
V ∗ to recursively compute V N (µ, ν) for ν = N,N−1, . . . .
The corresponding policy is ΠN (µ, ν) = 1(V N (µ, ν) > 0).
Note that (3) is valid for all µ ∈ [0, 1], not just integer
multiples of 1/ν; this can be seen by allowing the initial
parameter σ0 to range over real values.

Figure 1 plots the result of the above computation for N =
1000, c = 0.8, and γ = 0.99 (a second example is in
Appendix B). The plot suggests that V N (µ, ν) ≥ V N (µ, ν+
1) and that V N (µ, ν) is a non-decreasing convex function
of µ for all ν. It also shows that V N (µ, ν) is quite close to
V N (µ, 1001) = V ∗(µ,∞) for large ν > 100.

Properties of optimal policy The properties suggested
by Figure 1 do in fact hold generally (all proofs in Appendix
A).

Proposition 2. The optimal value function V ∗(µ, ν) is non-
decreasing and convex in µ for all ν.

Proposition 3. The optimal value function V ∗(µ, ν) is non-
increasing in ν, i.e. V ∗(µ, ν) ≥ V ∗(µ, ν + 1) ∀ µ ∈ [0, 1].

Other optimal stopping problems are known to have similar
monotonicity and convexity properties (Bertsekas, 2005).

Monotonicity in both µ and ν implies that the stopping set at

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
μ

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

V
N
(μ

,ν
)

ν = N+1
ν = 100
ν = 50
ν = 20
ν = 10
ν = 5
ν = 2

Figure 1. Optimal value function approximations V N (µ, ν) for
N = 1000, c = 0.8, and γ = 0.99.

sample size ν, {µ : V ∗(µ, ν) ≤ 0}, is an interval [0, cν ] that
grows as ν increases, cν ≤ cν+1 ≤ · · · ≤ c. In other words,
the acceptance policy is more lenient in early stages and
gradually approaches the policy for known ρ. The following
result bounds the difference c− cν .

Proposition 4. The difference between the acceptance
threshold cν for sample size ν and the infinite-sample thresh-
old c is bounded as follows:

c− cν ≤
γ · 2F1(1, ν; ν + 2; γ)

ν + 1− γ · 2F1(1, ν; ν + 2; γ)
(1− c)

≤ γmin{1/(1− γ), ν + 1}
ν + 1− γmin{1/(1− γ), ν + 1}

(1− c),

where 2F1(a, b; c; z) is the Gaussian hypergeometric func-
tion.

From the second, looser upper bound above, it can be seen
that for ν > 1/(1 − γ), c − cν decays as O(1/ν). It is
interesting to compare this behaviour to UCB policies (Auer
et al., 2002; Chu et al., 2011; Abbasi-Yadkori et al., 2011;
Filippi et al., 2010; Li et al., 2017). An acceptance threshold
cν is equivalent to adding a margin c−cν to the mean µ (i.e.,
yielding a UCB) and comparing with c. Typically however,
confidence intervals are proportional to the standard devia-
tion and scale as 1/

√
ν, as is the case for a beta or binomial

distribution. The 1/ν rate implied by Proposition 4 for large
ν is thus faster.

The analysis that leads to Proposition 4 can be extended to
also provide bounds on the approximation V N (µ, ν).

Proposition 5. For ν = N + 1, N, . . . and all µ ∈ [0, 1],

0 ≤ V ∗(µ, ν)− V N (µ, ν)

≤ γN+2−ν
2F1(1, N + 1;N + 3; γ)

N + 2
V ∗(1, ν).

Similar to Proposition 4, for N > 1/(1− γ), the approxi-
mation error decays as 1/N (γN/N for fixed ν).
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In Appendix C, the case of undiscounted average reward
(in contrast to (1)) over an infinite horizon is also analyzed.
There the optimal policy is found to have positive acceptance
probability regardless of the belief state. This is reminis-
cent of the exploring policies of Kilbertus et al. (2020) and
contrasts with the case of discounted total reward (1).

4. The Finite-Domain Case
In this section, we move from the homogeneous case to
one where features X are present and take a finite number
of values. As discussed in Section 2, the decomposability
of (1) into a sum over x ∈ X implies that the optimal
decision policy consists of multiple optimal homogeneous
policies in parallel, one for each x ∈ X . Accordingly, a
beta distribution is now posited for each conditional success
probability ρ(x), parametrized by state variables µ(x) and
ν(x): ν(x) is the number of acceptances with feature value
x, plus pseudo-counts from the prior on ρ(x), while µ(x)
is the fraction of successes among acceptances at x, again
accounting for prior pseudo-counts.

The difference with respect to the homogeneous case is that
the effective discount factor seen at each value x is not equal
to the γ in (1) but depends on x as follows:

γ̄(x) =
γp(x)

1− γ(1− p(x))
. (4)

Intuitively, the effective discount factor γ̄(x) arises because
successive arrivals of individuals with value x are separated
not by one time unit but by a random, geometrically dis-
tributed time that depends on p(x).

Denote by Π∗(µ, ν; γ) the optimal homogeneous policy that
uses discount factor γ in (3) and (2), and V ∗(µ, ν; γ) the
corresponding optimal value function. Then the optimal
finite-domain policy can be stated as follows.

Theorem 6. Assume that the features X have finite cardi-
nality, |X | < ∞. Then the optimal acceptance policy is
to use optimal homogeneous policies Π∗

(
µ(x), ν(x); γ̄(x)

)
independently for each x ∈ X , where γ̄(x) is the effective
discount factor in (4).

Appendix A.5 provides a derivation of (4) to prove Theo-
rem 6.

Computing the effective discount factors (4) requires knowl-
edge of the distribution p(x). In the usual case where p(x)
is not known, γ̄(x) may be estimated empirically. Denoting
by I1, I2, . . . , Im the inter-arrival times observed at x thus
far, the estimated effective discount factor is

ˆ̄γ(x) =
1

m

m∑
j=1

γIj . (5)

5. The General Case
We now consider the general case in which the features
X are continuous or X is still discrete but the cardinality
of X is large. In these cases, it is no longer possible or
statistically reliable to represent the state of knowledge by
counts of acceptances and successes.

In this paper, we investigate the extent to which the optimal
homogeneous policy can be successfully carried over to
the general setting. The development of more involved
policies is left to future work. The continued use of the
homogeneous policy is motivated by two reasons: first,
its optimality for finite domains, which might be used to
approximate an infinite or continuous domain, and second,
the ease of computing the approximation V N (µ, ν) (taking
milliseconds on a MacBook Pro for N = 1000 in Figure 1).

The application of the homogeneous policy,
i.e. Π∗(µ(x), ν(x); γ̄), requires three inputs: (1) The
mean parameter µ(x) of the beta distribution assumed for
the conditional success probability ρ(x); (2) The sample
size parameter ν(x) of ρ(x); (3) The discount factor γ̄
that determines the trade-off between exploration and
exploitation. These are discussed in turn below.

Conditional mean µ(x) With ρ(x) assumed to be ran-
dom, we have Pr(Y = 1 | x) = E [ρ(x)] = µ(x). Estima-
tion of µ(x) is equivalent therefore to the standard prob-
abilistic classification problem of approximating Pr(Y =
1 | x). This may be accomplished by training a model µ̂(x)
to minimize log loss (e.g. logistic regression) on accepted
individuals, i.e., those for which Y labels are available.

Conditional sample size ν(x) In the finite case, ν(x) is
the sample size parameter of the beta posterior for ρ(x). It
is thus equal (possibly with a constant offset) to the number
of labels observed for x and may be seen as a measure of
confidence in the conditional mean µ(x). This suggests
measuring confidence in the predictions of the model µ̂(x)
used to approximate µ(x) in the more general case.

The above idea is realized herein via bootstrap sampling.
For a given x, let µ̂1(x), . . . , µ̂K(x) be K estimates of the
conditional mean from K models trained on bootstrap re-
samples of the labelled population. (The “master” model
µ̂(x) from above, trained on the full labelled population, is
separately maintained.) This set of K estimates is regarded
as an approximation to the posterior distribution of ρ(x), in
a similar spirit as in Eckles & Kaptein (2014); Osband &
Roy (2015). Fitting a beta distribution to µ̂1(x), . . . , µ̂K(x),
the parameter ν(x) is estimated by the method of moments
as

ν̂(x) =
¯̂µ(x)(1− ¯̂µ(x))

var(µ̂(x))
− 1, (6)

where ¯̂µ(x) and var(µ̂(x)) are the sample mean and sample
variance of µ̂1(x), . . . , µ̂K(x).
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Note that the above methods of estimating µ(x) and ν(x) do
not require specification of prior parameters µ0(x), ν0(x),
unlike in the homogeneous and finite-domain cases.

Discount factor γ̄ In the homogeneous and finite-domain
cases, the effective discount factor γ̄(x) used by the policy
is either equal to the given discount factor γ in (1) or can
be determined from the probability distribution of X . For
the general case, γ̄(x) ≡ γ̄ is left as a single free parameter
of the policy (independent of x), to be tuned to balance ex-
ploration and exploitation. The results in Section 6 indicate
that performance is relatively insensitive to γ̄.

Intuitively, one expects good values for γ̄ to lie below γ,
as they do in the finite-domain case (4). The reason is that
when the conditional mean µ(x) is estimated by a model,
accepting an individual and observing a label at one value x
also decreases uncertainty in µ(x) at other values x through
an update to the model. In contrast, in the finite-domain case,
ρ(x) for x ∈ X are modelled independently. This indirect
reduction of uncertainty (related to the intrinsic exploration
of greedy policies analyzed by Bastani et al. (2020); Kannan
et al. (2018)) reduces the need for exploration and favours
smaller γ̄. Further analysis and the possibility of setting γ̄
automatically are left for future work.

Practical aspects The quantities µ̂(x) and ν̂(x) are ide-
ally updated after each new observation. For computational
efficiency, online learning and the online bootstrap (Eckles
& Kaptein, 2014; Osband & Roy, 2015) are used to per-
form these updates. Specifically, this work makes use of the
Vowpal Wabbit (VW) library1 for online learning and the
“double-or-nothing” bootstrap: for each of the K bootstrap
samples, a new observation is added twice with probability
1/2 or is not added. Other unit-mean distributions over non-
negative integers (e.g. Poisson(1) in Bietti et al. (2020))
could also be used.

The estimate ν̂(x) (6) is generally not an integer. In this
work, ν̂(x) is simply rounded to the nearest integer and
truncated if needed to N +1, the largest value in the approx-
imation V N (µ,N +1) = V ∗(µ,∞). To handle real-valued
µ̂(x), recursion (3), which is valid for all µ ∈ [0, 1] as dis-
cussed in Section 3, is pre-computed on a dense grid of µ
values and then linearly interpolated as needed.

6. Experiments
Experiments are conducted on synthetic data (Section 6.2)
to evaluate the optimal finite-domain policy of Section 4,
as well as on two real-world datasets with high-stakes deci-
sions (Section 6.3) to evaluate the extended homogeneous
policy of Section 5. In all cases, a selective labels problem is
simulated from a labelled dataset of (xi, yi) pairs by present-

1https://vowpalwabbit.org

ing features xi of individuals one by one and only revealing
the outcome yi to the algorithm if the decision is to accept.
In addition, to provide an initial training (i.e. exploration)
set, the first B0 individuals are always accepted and their
outcomes are observed. Notably, the rewards/costs incurred
from collecting this training data are counted toward the
total utility. The effects of varying B0 are studied.

The proposed policies are compared to a conventional base-
line, the selective-labels-specific method of Kilbertus et al.
(2020), and contextual bandit algorithms, described in Sec-
tion 6.1. For both computational efficiency and fair compar-
ison, the supervised learning models upon which all of these
policies rely are trained online using VW. For the finite-
domain experiments in which modelling is not necessary,
the Bayesian approach of Section 4 is used to update µ(x),
ν(x) for all policies. Appendix D.2 provides more details.

6.1. Baselines

Greedy (G) This baseline represents the conventional
approach of training a success probability model µ̂(x) on
the initial training set of size B0, and then accepting and
collecting labels from only individuals for whom the predic-
tion µ̂(xi) exceeds the threshold c. The labels of accepted
individuals are used to update the model. Since the policy
1(µ̂(xi) > c) maximizes the immediate expected reward,
this baseline will be referred to as the greedy policy.

Consequential Learning (CL, CLVW) The CL algo-
rithm (Kilbertus et al., 2020, Alg. 1) is re-implemented for
the case of no fairness penalty (λ = 0) and policy updates
after every acceptance/observation (N = 1). These set-
tings bring it in line with other methods compared. Update
equations are given in Appendix D.1.1. While the paper
of Kilbertus et al. (2020) does link to a code repository,
no code was available as of this writing. Furthermore, CL
uses “plain” stochastic gradient updates, whereas VW uses a
more sophisticated algorithm. For this reason, a VW version
of CL (CL-VW) was also implemented, also described in
Appendix D.1.1.

Contextual bandit algorithms As noted in Section 2,
the selective labels problem can be treated as a contextual
bandit problem. Accordingly, four representative contextual
bandit algorithms are compared: ε-greedy (εG) (Langford
& Zhang, 2008), bootstrap Thompson sampling/bagging
(Eckles & Kaptein, 2014; Osband & Roy, 2015), Online
Cover (Agarwal et al., 2014), and RegCB (Foster et al.,
2018), which is a generalization of LinUCB (Chu et al.,
2011; Abbasi-Yadkori et al., 2011). These are chosen be-
cause they are practical algorithms extensively evaluated in
a recent contextual bandit “bake-off” (Bietti et al., 2020)
and are implemented in VW. More specifically, based on the
recommendations of Bietti et al. (2020), the chosen variants
are greedy bagging (B-g), Online Cover with no uniform

https://vowpalwabbit.org
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exploration (C-nu), and optimistic RegCB (R-o). Parameter
settings and tuning are discussed in Appendix D.3.

The selective labels problem herein differs from a two-arm
contextual bandit in that the cost of rejection is assumed
to be zero, an assumption that is not used by the four algo-
rithms above. In an attempt to mitigate this possible disad-
vantage, each algorithm was given the option of observing
one pass through the entire dataset in which all individuals
are rejected with a cost of zero. This did not appear to im-
prove performance appreciably, possibly because the reward
estimators in VW are already initialized at zero.

RegCB-Optimistic (R-o, R-osl) The R-o algorithm is
of particular interest for two reasons. First, it is a UCB
policy with similar structure to the optimal homogeneous
policy, as discussed in Section 3. Second, it performed
best overall in the bake-off of Bietti et al. (2020). In the
experiments herein however, the VW implementation of
R-o performed less well (see Appendix D.5). The likely
reason is that it does not take advantage of the zero-cost
assumption for rejection, despite the rejection pass through
the data mentioned above.

To improve the performance of R-o, a specialized version
that does exploit the zero-cost assumption was implemented,
referred to as R-osl. R-o makes the decision with the highest
UCB on its expected reward. Since rejection is assumed to
have zero cost while the expected reward of acceptance is
µ̂(x)− c, this reduces to determining whether the UCB on
µ̂(x) exceeds c. More details are in Appendix D.1.2.

6.2. Finite-Domain Experiments

The experiments on synthetic data address the finite-domain
setting and focus on two questions: (1) the effect of having
to estimate the effective discount factors γ̄(x) on the per-
formance of the optimal policy, and (2) comparison of the
optimal policy to various baselines.

Synthetic data generation Given a cardinality |X |, the
probability distribution p(x) is sampled from the flat Dirich-
let (i.e. uniform) distribution over the |X | − 1-dimensional
simplex. Success probabilities ρ(x) = Pr(Y = 1 | x)
are sampled from the uniform distribution over [0, 1], inde-
pendently for x = 0, . . . , |X | − 1. Then T pairs (xi, yi),
i = 0, . . . , T − 1 are drawn from the joint distribution of
(X,Y ). This generation procedure is repeated 1000 times
for each cardinality |X | and threshold c. Means and standard
errors in the means are computed from these repetitions.

For evaluation, rewards are summed using the discount
factor γ = 0.999. The number of rounds T is set to 5/(1−γ)
so that the sum of truncated discount weights,

∑∞
t=T γ

t, is
less than 1% of the total sum

∑∞
t=0 γ

t.

Homogeneous policy variants Three variants of the op-
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Figure 2. Discounted total rewards (discount factor γ = 0.999) on
finite domains X .

timal/homogeneous policy are compared. The first (abbrevi-
ated O-t, ‘t’ for “true”) is given access to p(x) and computes
the effective discount factors γ̄(x) using (4). The second,
more realistic variant (O-e, “estimate”) is not given p(x)
and instead estimates γ̄(x) using (5). The third (O-u, “uni-
form”) does not estimate γ̄(x), instead assuming a uniform
distribution p(x) = 1/|X | and using that in (4).

Modifications to baselines The most noteworthy change
is to bagging, which is an approximation of Thompson
sampling (TS). The latter can be implemented directly in the
finite-domain case. TS chooses acceptance with probability
Pr(ρi(x) > c), i.e., the probability that the reward from
acceptance is greater than zero. Other modifications are
described in Appendix D.1.

Results Figure 2 shows the discounted total rewards
achieved for |X | ∈ {3, 10} and c ∈ {0.6, 0.8}. Plots for
additional (|X |, c) pairs are in Appendix D.5. In general,
greater differences are seen as c varies compared to |X |.

In the first two rows of Figure 2, the total reward is plotted
as a function of the size B0 of the initial training batch. For
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Figure 3. Total rewards (discount factor γ = 1) on real-world datasets. The dashed black line indicates the maximum total reward achieved
by the greedy policy (G) at B0 = 80 for FICO and B0 = 90 for COMPAS.

the greedy policy (G), the curves tend to be increasing. The
initial increase from zero occurs because some training data
is needed for the predicted success probabilities to reach the
threshold c for accepting any individuals. Further increases
are due to continued improvement in these estimates. εG
behaves similarly. For the other policies, the curves gener-
ally decrease because effective exploration is already built
in and additional training is not worth the cost.

As expected, the optimal/homogeneous policies perform
the best. Among them, there is no discernible difference
between O-e and O-t, and thus no apparent cost due to esti-
mating γ̄(x). Surprisingly, O-u, which assumes a uniform
distribution, is hardly worse.

R-osl attains essentially optimal performance in many cases,
provided that its confidence parameter C0 is tuned. The last
row in Figure 2 shows that total rewards can be significantly
worse if C0 is not well chosen. The high potential of R-
osl is explained by its similarity to the optimal policy, as
discussed earlier. The difference is that the optimal policy
does not require parameter tuning.

CL and TS both outperform G and are similar to each other
because they are both stochastic policies, choosing accep-
tance with the probability that they believe it is better than
rejection. CL however requires tuning of its learning rate
parameter whereas TS does not. εG slightly outperforms G
at lower B0 values that are insufficient for G.

6.3. Real Data Experiments

We now turn to two real-world datasets, the FICO Challenge
dataset (FICO, 2018) and the COMPAS recidivism dataset
(Angwin et al., 2016), for evaluating the policy of Section 5.
The former comes from home equity line of credit (HELOC)

applications together with an outcome variable indicating
whether the borrower satisfactorily repaid the line of credit.
Acceptance corresponds to approving the borrower for the
HELOC. The COMPAS dataset, also used by Kilbertus
et al. (2020), contains demographics and criminal histo-
ries of offenders, a recidivism risk score produced by the
COMPAS tool, and an outcome variable indicating whether
the offender was re-arrested within two years. Acceptance
corresponds to releasing an offender on bail.

Each dataset is randomly permuted 1000 times and means
and standard errors are computed from these permutations.
Pre-processing steps are detailed in Appendix D.4.

Results Figure 3 plots the total rewards attained on the
FICO and COMPAS datasets with c = 0.8 and c = 0.6
respectively (the latter choice conforms with Kilbertus et al.
(2020)). Total rewards are computed without discount-
ing (γ = 1); Appendix D.5 provides similar plots for
γ = 0.9995. The shapes of the curves as functions of the
initial training size B0 are generally the same as in Figure 2,
although there are some additional algorithms that benefit
from having B0 > 0.

The highest utility is again achieved by a policy in the ho-
mogeneous family, namely the policy of Section 5 (labelled
H). Next in line are R-osl and C-nu. All three policies have
at least one algorithm-specific parameter (discount factor γ̄
for H, C0 for R-osl, (Np, ψ) for C-nu) as well as the online
learning rate α that are tuned. The middle panels in Fig-
ures 3a and 3b show that H is less sensitive to its parameter,
achieving good performance over a relatively wide range of
γ̄. In contrast for R-osl, the utility is much lower for C0 grid
values not equal to the best one. C-nu can display extreme
sensitivity: In Figure 3b, ψ = 1 drops the total reward to
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∼ 100 (outside the plotted range), while in Figure 3a, the
values not shown are in the negative hundreds.

A major difference compared to the finite-domain case is
that the greedy policy (G) is more competitive.2 Indeed, in
Figure 3, H is the only policy that consistently exceeds the
largest total reward achieved by G (dashed black line) as
B0 is allowed to increase. Conversely, CL, CL-VW, and
εG never exceed the maximum reward of G, suggesting
that they over-explore using an accceptance rate that is too
high. The VW variant CL-VW outperforms CL on FICO
(Figure 3a) except at B0 = 1, justifying the alternative
implementation.

7. Discussion
Optimal decision policies were presented for homogeneous
and finite-domain cases of the selective labels problem. An
extension of these policies was proposed for the general
infinite-domain case and was shown to outperform several
baselines with less parameter sensitivity. The policies ac-
count for the cost of learning as they seek to maximize utility.
In doing so, they make deterministic decisions and become
more stringent as more labels are observed, similar to UCB
policies. They thus avoid potential objections to making
consequential decisions non-deterministically, as noted by
Kilbertus et al. (2020). On the other hand, Proposition 4
suggests a kind of “sequence unfairness”: early-arriving
individuals are subject to a more lenient policy, enjoying the
“benefit of the doubt” in their true success probability.

Limitations The experiments in Section 6 have the fol-
lowing limitations:

1. The FICO and COMPAS datasets are treated as sam-
ples from the uncensored joint distribution of X,Y .
However, as noted by Kilbertus et al. (2020), these
datasets likely suffer themselves from selective labels
and the true joint distribution can only be inferred from
real-world exploration. This limitation highlights the
need for datasets that are realistic and that ideally do
not suffer from selective labels, or suffer only mildly
in a correctable way, to support further research.

2. For COMPAS in particular, the present work does not
consider fairness, or the possibility of finer-grained
decisions such as supervised/unconditional release.
Given the history of the COMPAS dataset in partic-
ular and high-stakes decision-making domains in gen-
eral, some may argue that fairness should always be a
consideration.

2This echoes a finding from Bietti et al. (2020). Appendix D.5
shows that increasing c to 0.8 on COMPAS results in G being the
best policy, due to the increased cost of exploration and decreased
reward of better learning.

3. It may not be feasible to update policies after every
observation.

4. More seriously, it is assumed that outcomes are ob-
served immediately following an acceptance decision.
In reality, there is often a long delay (two years in the
cases of FICO and COMPAS).

5. The results in Figure 3 and for some of the baselines
in Figure 2 are optimized over each policy’s param-
eter and the online learning rate. This optimistically
represents the potential of each policy. It appears to
be common practice in contextual bandit papers (Bi-
etti et al., 2020; Foster et al., 2018), where parameter
selection appears to be a common challenge. In their
“bake-off”, Bietti et al. (2020) took advantage of hav-
ing a large number (200) of datasets to select good
parameter values for use on unseen datasets.

Future work Some of the limitations above may be more
readily addressable. Notably, incorporation of fairness (lim-
itation 2) would be an important extension to the problem
formulation herein, possibly along the lines of Kilbertus
et al. (2020); Bechavod et al. (2019). Non-binary decisions
(e.g. supervised/unconditional release) as well as non-binary
outcomes are also of interest. The effect of limitation 3
could be simulated in future experiments. In addition, Sec-
tion 5 leaves open the development of decision policies that
more directly tackle the infinite-domain case where the con-
ditional success probability must be modelled. One goal
would be to avoid having to select the parameter γ̄, which
would partly address limitation 5.
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A. Proofs
A.1. Proof of Theorem 1

We start by deriving the dynamic programming recursion that governs the value function starting from initial state
(µ0, ν0) = (µ, ν),

V Π(µ, ν) = E

[ ∞∑
i=0

γiΠ(µi, νi)(µi − c)

∣∣∣∣∣ (µ0, ν0) = (µ, ν)

]
, (7)

where we have used the fact that µi = E [ρi] is the mean of the posterior success probability ρi. This recursion is given in
turn by the state transitions of (µi, νi). There are three possible transitions corresponding to an acceptance decision followed
by success, acceptance followed by failure, and rejection (followed by no observation). Thus in terms of the number of
successes σi, the state transitions are

(σi+1, νi+1) =


(σi + 1, νi + 1) with probability πiµi and reward 1− c,
(σi, νi + 1) with probability πi(1− µi) and reward − c,
(σi, νi) with probability 1− πi and reward 0,

where we have defined acceptance probability πi = Π(µi, νi) and again used the fact that µi is the success probability
marginalized over the posterior. In terms of µi instead of σi, we have

(µi+1, νi+1) =


(
µiνi+1
νi+1 , νi + 1

)
with probability πiµi and reward 1− c,(

µiνi
νi+1 , νi + 1

)
with probability πi(1− µi) and reward − c,

(µi, νi) with probability 1− πi and reward 0.

(8)

A recursion for V Π(µ, ν) is now obtained by separating out the i = 0 term from (7), using (8) for the possible transitions to
(µ1, ν1), and then reusing the definition of V Π(µ, ν) in (7). This yields

V Π(µ, ν) = π(µ− c) + γ

[
πµV Π

(
µν + 1

ν + 1
, ν + 1

)
+ π(1− µ)V Π

(
µν

ν + 1
, ν + 1

)
+ (1− π)V Π(µ, ν)

]
, (9)

where π = Π(µ, ν) to simplify notation. The first term π(µ− c) is the immediate reward and the quantity in square brackets
is the expected future reward, discounted by γ. Solving the previous equation for V Π(µ, ν) yields

V Π(µ, ν) =
π

1− γ + γπ

(
µ− c+ γ

[
µV Π

(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V Π

(
µν

ν + 1
, ν + 1

)])
. (10)

An optimal policy is obtained recursively by assuming that it is followed from state ν+1 onward, which replaces V Π(·, ν+1)
in (10) by the optimal value V ∗(·, ν + 1), and then maximizing the right-hand side of (10) with respect to the current action
π (Bertsekas, 2005):

V ∗(µ, ν) = max
π∈[0,1]

π

1− γ + γπ

(
µ− c+ γ

[
µV ∗

(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V ∗

(
µν

ν + 1
, ν + 1

)])
︸ ︷︷ ︸

Ṽ (µ,ν)

. (11)

The key observation is that the dependence on π is confined to the first factor above and is moreover monotonically increasing
or decreasing depending on the sign of Ṽ (µ, ν). It follows that V ∗(µ, ν) = max{Ṽ (µ, ν), 0}, which proves the theorem.

A.2. Proof of Propositions 2 and 3

Both propositions are proven by induction over decreasing ν. Technically, the proofs are only for the approximations
V N (µ, ν) to V ∗(µ, ν) described in Section 3. However by taking N →∞, V N → V ∗ and the properties extend to V ∗ as
well. The proofs also require the following lemma pertaining to convex functions.

Lemma 1. Let f : R 7→ R be convex. Then for any x and α ∈ [0, 1], αf(x+(1−α)δ)+(1−α)f(x−αδ) is non-decreasing
in δ ≥ 0.
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This lemma can be proved graphically by drawing chords that intersect f(x) at x− αδ and x+ (1− α)δ for increasing δ.
An algebraic proof is provided below.

Proof. Let 0 ≤ δ1 ≤ δ2. By the convexity of f ,

f(x+ (1− α)δ1) ≤
(

1− δ1
δ2

)
f(x) +

δ1
δ2
f(x+ (1− α)δ2),

f(x− αδ1) ≤
(

1− δ1
δ2

)
f(x) +

δ1
δ2
f(x− αδ2).

Multiplying the first inequality by α, the second inequality by 1− α, and summing,

αf(x + (1 − α)δ1) + (1 − α)f(x − αδ1) ≤
(

1− δ1
δ2

)
f(x) +

δ1
δ2

[αf(x+ (1− α)δ2) + (1− α)f(x− αδ2)] .

Since we also have
f(x) ≤ αf(x+ (1− α)δ2) + (1− α)f(x− αδ2),

the result follows, i.e.

αf(x+ (1− α)δ1) + (1− α)f(x− αδ1) ≤ αf(x+ (1− α)δ2) + (1− α)f(x− αδ2).

For Proposition 2, the base case is ν = N + 1, for which V N (µ,N + 1) = V ∗(µ,∞) = max{µ− c, 0}/(1− γ) is both
non-decreasing and convex in µ. Appendix A.2.1 proves the inductive step, i.e. that V N (µ, ν + 1) being non-decreasing and
convex in µ implies the same for V N (µ, ν), with the help of Lemma 1.

For Proposition 3, the base case requires showing that V N (µ,N) ≥ V N (µ,N + 1) = V ∗(µ,∞), where V N (µ,N) is
obtained from (3) with V ∗(µ,∞) in place of V ∗(µ, ν + 1). This calculation is shown in Appendix A.2.2. The inductive
step follows in Appendix A.2.2, again using Lemma 1.

A.2.1. PROOF OF PROPOSITION 2: INDUCTIVE STEP

We wish to show that V N (µ, ν) is non-decreasing and convex given that V N (µ, ν + 1) has these properties. Since
V N (µ, ν) = max{Ṽ (µ, ν), 0} and Ṽ (µ, ν) = µ− c+ γV̄ (µ, ν), where

V̄ (µ, ν) = µV N
(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V N

(
µν

ν + 1
, ν + 1

)
,

it suffices to show that V̄ (µ, ν) is non-decreasing and convex. This is because these properties are preserved under addition
with the function µ− c, which is increasing and convex, and under the pointwise maximum with the zero function (also
convex).

To show that V̄ (µ, ν) is non-decreasing in µ, let µ1 ≤ µ2. Then

V̄ (µ2, ν)− V̄ (µ1, ν)

= µ2V
N

(
µ2ν + 1

ν + 1
, ν + 1

)
+ (1− µ2)V N

(
µ2ν

ν + 1
, ν + 1

)
− µ1V

N

(
µ1ν + 1

ν + 1
, ν + 1

)
− (1− µ1)V N

(
µ1ν

ν + 1
, ν + 1

)
= (µ2 − µ1)

[
V N

(
µ2ν + 1

ν + 1
, ν + 1

)
− V N

(
µ2ν

ν + 1
, ν + 1

)]
+ µ1

[
V N

(
µ2ν + 1

ν + 1
, ν + 1

)
+ V N

(
µ1ν

ν + 1
, ν + 1

)
− V N

(
µ2ν

ν + 1
, ν + 1

)
− V N

(
µ1ν + 1

ν + 1
, ν + 1

)]
+

[
V N

(
µ2ν

ν + 1
, ν + 1

)
− V N

(
µ1ν

ν + 1
, ν + 1

)]
.
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In the final right-hand side above, the first and third quantities in square brackets are non-negative because of the inductive
assumption that V N (µ, ν + 1) is non-decreasing in µ. The second bracketed quantity is also shown to be non-negative by
applying Lemma 1 to V N (µ, ν + 1), assumed to be convex in µ, with

x =
ν(µ2 + µ1) + 1

2(ν + 1)
, α =

1

2
, δ1 =

ν(µ2 − µ1)− 1

2(ν + 1)
≤ δ2 =

ν(µ2 − µ1) + 1

2(ν + 1)
.

Thus V̄ (µ2, ν)− V̄ (µ1, ν) ≥ 0 as required.

To show that V̄ (µ, ν) is convex in µ, we require

αV̄ (µ1, ν) + (1− α)V̄ (µ2, ν) ≥ V̄ (αµ1 + (1− α)µ2, ν) (12)

for α ∈ [0, 1]. The left-hand side yields

αV̄ (µ1, ν) + (1− α)V̄ (µ2, ν)

= αµ1V
N

(
µ1ν + 1

ν + 1
, ν + 1

)
+ (1− α)µ2V

N

(
µ2ν + 1

ν + 1
, ν + 1

)
+ α(1− µ1)V N

(
µ1ν

ν + 1
, ν + 1

)
+ (1− α)(1− µ2)V N

(
µ2ν

ν + 1
, ν + 1

)
≥ (αµ1 + (1− α)µ2)V N

(
ν

ν + 1

αµ2
1 + (1− α)µ2

2

αµ1 + (1− α)µ2
+

1

ν + 1
, ν + 1

)
+ (1− αµ1 − (1− α)µ2)V N

(
ν

ν + 1

α(1− µ1)µ1 + (1− α)(1− µ2)µ2

1− αµ1 − (1− α)µ2
, ν + 1

)
(13)

where the convexity of V N (µ, ν + 1) has been applied separately to the second line and third line above (note α(1− µ1) +
(1− α)(1− µ2) = 1− αµ1 − (1− α)µ2). The right-hand side of (12) is

V̄ (αµ1 + (1− α)µ2, ν) = (αµ1 + (1− α)µ2)V N
(
ν(αµ1 + (1− α)µ2) + 1

ν + 1
, ν + 1

)
+ (1− αµ1 − (1− α)µ2)V N

(
ν(αµ1 + (1− α)µ2)

ν + 1
, ν + 1

)
. (14)

The right-hand sides of (13) and (14) are both convex combinations of V N (µ, ν + 1) with the same weights, which
suggests using Lemma 1 (with α← αµ1 + (1− α)µ2) to compare them. With the two terms in (14) playing the roles of
f(x+ (1− α)δ) and f(x− αδ) in Lemma 1, we find

x = (αµ1 + (1− α)µ2)
ν(αµ1 + (1− α)µ2) + 1

ν + 1
+ (1− αµ1 − (1− α)µ2)

ν(αµ1 + (1− α)µ2)

ν + 1

=
ν(αµ1 + (1− α)µ2)

ν + 1
+
αµ1 + (1− α)µ2

ν + 1

= αµ1 + (1− α)µ2,

and a similar calculation with (13) yields the same value for x. Furthermore, comparing the arguments of the first terms in
(13) and (14),

ν

ν + 1

αµ2
1 + (1− α)µ2

2

αµ1 + (1− α)µ2
+

1

ν + 1
− ν(αµ1 + (1− α)µ2) + 1

ν + 1
=

ν

ν + 1

αµ2
1 + (1− α)µ2

2 − (αµ1 + (1− α)µ2)2

αµ1 + (1− α)µ2
≥ 0,

where the inequality is due to the convexity of the function µ 7→ µ2. This indicates that the δ corresponding to (13) (which
will not be computed explicitly) is greater than or equal to the δ corresponding to (14). Lemma 1 then implies that the
right-hand side of (13) is greater than or equal to the right-hand side of (14), thus completing the proof of (12). (Note that
this proof of convexity only required V N (µ, ν + 1) to be convex in µ, not necessarily non-decreasing.)
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A.2.2. PROOF OF PROPOSITION 3

First the base case is proven, i.e. V N (µ,N) ≥ V N (µ,N+1), where V N (µ,N+1) = V ∗(µ,∞) = max{µ−c, 0}/(1−γ)
and V N (µ,N) is given by recursion (3) (with V ∗ replaced by V N ). There are three cases corresponding to where the
arguments on the right-hand side of (3), (µN)/(N + 1) and (µN + 1)/(N + 1), fall with respect to the threshold c.

Case (µN + 1)/(N + 1) ≤ c: Since this implies (µN)/(N + 1) < c and µ ≤ c, we have

V N
(
µN + 1

N + 1
, N + 1

)
= V N

(
µN

N + 1
, N + 1

)
= 0

and the right-hand side of (3) yields V N (µ,N) = 0. This is equal to V N (µ,N + 1) = 0.

Case (µN)/(N + 1) > c: This implies (µN + 1)/(N + 1) > c and µ > c as well. V N (µ,N + 1) is then a linear function
over the interval [(µN)/(N + 1), (µN + 1)/(N + 1)] and

µV N
(
µN + 1

N + 1
, N + 1

)
+ (1− µ)V N

(
µN

N + 1
, N + 1

)
= V N (µ,N + 1) =

µ− c
1− γ

.

Eq. (3) then gives

V N (µ,N) = max

{
µ− c+ γ × µ− c

1− γ
, 0

}
=
µ− c
1− γ

= V N (µ,N + 1).

Case (µN)/(N + 1) ≤ c < (µN + 1)/(N + 1): Only one of the V N (·, N + 1) terms in (3) is non-zero, resulting in

V N (µ,N) = max

{
µ− c+

γµ

1− γ

(
µN + 1

N + 1
− c
)
, 0

}
= max

(µ− c)
(

1 +
γµ

1− γ

)
+

γµ(1− µ)

(1− γ)(N + 1)︸ ︷︷ ︸
Ṽ (µ,N)

, 0

 .

In comparison,

V N (µ,N + 1) = max
{
Ṽ (µ,N + 1), 0

}
, Ṽ (µ,N + 1) =

µ− c
1− γ

.

Subtracting,

Ṽ (µ,N)− Ṽ (µ,N + 1) = (µ− c)γ(µ− 1)

1− γ
+

γµ(1− µ)

(1− γ)(N + 1)

=
γ(1− µ)

1− γ

(
c− µ+

µ

N + 1

)
≥ 0

because (µN)/(N + 1) ≤ c for this case. It follows that V N (µ,N) ≥ V N (µ,N + 1).

Now for the inductive step, assume that V N (µ, ν) ≥ V N (µ, ν + 1). Then

V N (µ, ν − 1) = max

{
µ− c+ γ

[
µV N

(
µ+

1− µ
ν

, ν

)
+ (1− µ)V N

(
µ− µ

ν
, ν
)]
, 0

}
≥ max

{
µ− c+ γ

[
µV N

(
µ+

1− µ
ν

, ν + 1

)
+ (1− µ)V N

(
µ− µ

ν
, ν + 1

)]
, 0

}
≥ max

{
µ− c+ γ

[
µV N

(
µ+

1− µ
ν + 1

, ν + 1

)
+ (1− µ)V N

(
µ− µ

ν + 1
, ν + 1

)]
, 0

}
= V N (µ, ν),

where the second inequality follows from the convexity of V N (µ, ν + 1) in µ (Proposition 2) and application of Lemma 1
with x = µ, α = µ, and δ1 = 1/ν > δ2 = 1/(ν + 1).
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A.3. Proof of Proposition 4

As in the proofs of Propositions 2 and 3, we work with the approximation V N (µ, ν) to the optimal value function and then
take N →∞. The proposition is proven by deriving a piecewise-linear upper bound U(µ, ν) on V N (µ, ν). The µ-intercept
of U(µ, ν), i.e., the largest µ for which U(µ, ν) = 0, then provides a lower bound on cν , the µ-intercept of V N (µ, ν).
Piecewise linearity allows the µ-intercept of U(µ, ν) to be expressed straightforwardly in closed form.

We again use induction over decreasing ν to derive the upper bound U(µ, ν). For the base case ν = N+1, V N (µ,N+1) =
V ∗(µ,∞) = max{µ− c, 0}/(1− γ) is already piecewise-linear, so we take

U(µ,N + 1) = V N (µ,N + 1) = max

{
µ− c
1− γ

, 0

}
. (15)

Note that U(µ,N + 1) is of the form

U(µ, ν) = max

{
1− c
1− γ

µ− cν
1− cν

, 0

}
(16)

with µ-intercept cN+1 = c.

For the inductive step, assume V N (µ, ν + 1) ≤ U(µ, ν + 1) and that U(µ, ν + 1) has the form in (16) with cν+1 ≤ c. Then
from recursion (3) and using the fact that V N (µ, ν + 1) is non-decreasing in µ (Proposition 2),

V N (µ, ν) = max

{
µ− c+ γ

[
µV N

(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V N

(
µν

ν + 1
, ν + 1

)]
, 0

}
≤ max

{
µ− c+ γV N

(
µν + 1

ν + 1
, ν + 1

)
, 0

}
≤ max

{
µ− c+ γU

(
µν + 1

ν + 1
, ν + 1

)
, 0

}
:= U(µ, ν). (17)

It must now be shown that the upper bound U(µ, ν) defined above is also of the form in (16) with intercept cν ≤ c. First,
since U(µ, ν + 1) is piecewise-linear and non-decreasing in µ, so too is U(µ, ν) as these properties are preserved by (17).
Moreover, the leftmost piece is identically zero, as in (16), and its right endpoint is the intercept cν . Second, there are two
possibilities at cν :

U

(
cνν + 1

ν + 1
, ν + 1

)
> 0, (18a)

U

(
cνν + 1

ν + 1
, ν + 1

)
= 0. (18b)

If the latter case (18b) is true, then since cν is by definition the largest value such that U(cν , ν) = 0, (17) implies cν = c.
This however leads to a contradiction because (cν + 1)/(ν + 1) > c while cν+1 ≤ c by assumption, and hence substitution
into (16) shows that case (18a) is actually true. Given (18a) then, we must have

U

(
µν + 1

ν + 1
, ν + 1

)
=

1− c
1− γ

(µν + 1)/(ν + 1)− cν+1

1− cν+1

> 0 ∀ µ ≥ cν

since U(µ, ν + 1) is non-decreasing. Equation (17) can therefore be rewritten as

U(µ, ν) = max

{
µ− c+ γ

1− c
1− γ

(µν + 1)/(ν + 1)− cν+1

1− cν+1

, 0

}
, (19)

which is a non-decreasing piecewise-linear function with two pieces, like (16). Furthermore, we must have cν ≤ c, since
(19) shows that U(µ, ν) > 0 for µ > c. Lastly, we use (17) or (19) to check

U(1, ν) = 1− c+ γ
1− c
1− γ

=
1− c
1− γ

,

in agreement with (16). We conclude that U(µ, ν) is also given by (16) for some cν ≤ c.
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The next step is to derive a recursion for cν in terms of cν+1, toward obtaining an explicit expression for cν . The intercept
cν is the value of µ for which the first term on the right-hand side of (19) is equal to zero. Hence

cν − c+ γ
1− c
1− γ

(cνν + 1)/(ν + 1)− cν+1

1− cν+1

= 0,

cν − c+ γ
1− c
1− γ

1

1− cν+1

(
ν

ν + 1
(cν − cν+1) +

1− cν+1

ν + 1

)
= 0.

Multiplying through by (1− γ)(ν + 1) and adding and subtracting c in the numerator,

(1− γ)(ν + 1)(cν − c) + γ(1− c)
(
ν
cν − c+ c− cν+1

1− cν+1

+ 1

)
= 0.

Rearranging to solve for c− cν ,[
(1− γ)(ν + 1) + γν

1− c
1− cν+1

]
(c− cν) = γ(1− c)

(
ν
c− cν+1

1− cν+1

+ 1

)
,[

ν + 1− γ
(
ν
c− cν+1

1− cν+1

+ 1

)]
(c− cν) = γ

(
ν
c− cν+1

1− cν+1

+ 1

)
(1− c),

c− cν =
γ
(
ν
c−cν+1

1−cν+1
+ 1
)

ν + 1− γ
(
ν
c−cν+1

1−cν+1
+ 1
) (1− c), (20)

which is the desired recursion.

For the case ν = N , we have cN+1 = c so (20) simplifies to

c− cN =
γ

N + 1− γ
(1− c). (21)

For ν < N , based on (20) and (21), we postulate that c− cν has the general form

c− cν =
Pν(γ)

ν + 1− Pν(γ)
(1− c), ν = N,N − 1, . . . , (22)

where Pν(γ) is a polynomial in γ, and PN (γ) = γ. From (22), we also obtain

1− cν = 1− c+ c− cν =

(
1 +

Pν(γ)

ν + 1− Pν(γ)

)
(1− c) =

ν + 1

ν + 1− Pν(γ)
(1− c),

c− cν
1− cν

=
Pν(γ)

ν + 1
. (23)

Substituting (23) into (20),

c− cν =
γ
(

ν
ν+2Pν+1(γ) + 1

)
ν + 1− γ

(
ν
ν+2Pν+1(γ) + 1

) (1− c).

Comparing the above to (22), we find

Pν(γ) = γ

(
ν

ν + 2
Pν+1(γ) + 1

)
. (24)

Thus if Pν+1(γ) is a polynomial, so too is Pν(γ).

An explicit expression for Pν(γ) can be obtained from the recursion in (24), and hence for c− cν in (22) as well. From (24),
it can be seen that Pν(γ) is a polynomial of degree N + 1− ν. Because of the recursive multiplication by ν/(ν + 2), we
postulate that its coefficients are given by rising factorials, defined as

(ν)p =

{
ν(ν + 1) . . . (ν + p− 1), p > 0,

1, p = 0.
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Specifically, let

Pν(γ) = γ

N−ν∑
p=0

(ν)p
(ν + 2)p

γp. (25)

Substituting this into the right-hand side of (24) to verify:

γ

(
ν

ν + 2
Pν+1(γ) + 1

)
= γ

(
ν

ν + 2
γ

N−ν−1∑
p=0

(ν + 1)p
(ν + 3)p

γp + 1

)

= γ

(
1 +

N−ν−1∑
p=0

ν(ν + 1)p
(ν + 2)(ν + 3)p

γp+1

)

= γ

N−ν∑
p=0

(ν)p
(ν + 2)p

γp,

in agreement with (25).

We now take N →∞ and recognize the resulting infinite power series in (25) as a Gaussian hypergeometric function:

Pν(γ) = γ · 2F1(1, ν; ν + 2; γ). (26)

Substituting (26) into (22) and using c− cν to upper bound c− cν establishes the first upper bound in the proposition.

The second, looser upper bound in the proposition comes from combining two upper bounds on the hypergeometric function.
For the first bound, the ratio of rising factorials is bounded by 1 to yield

2F1(1, ν; ν + 2; γ) =

∞∑
p=0

(ν)p
(ν + 2)p

γp ≤
∞∑
p=0

γp =
1

1− γ
. (27)

The second upper bound results from writing

(ν)p
(ν + 2)p

=
ν(ν + 1)

(ν + p)(ν + p+ 1)
= ν(ν + 1)

(
1

ν + p
− 1

ν + p+ 1

)
, p ≥ 2,

where the first equality is due to cancellation. Hence

2F1(1, ν; ν + 2; γ) = 1 +
ν

ν + 2
γ + ν(ν + 1)

∞∑
p=2

(
1

ν + p
− 1

ν + p+ 1

)
γp

= 1 +
ν

ν + 2
γ +

ν(ν + 1)

ν + 2
γ2 +

∞∑
p=2

γp+1 − γp

ν + p+ 1
.

The hypergeometric function is then bounded by its limit as γ → 1, as follows:

2F1(1, ν; ν + 2; γ) ≤ 1 +
ν

ν + 2
+
ν(ν + 1)

ν + 2
= ν + 1. (28)

The second upper bound in the proposition follows from (27) and (28).

A.4. Proof of Proposition 5

This proposition is also proven by induction over decreasing ν. For the base case ν = N + 1,

V N (µ,N + 1) = V ∗(µ,∞) = max

{
µ− c
1− γ

, 0

}
≤ V ∗(µ,N + 1) ≤ U(µ,N + 1) = max

{
1− c
1− γ

µ− cN+1

1− cN+1

, 0

}
,
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where the first inequality is due to Proposition 3 and the second due to the upper bound U(µ, ν) (16) established in the proof
of Proposition 4. Looking at the piecewise-linear expressions for V N (µ,N + 1) and U(µ,N + 1), the largest difference
between them occurs at µ = c. Hence

U(µ,N + 1)− V N (µ,N + 1) ≤ 1− c
1− γ

c− cN+1

1− cN+1

− 0.

Using (23),

U(µ,N + 1)− V N (µ,N + 1) ≤ 1− c
1− γ

PN+1(γ)

N + 2
.

Summarizing the base case, we have

V N (µ,N + 1) ≤ V ∗(µ,N + 1) ≤ U(µ,N + 1) ≤ V N (µ,N + 1) +
1− c
1− γ

PN+1(γ)

N + 2
∀ µ ∈ [0, 1]. (29)

For the inductive step, assume that a slight generalization of (29) holds,

V N (µ, ν + 1) ≤ V ∗(µ, ν + 1) ≤ V N (µ, ν + 1) + γN−ν
1− c
1− γ

PN+1(γ)

N + 2
∀ µ ∈ [0, 1], (30)

where the last term is further discounted by γN−ν . Then from recursion (3) and using (30),

V N (µ, ν) = max

{
µ− c+ γ

[
µV N

(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V N

(
µν

ν + 1
, ν + 1

)]
, 0

}
≤ max

{
µ− c+ γ

[
µV ∗

(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V ∗

(
µν

ν + 1
, ν + 1

)]
, 0

}
= V ∗(µ, ν)

≤ max

{
µ− c+ γ

[
µV N

(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V N

(
µν

ν + 1
, ν + 1

)
+ γN−ν

1− c
1− γ

PN+1(γ)

N + 2

]
, 0

}
≤ max

{
µ− c+ γ

[
µV N

(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V N

(
µν

ν + 1
, ν + 1

)]
, 0

}
+ γN+1−ν 1− c

1− γ
PN+1(γ)

N + 2

= V N (µ, ν) + γN+1−ν 1− c
1− γ

PN+1(γ)

N + 2
. (31)

The last inequality follows from max{a+ b, 0} ≤ max{a, 0}+ b for b ≥ 0. This completes the induction. The proposition
results after substituting (26) for PN+1(γ) into (31), rewriting (1− c)/(1− γ) = V ∗(1, ν), and rearranging.

A.5. Proof of Theorem 6

To formalize the claim that the optimal finite-domain policy consists of parallel optimal homogeneous policies, define

V Π(x;µ0(x), ν0(x)) = E

[
Π(x0)(ρ0(x0)− c) +

∑
i>0:xi=x

γiΠ(xi)(ρi(xi)− c)

∣∣∣∣∣ x0 = x, ρ0(x) ∼ B(µ0(x), ν0(x))

]
(32)

as the expected discounted sum of rewards conditioned on x0 = x and restricted to xi = x thereafter. Here, ρi(x) is the
posterior success probability at x before individual i arrives, which has a beta distribution with parameters µi(x), νi(x),
and µ0(x), ν0(x) represent the initial state. It can be shown that the unrestricted sum of rewards in (1) is a weighted sum
of V Π(x;µ0(x), ν0(x)) over x ∈ X (the weights are related to the expected time of first occurrence of xi = x). Hence it
suffices to maximize each V Π(x;µ0(x), ν0(x)) independently.

The value function V Π(x;µ0(x), ν0(x)) (32) obeys a similar recursion as in (9). Specifically, the first term at time index
i = 0, π(µ− c), is the same (modulo additional notation), and the quantity in square brackets in (9) is also the same because
the same state transitions (of either (µ, ν) or (µi(x), νi(x))) occur with the same probabilities. The difference is that the
time of next occurrence of xi = x is random, which affects the discount factor in front of the square brackets in (9). Define
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I(x) to be the time index of the first occurrence of xi = x after i = 0. Conditioned on I(x) = i, the discount factor is γi.
Taking an expectation over I(x), the recursion for V Π(x;µ0(x), ν0(x)) is therefore

V Π(x;µ0(x), ν0(x)) = π(µ0(x)− c) + E
[
γI(x)

] [
πµ0(x)V Π

(
x;
µ0(x)ν0(x) + 1

ν0(x) + 1
, ν0(x) + 1

)
+ π(1− µ0(x))V Π

(
x;
µ0(x)ν0(x)

ν0(x) + 1
, ν0(x) + 1

)
+ (1− π)V Π(x;µ0(x), ν0(x))

]
,

where π = Π(µ0(x), ν0(x)). We define γ̄(x) := E
[
γI(x)

]
to be the effective discount factor at x. Since I(x) follows a

geometric distribution with parameter equal to p(x), the probability of X = x, we have

γ̄(x) =

∞∑
i=1

γip(x)(1− p(x))i−1 =
γp(x)

1− γ(1− p(x))

as in (4).

B. Additional Examples of Optimal Homogeneous Value Functions
Figure 4 shows additional examples of optimal value function approximations V N (µ, ν) for γ = 0.95 to complement
Figure 1.
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Figure 4. Optimal value function approximations V N (µ, ν) for N = 1000, c = 0.8, and γ = 0.95.

C. The Homogeneous Case with Undiscounted Average Reward
This appendix briefly considers the case of undiscounted average reward,

lim
N→∞

E

[
1

N

N−1∑
i=0

πi(ρi − c)

]
, (33)

in the homogeneous setting. The same POMDP approach is followed, where ρi refers to the beta posterior distribution for
the success probability, parametrized by belief state (µi, νi). Let πi = Π(µi, νi) be the acceptance probability given by a
policy Π for state (µi, νi); the expected immediate reward is then πi(µi − c), recalling that µi = E [ρi]. Define

V Π
i (µi, νi) =

1

N

N−1∑
j=i

E [πj(µj − c) | µi, νi] (34)

to be the sum of rewards, divided by N , starting from individual i under policy Π. We wish to maximize V Π
0 (µ0, ν0) in the

limit N →∞. As the number of observations νi →∞, we again have µi → ρ by the law of large numbers and optimal
reward V ∗i (µ,∞) = max{µ− c, 0}.
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Equation (34) can be rewritten as a recursion using the same state transition probabilities as in (8):

V Π
i (µi, νi) =

1

N
πi(µi− c) + πiµiV

Π
i+1

(
µiνi + 1

νi + 1
, νi + 1

)
+ πi(1− µi)V Π

i+1

(
µiνi
νi + 1

, νi + 1

)
+ (1− πi)V Π

i+1(µi, νi).

Taking the limit N →∞, the first term vanishes and the sample index i again ceases to matter, i.e., V Π
i+1 → V Π

i = V Π and
the subscript i is dropped elsewhere. The result can be rearranged to yield

π

(
V Π(µ, ν)− µV Π

(
µν + 1

ν + 1
, ν + 1

)
− (1− µ)V Π

(
µν

ν + 1
, ν + 1

))
= 0.

There are two cases corresponding to choices of actions: Either π = Π(µ, ν) = 0, which stops the state evolution and results
in zero reward, V Π(µ, ν) = 0, or π > 0 and the value function satisfies

V Π(µ, ν) = µV Π

(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V Π

(
µν

ν + 1
, ν + 1

)
. (35)

Below it is shown that the choice π > 0 leads to non-negative value V Π(µ, ν) ≥ 0 and is hence preferred in all states (µ, ν).

Theorem 7. Policies that maximize undiscounted infinite-horizon average reward accept individuals with positive probability
Π(µ, ν) > 0 in all belief states (µ, ν).

Proof. In each belief state (µ, ν), there are two choices for the acceptance probability π = Π(µ, ν): either stop (π = 0)
with zero reward V Π(µ, ν) = 0, or accept with some positive probability, in which case V Π(µ, ν) is given by (35). To
determine the optimal action by dynamic programming, we assume that an optimal policy is used from state ν + 1 onward,
thus replacing V Π(·, ν + 1) by V ∗(·, ν + 1) on the right-hand side of (35). It follows that π > 0 is optimal if this right-hand
side is non-negative. This in turn is true if V ∗(µ, ν + 1) is convex in µ and non-negative, since Jensen’s inequality would
imply

V Π(µ, ν) = µV ∗
(
µν + 1

ν + 1
, ν + 1

)
+ (1− µ)V ∗

(
µν

ν + 1
, ν + 1

)
≥ V ∗(µ, ν + 1) ≥ 0. (36)

It is now shown by induction over decreasing ν that V ∗(µ, ν) is convex in µ and non-negative for all ν, implying by the
previous argument that Π(µ, ν) > 0 is optimal for all states. More precisely, we again consider approximations V N (µ, ν)
to V ∗(µ, ν), initialized by setting V N (µ,N + 1) = V ∗(µ,∞) = max{µ− c, 0}. By taking N →∞, the proof extends to
optimal policies.

The base case ν = N + 1 is simply given by the initialization V N (µ,N + 1) = max{µ − c, 0}, since this is a convex
and non-negative function. It then suffices to establish convexity for ν = N,N − 1, . . . since (36) would then show that
V N (µ, ν) is non-increasing in ν, not just non-negative. This inductive step corresponds exactly with the proof of convexity
of the function V̄ (µ, ν) in the proof of Proposition 2 (Appendix A.2.1).

Theorem 7 shares a similar spirit with the exploring policies in (Kilbertus et al., 2020), which assign positive acceptance
probability to all subsets of X with positive probability under p(x). It clearly contrasts with Theorem 1 for the case of
discounted total reward, where stopping sets are optimal.

Theorem 7 however does not provide further guidance on selecting a policy. It does not even distinguish between an
always-accept policy Π(µ, ν) ≡ 1 and a stochastic one, Π(µ, ν) = π ∈ (0, 1), which spends a geometrically distributed
amount of time in state ν before eventually moving to ν+1. Intuitively, this seems to be because the lack of a discount factor
means that any short-term cost incurred in learning the parameter ρ is trumped by eventual long-term reward. Indeed, one
can conceive of the following two-phase N -step policy (with N →∞): The first “explore” phase learns ρ using a number
of samples N1 that increases to infinity but sublinearly in N , for example using the always-accept policy Π(µ, ν) ≡ 1. The
second (N −N1)-step phase simply “exploits” this knowledge using the threshold policy 1(µ > c). Future work could
consider the analysis of these and similar policies.
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D. Additional Experimental Details and Results
D.1. Re-Implementations and Modifications of Baselines

D.1.1. CONSEQUENTIAL LEARNING (CL, CLVW)

As mentioned in Section 6.1, due to unavailabilty of code, the CL algorithm (Kilbertus et al., 2020, Alg. 1) was re-
implemented for the case of no fairness penalty (λ = 0) and policy updates after every observation (N = 1). The latter also
implies no mini-batches (B = M = 1).

Given N = 1, the update to the policy parameters θ has a simple form. From a combination of Kilbertus et al. (2020, eq. (9),
(10)) (and using their notation), the stochastic gradient approximation is given by

∇θtvP (πθt) = ∇θtu
(
πθt , πθt−1

)
≈ yi − c
πθt−1(D = 1 | xi)

ED∼πθt [D∇θt log πθt(D | xi)]

=
yi − c

πθt−1
(D = 1 | xi)

∇θtπθt(D = 1 | xi).

The last equality is due to D being Bernoulli (with parameter πθt(D = 1 | xi)) and contrasts with Kilbertus et al. (2020),
who sample D instead of evaluating the expectation. Substituting in the gradient of the logistic policy from Kilbertus et al.
(2020),

∇θtvP (πθt) ≈
yi − c

πθt−1(D = 1 | xi)
πθt(D = 1 | xi) (1− πθt(D = 1 | xi))xi.

Since θt is initialized to θt−1, we have

∇θtvP (πθt−1
) ≈ (yi − c)

(
1− πθt−1

(D = 1 | xi)
)
xi

and hence the update
θt = θt−1 + α(yi − c)

(
1− πθt−1

(D = 1 | xi)
)
xi. (37)

A similar expression holds for the semi-logistic policy from (Kilbertus et al., 2020). However, only the results of the logistic
policy are reported as it is found to be better than semi-logistic.

To initialize the policy, Kilbertus et al. (2020) prescribe training a logistic predictive model for Y on fully labelled examples.
Herein this is done on the B0 initial training examples and also in an online fashion via the stochastic gradient update

θt = θt−1 + α
(
yi − πθt−1(D = 1 | xi)

)
xi. (38)

The updates in (37) and (38) are “plain” stochastic gradient updates, whereas VW uses a more sophisticated algorithm. For
this reason, a VW version of Consequential Learning (abbreviated CLVW) was also implemented. Update (38) is replaced
by VW’s update for a standard logistic regression model. For (37), its similarity with (38) is exploited by defining sample
weights

wi =

{
c

1−πθt−1
(D=1 | xi)

πθt−1
(D=1 | xi) , yi = 0,

1− c, yi = 1

to make (37) equivalent to weighted logistic regression with weights wi.

Modifications for finite domains: The core CL algorithm applies with no changes after one-hot encoding X and
instantiating parameters θx for each value x ∈ X . The initialization of θ can be simplified by observing that logistic
regression on the B0 initial training examples corresponds to equating the predicted probability at x, 1/(1 + e−θx), with the
empirical success probability, µB0

(x). Inverting this equation, θx is thus initialized to log(µB0
(x)/(1− µB0

(x))).

D.1.2. REGCB-OPTIMISTIC (R-O, R-OSL)

The VW implementation of RegCB-Optimistic (R-o) did not perform as well in experiments on the FICO and COMPAS
datasets (see Appendix D.5). It is believed that this is due to not taking advantage of the assumption in the selective labels
problem that rejection has zero cost. Thus a specialized version of R-o that does exploit this assumption was implemented,
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referred to as R-osl. As discussed in Section 6.1, due to the zero-cost assumption for rejection, the decision policy reduces
to determining whether the UCB on the estimated conditional mean µ̂(x) exceeds the threshold c.

To compute the UCB on µ̂(x), the BINSEARCH algorithm in Foster et al. (2018, Alg. 3) is used with the following
modifications (in the notation of Foster et al. (2018)):

1. Only acceptances are considered from the history H (line 3), i.e. a′ is restricted to 1 and a = 1 (line 4). The regressor
f(x′, 1) (which corresponds to µ̂(x)) is trained to predict the outcomes yi, i.e. r′ = yi and the loss function is

R(f) =
∑
i:ai=1

(f(xi, 1)− yi)2. (39)

2. The algorithm is terminated as soon as it is known whether the UCB exceeds c. Thus at the beginning, if the current
regressor f predicts f(x, 1) > c, then the decision is to accept since the UCB can only be larger. More generally, the
algorithm terminates with acceptance when the lower bound zL on the UCB exceeds c for the first time, and terminates
with rejection when the upper bound zH on the UCB falls below c.

Modifications for finite domains: R-o was not run in the finite-domain experiments due to its poorer performance.
For R-osl, the conditional mean µ(x) can be computed directly without resorting to a model, and the UCB on µ(x) has
a simple closed form so that BINSEARCH is not needed. Indeed, it can be seen from (39) that R(f) is minimized by
f(x, 1) = µ(x) = σ(x)/ν(x), i.e., the empirical mean conditioned on x where σ(x) is the number of successes and ν(x)
the number of acceptances. Furthermore, it is straightforward to show that the excess loss of a regressor f compared to µ(x)
is

R(f)−min
f
R(f) =

∑
x∈X

ν(x)(f(x, 1)− µ(x))2.

Given a confidence parameter C0, the UCB at x is defined by Foster et al. (2018) as

max f(x, 1) s.t. R(f)−min
f
R(f) ≤ C0.

The maximizing solution is to set f(x′, 1) = µ(x′) for x′ 6= x and maximize f(x, 1) subject to ν(x)(f(x, 1)−µ(x))2 ≤ C0.
This yields

µ(x) +

√
C0

ν(x)
(40)

as the UCB on µ(x). The policy is thus to accept if (40) is greater than c and reject otherwise.

D.2. Supervised Learning Methods

All of the compared policies rely on supervised learning methods for various purposes and these were trained online using
VW. The greedy and homogeneous policies use online logistic regression, both for the conditional mean estimator µ̂(x) as
well as the bootstrap estimators µ̂1(x), . . . , µ̂K(x). CL and CLVW perform online updates as described in Section D.1.1.
For the VW contextual bandit algorithms (εG, B-g, C-nu), the method for policy learning was set to doubly robust, except
for R-o which uses regression with the squared loss. R-osl also uses online linear regression with the squared loss, both
to update the regressor f(x, 1) as acceptances are made, and to temporarily update the regressor with virtual examples of
varying weights w in the BINSEARCH algorithm (lines 6, 7, 12).

Only linear models (linear or logistic regression) were tested in the experiments herein, as also done in Kilbertus et al.
(2020). This is by no means a limitation however as nonlinear models can be substituted straightforwardly, especially those
with efficient online algorithms.

For the finite-domain case, the conditional means µ(x) can be well-estimated by the respective empirical means and a
model is not needed. Following the Bayesian approach in Section 3 of placing a beta prior on the success probability ρ(x),
these empirical means are slightly modified by adding pseudo-counts from the prior. Specifically, the conditional mean
estimate before individual i arrives is µi(x) = σi(x)/νi(x), where the initial numbers of pseudo-successes σ0(x) = 1 and
pseudo-acceptances ν0(x) = 2 correspond to a Beta(1, 1) prior, and σi(x) and νi(x) are the numbers of successes and
acceptances observed at x plus the pseudo-counts. The above method of updating µ(x) is used for all policies. In particular
for TS, the sampling probability Pr(ρi(x) > c) assumes that ρi(x) follows a beta distribution with parameters σi(x) and
νi(x)− σi(x).
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D.3. Algorithm Parameters and Tuning

Algorithm-specific parameters Tables 1 and 2 list the parameters specific to each algorithm and the values explored in
the experiments. Fewer parameters are needed for the finite-domain experiments (Table 1), since e.g. the optimal policies
(O-t, O-e, O-u) compute or estimate effective discount factors γ̄(x) themselves, bagging is replaced by Thompson sampling
which is parameter-free, and for R-osl, the BINSEARCH algorithm is not needed. For the contextual bandit algorithms in
VW (εG, B-g, C-nu, R-o), the parameter ranges are the same as in Bietti et al. (2020). All other parameters are kept at their
defaults except for the online learning rate discussed below. For parameters with multiple values listed, the results shown
in Section 6 and Appendix D.5 are optimized with respect to these values, except for plots depicting sensitivity to these
parameters. Each algorithm has zero or one of these tuning parameters, except for C-nu which has two (Np, ψ).

Table 1. Algorithm-specific parameters and ranges for finite-domain experiments.
Algorithm Parameter Values

Optimal (O-t, O-e, O-u) order N of approximation V N (µ, ν) 1000
Consequential Learning (CL) learning rate α 0.1, 0.3, 1, 3, 10, 30, 100
ε-Greedy (εG) exploration probability ε 0.01, 0.02, 0.05
RegCB-Optimistic Selective Labels (R-osl) confidence width C0 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1

Table 2. Algorithm-specific parameters and ranges for FICO and COMPAS experiments.
Algorithm Parameter Values

Homogeneous (H) discount factor γ̄ 0.999, 0.998, 0.995, 0.99, 0.98, 0.95, 0.9, 0.8, 0.5
number of bootstrap estimators K 10
order N of approximation V N (µ, ν) 1000

Consequential Learning (CL) learning rate α 0.05, 0.1, 0.2, 0.5, 1
Consequential Learning VW (CLVW) learning rate α 1, 2, 5, 10, 20, 50
ε-Greedy (εG) exploration probability ε 0.01, 0.02, 0.05
Greedy Bagging (B-g) number of policies Np 4, 8, 16
Online Cover, no uniform exploration (C-nu) number of policies Np 4, 8, 16

ψ 0.01, 0.1, 1
RegCB-Optimistic (R-o) confidence width C0 0.001, 0.01, 0.1
RegCB-Optimistic Selective Labels (R-osl) confidence width C0 0.005, 0.01, 0.02, 0.05, 0.1

BINSEARCH precision α 0.01

Online learning rate For the real-data experiments (FICO, COMPAS), all policies (including the greedy policy) make use
of online learning as discussed in Section D.2. The learning rate α is tuned over the range {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1},
except for CL and CLVW, which have their own α ranges shown in Table 2. The results shown in Section 6 and Appendix D.5
always correspond to the best of these learning rates.

Initial training size B0 Total reward is plotted as a function of the initial training size B0 in Section 6 and Ap-
pendix D.5. For the finite-domain experiments, B0 ∈ {0, 1, 2, 5, 10} × |X |. For the FICO and COMPAS experiments,
B0 ∈ {1, 10, 20, 30, 40, 50}, except for the greedy policy for which the range is extended to 100 to locate where the total
reward saturates.

D.4. Data Pre-Processing

FICO First, 588 rows with all entries missing (values of −9) are removed. For the outcome variable, “Good”
and “Bad” values are encoded as yi = 1 and yi = 0 respectively. For the MSinceMostRecentDelq fea-
ture, special values of −7 appear to mean more than 84 months (7 years) since the most recent delinquency, based
on correlation with the outcome variable. These −7 values are thus replaced by the maximum value in the data
plus 1. Similarly for the MSinceMostRecentInqexcl7days feature, values of −8 appear to mean more than
24 months since the most recent credit inquiry and are replaced by the maximum plus 1. On the other hand,
MSinceMostRecentInqexcl7days values of −7 appear to mean an inquiry within the last 7 days and are thus
replaced by 0 (months). For MaxDelq2PublicRecLast12M, values greater than 7 (other) were imputed as 7 (current
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and never delinquent) based on the corresponding values in MaxDelqEver. All remaining special values of −8 and −9
are imputed with the mean of the corresponding feature.

COMPAS The same CSV file and filtering of rows are used as in ProPublica’s analysis (Angwin et al.,
2016). Features included are as follows: demographics sex, age, age cat, criminal history priors count,
juv fel count, juv misd count, juv other count, current charge degree c charge degree, and COM-
PAS score decile score, score text. Like in Kilbertus et al. (2020), race was not used. The outcome variable is
two year recid, where re-arrest is encoded as yi = 0 since it is a negative outcome.

After the above pre-processing is done, categorical features are one-hot encoded. Then all features are standardized, as this
was found to improve online learning performance.

D.5. Additional Results

For the finite-domain experiments discussed in Section 6.2, Figures 5 and 6 display the complete set of results for
|X | ∈ {2, 3, 4, 5, 7, 10} and c ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Discounted total rewards (discount factor γ = 0.999) are plotted
as a function of the initial training size B0, as in the first two rows of Figure 2. The overall patterns are the same as in
Figure 2.

For the experiments on the FICO and COMPAS datasets discussed in Section 6.3, Figure 7 is the same as Figure 3 except
that it also includes R-o, which is seen to be less competitive than the other methods.

Figure 8 shows discounted total rewards computed with discount factor γ = 0.9995, as opposed to γ = 1 in Figures 3 and 7.
γ = 0.9995 is chosen so that the sum of truncated discount weights is less than 1% of the total sum for FICO and 5% for
COMPAS, similar to the finite-domain experiments in Section 6.2. The curves have more of a downward tilt as functions of
B0. This is expected because of the slightly greater value placed on early time indices, and hence slightly greater cost to
exploration. Otherwise the conclusions are the same as in Figures 3 and 7.

Figure 9 plots discounted total rewards on the COMPAS dataset with threshold c = 0.8. In this case, the curves for the
greedy (G), homogeneous (H), and R-osl policies coincide, so no policy outperforms greedy.

Table 3 lists the best parameter values corresponding to the results shown in Figures 3, 7, 8, and 9.

Table 3. Best parameter values in FICO and COMPAS experiments. α refers to the learning rate and the rejection pass is discussed in
Section 6.1. See Table 2 for definitions of the other parameters.

Algorithm Parameter Best values

FICO COMPAS c = 0.6 COMPAS c = 0.8

γ = 1 γ = 0.9995 γ = 1 γ = 0.9995 γ = 1 γ = 0.9995

Greedy (G) α 0.5 0.01 0.5 0.5 0.01 0.01
Homogeneous (H) γ̄ 0.99 0.99 0.95 0.95 0.5 0.5

α 1 0.5 0.5 0.5 0.01 0.01
CL α 0.2 0.5 0.5 0.5 0.5 0.5
CLVW α 5 5 5 5 2 5
ε-Greedy (εG) ε 0.01 0.01 0.01 0.01 0.05 0.05

α 0.05 0.05 0.02 0.02 0.1 0.1
rejection pass yes yes yes yes no no

Bagging (B-g) Np 4 4 4 4 4 4
α 0.05 0.1 0.1 0.05 0.2 0.2
rejection pass yes no no no no no

Cover (C-nu) Np 4 4 4 4 4 4
ψ 0.1 0.01 0.1 0.01 0.01 0.01
α 0.02 0.02 0.1 0.1 1 1
rejection pass yes yes no no no no

R-o C0 0.01 0.1 0.001 0.1 0.001 0.01
α 0.05 0.05 0.05 0.02 0.1 0.1
rejection pass yes no no no yes no

R-osl C0 0.02 0.02 0.02 0.02 0.1 0.1
α 0.2 0.2 0.2 0.2 0.02 0.02
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Figure 5. Discounted total rewards (discount factor γ = 0.999) on finite domains X of cardinality 2, 3, 4.
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Figure 6. Discounted total rewards (discount factor γ = 0.999) on finite domains X of cardinality 5, 7, 10.
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Figure 7. Total rewards (discount factor γ = 1) on real-world datasets. The dashed black line indicates the maximum total reward achieved
by the greedy policy (G) at B0 = 80 for FICO and B0 = 90 for COMPAS.
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Figure 9. Discounted total rewards on COMPAS dataset with c = 0.8. The curves for greedy (G), homogeneous (H), and R-osl coincide.


