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Abstract

The surrogate that predicts the performance of
hyperparameters has been a key component for
sequential model-based hyperparameter optimiza-
tion. In practical applications, a trial of a hyper-
parameter configuration may be so costly that a
surrogate is expected to return an optimal config-
uration with as few trials as possible. Observing
that human experts draw on their expertise in a
machine learning model by trying configurations
that once performed well on other datasets, we
are inspired to build a trial-efficient surrogate by
transferring the meta-knowledge learned from his-
torical trials on other datasets. We propose an
end-to-end surrogate named as Transfer Neural
Processes (TNP) that learns a comprehensive set
of meta-knowledge, including the parameters of
historical surrogates, historical trials, and initial
configurations for other datasets. Experiments on
extensive OpenML datasets and three computer
vision datasets demonstrate that the proposed al-
gorithm achieves state-of-the-art performance in
at least one order of magnitude less trials.

1. Introduction

In the pipeline of a machine learning system, model con-
figuration poses daunting challenges: 1) how to choose the
optimal algorithm among hundreds to thousands of machine
learning algorithms? 2) how to configure the optimal hy-
perparameters after an algorithm is specified? Brute-force
exploration, obviously, is prohibitively expensive and im-
practical. Though experts pinpoint a configuration relatively
quickly, practitioners outside machine learning possibly get
bogged down in the meticulous design. These challenges
highlight the critical importance of automating model con-
figuration where automated hyperparameter optimization
(HPO) is investigated in this paper.
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Free from the limitations of exhaustive search (Bergstra &
Bengio, 2012) being computationally expensive and model-
specific methods (Keerthi et al., 2007) being too customiz-
able to be applied in general, sequential model-based opti-
mization (SMBO) has been the current state-of-the-art for
HPO. The core of SMBO is to learn from observed hyper-
parameter performances a surrogate model which maps a
hyperparamter configuration to the measured performance
on a dataset. Sequentially, in each trial, a promising configu-
ration is selected by optimizing the surrogate and thereupon
evaluated; the new observation is incorporated to further
improve the surrogate. While existing surrogate models
including Gaussian Processes (GPs) (Snoek et al., 2012),
parzen estimators (Bergstra et al., 2011), random forest (Hut-
ter et al., 2011), and neural networks (Snoek et al., 2015;
Springenberg et al., 2016) have shown their effectiveness
provided with sufficient observations, it is imperative to re-
turn an optimal configuration in very few trials in real-world
applications where a trial on huge datasets is costly.

Transferring knowledge from historical trials on other
datasets, which we focus on, has been a promising approach
to speed up HPO. The inspiration comes from how ma-
chine learning experts hone their skills in a model — a set of
hyperparameter configurations that perform well on some
explored datasets, especially those bearing striking similar-
ity with the target dataset of interest, are likely qualified
candidates for the target. Following the convention of trans-
fer learning, the most important research question to address
is what to transfer. Existing studies instantiate what to trans-
fer as observations (Schilling et al., 2015; Swersky et al.,
2013; Yogatama & Mann, 2014), parameters of a surrogate
model (Bardenet et al., 2013; Feurer et al., 2018; Perrone
et al., 2018; Wistuba et al., 2016), and initial configurations
to warmstart SMBO (Feurer et al., 2015; Lindauer & Hutter,
2018; Wistuba et al., 2015). Nevertheless, we argue the ne-
cessity of transferring all of them to expedite HPO. Figure 1
shows that transferring only observations, only parameters,
or only initial configurations fails to return a satisfactory
surrogate close to the groundtruth response function.

Unfortunately, simultaneously transferring all these knowl-
edge is non-trivial for GP-based surrogate models. For
example, it is particularly challenging to leverage the param-
eters of previous multitask GP surrogates (Swersky et al.,
2013) where only observations are transferred. Even con-
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Figure 1. Illustration of the necessity of simultaneously transferring observations, parameters, and initial configurations for the surrogate:
(a) historical dataset 1, (b) historical dataset 2, (c) transferring observations only, (d) transferring parameters only, (e) transferring initial
configurations only, and f) transferring the joint of observations, parameters, and initial configurations.

sidering observations to be transferred only, GP surrogates
with cubic scaling are highly inefficient and even impractical
to incorporate abundant past observations, say 10 datasets
each of which has 100 observations. Meanwhile, Neural
Processes (NPs) (Garnelo et al., 2018a), by combining the
best of both GP and neural networks, is known to be effi-
ciently trained with backpropagation and preserve the prop-
erty reminiscent of GP, i.e., defining distributions over func-
tions. Motivated by its recent success, for the first time,
we propose a novel end-to-end hyperparameter optimiza-
tion algorithm with NPs as the surrogate, called Transfer
Neural Processes (TNP). TNP sequentially consists of an
encoder learning the representation of each observation, a
dataset-aware attention unit which attentively aggregates
representations of all observations to infer the latent dis-
tribution of hyperparameter performances, and a decoder
which predicts the performances for target hyperparameter
configurations with uncertainties. More remarkably, em-
powered by the flexibility and simplicity of NPs, TNP is
trained with a meta-learning strategy so that an ensemble
of knowledge is gracefully transferred from all historical
datasets, including observations via the attention unit, pa-
rameter initializations for TNP, and a well-generalized set
of initial configurations to warm-start SMBO.

We summarize our contributions as the following. First, we
introduce NPs to serve as the surrogate model for HPO. Sec-
ond, thanks to the simplicity and flexibility of NPs, we pro-
pose a hyperparameter meta-learning algorithm to achieve
the joint transfer of observations, parameters, and initial con-
figurations. Finally, through comprehensive experiments on
three tasks and more than 100 datasets, we consolidate the
effectiveness and efficiency of TNP.

2. Related Work

One influential line of research to accelerate HPO is to lever-
age knowledge from historical trials on other datasets that
are similar to the target dataset of interest. To measure the
similarity between the target and previous datasets, the ma-
jority have resorted to manually defined meta-features of
a dataset. Feurer et al. (Feurer et al., 2015) proposed to
initialize a hyperparameter search with the best configura-

tions from similar datasets. Similarly, observations from &
nearest neighbour datasets in the meta-feature space are in-
corporated to train the surrogate model together with those
in the target (Schilling et al., 2015; Yogatama & Mann,
2014). Assuming a globally shared GP model, Bardenet
et al. (Bardenet et al., 2013) optimized the model with ob-
servations from all datasets. Each observation is described
as the concatenation of hyperparameters and meta-features.
The downside of these methods comes with the challenge
of meta-features, i.e., being hand-crafted and loosely corre-
lated to the behaviors of hyperparameter performance.

There have been several attempts towards eliminating meta-
features. For example, Wistuba et al. (2015) adopted a
meta-loss to learn a set of initial configurations from past
observations to maximize the performance at the very be-
ginning of SMBO. In (Swersky et al., 2013), a multitask GP
borrows observations of similar datasets where the similarity
as a kernel is learned. Besides, multiple GP experts each of
which is trained on a previous dataset are combined to be the
surrogate for the target dataset, where the ensemble weight
is learned as the generalization error of each expert on the
target (Feurer et al., 2018; Wistuba et al., 2016). Perrone
et al. (2018) conducted Bayesian linear regression with a
feature map learned by a neural network. The shared feature
map is believed to improve knowledge generalization across
datasets. Unfortunately, all these works require a kernel to
be explicitly defined, which gives rise to either poor scaling
for GP-based approaches (Feurer et al., 2018; Swersky et al.,
2013; Wistuba et al., 2015; 2016) or unfeasible algorithm
deployment using standard deep learning libraries for linear
kernel (Perrone et al., 2018). A more recent work (Law et al.,
2019) considers not only the similarity in hyperparameter
performances, but also the similarity in training data distri-
butions. Unfortunately, the feature representation network
requires all datasets to be in the same dimensionality, which
limits its practical use. What is more, unlike ours, these
works assuming the kernel as prior to be globally shared
across datasets fail to accommodate heterogeneous datasets.

There is another line of works transferring the acquisition
function (Volpp et al., 2020; Wistuba et al., 2018), while
our work focuses on speeding up the learning of an accurate
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surrogate model via knowledge transfer. The improved
surrogate is compatible with any acquisition function, and
we will investigate the collective power of the improved
surrogate and an advanced acquisition function in the future.

3. Background and Problem Setup

Given a probability distribution Pp and a dataset D in which
all examples are sampled from Pp, hyperparameter opti-
mization (HPO) aims to identify optimal values for hyper-
parameters x so that the generalization metric is maximized
(e.g., accuracy) or minimized, i.e.,

x" = argmaxEqp, [£(d, Ax(D))] = arg max f(x),

)
where d is a sample drawn from Pp, and Ay (D) represents
the model produced by training an algorithm A equipped
with hyperparameters x on the dataset D. The hyperparame-
ter space X’ could be continuous or discrete. Considering the
difficulty of evaluating the expectation over an unknown dis-
tribution Pp and optimizing it, a hyperparameter response
function f w.r.t. the hyperparameters x is maximized in-
stead. HPO, in this case, is equivalent to maximizing the
black-box function f over X, as there is no knowledge of
the response function f and the search space X.

Sequential ~ Model-based  Bayesian  Optimizaion
(SMBO) (Jones et al.,, 1998) has been a dominant
framework for global optimization of black-box functions.
SMBO consists of two components, i.e., a surrogate model
® to approximate the response function and an acquisition
function a to determine the next hyperparameter configu-
ration to evaluate. Provided with n; initial configurations
X711, ", XIn;» SMBO starts by querying the function
f at these configurations to constitute the initial set of
history observations Ho = {(x71,¥11), -y (Xins, Yin,)}-
Afterwards, it iterates the following four stages: 1) in the
t-th iteration (trial), fit the surrogate ®; on the observations
Hy; 2) use the surrogate ®; to make predictions {/;}%
with uncertainties {5;}%; for ny target configurations
{%,}jZ,; 3) based on the predictions and uncertainties,
the acquisition function a decides the next configuration
x¢ € {X; };le to try; 4) evaluate the function f at x;, and
update the history set H;11 =H:U{(x¢, y+) }-

In the t-th iteration, there are n; + ¢ observations in the
history set H;. In this paper, additionally, we leverage
knowledge from M history sets, i.e., H1T1,~ . ~,7—[7A14M, of
HPO on M datasets, i.e., D', - -, DM In the m-th dataset
D™, there are T observations available in the history set
HE = {(x}7,y")}E|. The goal of this paper lies that by
borrowing strength from these M history sets on M datasets,
the surrogate model can be quickly maximized (equivalent
to maximizing the response function f) with the optimal
hyperparameter configuration returned in less trials.

4. Transferable Neural Processes

In this section, we will detail the Transferable Neural Pro-
cesses (TNP) as the surrogate ®,. We start by illustrating
the neural process model and how we fit the model on the
current observation set H; without transferring from HPO
trials on previous datasets. Next, we highlight how the TNP
meta-learns the knowledge, including parameters for the
surrogate, observations, and the initial set of configurations,
from other datasets to accelerate maximizing the surrogate.

4.1. The Neural Process Model

Neural Processes (NPs) (Garnelo et al., 2018a;b; Kim et al.,
2019), as an alternative to GPs, approaches regression by
learning a distribution over functions that map inputs to
outputs As a result, NPs can support the predictions with
uncertainties and rapidly adapt to a newly incorporated ob-
servation in SMBO. Meanwhile, NPs enjoys the desirable
advantages of scalability with linear scaling.

The neural process model here, based on NPs (Garnelo et al.,
2018a;b; Kim et al., 2019), involves three components. The
encoder, shown in Figure 2, learns an embedding ry € R”
for each observation (x,yy), i.e., ry = Ep (X},y),
Vt'€{1,---,n; + t}. Note that the encoder Fy_ is parame-
terized with a neural network. The dataset-aware attention
unit as the second component summarizes all observations
and produces an order-invariant representation of historical
observations. Mathematically, r, = Ag, (r1, -+, Tn, 44 X;)-
This representation, r, € R, is expected to encode the latent
distribution of hyperparameter performances conditioned
on the whole set of observations H;. We will detail this unit
Ap, with an attention scheme later in Section 4.2. Last but
not the least, the decoder takes the representation r, as well
as a target configuration X; as input, and outputs y; € R?
as predictions on values of f,i.e.,y; = Dy, (r«,%;). The
two values of y; represent the mean /i; and variance &; of
a Gaussian distribution N(fi;, ), respectively. We also
parameterize the decoder Dy, with a neural network. More
architectural details of the neural process model can be
found in Appendix A.1.

We denote the neural process model as TNPg = Ey_ o0 Ay, o
Dy, where 0 = 0.U60,U6,;. Drawing inspiration from (Gar-
nelo et al., 2018b), we train the parameters of the neural
process model, i.e., 8, by following three steps: 1) randomly
shuffle observations in #; and divide them into two parts,

_ th o nr+t .
e.g, Hen={(xe,yp) 'y and M, j ={(xe, ye) }5, 11
2) predict the observations H; 5 conditioned on H, 1,; 3)
maximize the conditional log likelihood,

‘C(,Ht;tht,}_H 9) =
E . p By, [log po ({yer Yo'y [He o (3o i)l ()

where the gradient of the loss is empirically estimated by



Meta-learning Hyperparameter Performance Prediction with Neural Processes

1 1
X) Y N
Dl
1 1 1
le yTl rrrrrr ,rTl, ,,,,,
M M M
x oyt ek p—
M : : ! : ! 2.5
XM M ; L ;
Ty G- g
m ' -
xP oy i@ dataset
pm > encoder |- : aware
xm. m ! : m .
T Y rm— attention
@ T X1j
" dataset-
encoder : aware
QMH ym+ Tny attention
6 (b)
Xn XIm 25

(b)
y" 9;4" =6- avlﬂcﬁ( %L’”,h’,H;’“L’” h|9)
7 _ - =
§=0+e0p —8)
m #;n
7 n ©
: decoder 9; xt =% — aVE Lr({x1;}7,10)
1j prp X1 = X — @V, L1(WX 5o

5. = k
ij—x1j+e(xI7 %Xr)j=1,---,ns

observations from
historical datasets

observations from
current dataset

Figure 2. The Transferable Neural Processes consists of two stages. In the meta-training stage (colored as green), HPO trials on M
historical datasets are leveraged to (b) learn the transferable initializations for parameters of TNP (i.e., 8) and (c) optimize the well-

generalized initial configurations for SMBO (i.e., {Xs1, - -,

X1n; } ). During the meta-test stage (colored as purple), besides drawing on

the initializations for TNP and the initial configurations for SMBO learned in meta-training, TNP also (a) takes all historical observations
from M datasets into consideration. Remarkably, TNP further fine-tunes the parameters initialized with 6 by training on the current
observation set #;, which allows the prior to be quickly tailored for the target dataset of interest.

sampling f and sampling different values of #j,.

4.2. Knowledge Transfer

Dataset-aware attention for leveraging observations
The crux of GPs lies in modelling the similarity between a
target configuration and historical observations — if a target
configuration X; is close to the configuration of the ¢'-th
observation X/, its prediction is expected to be close to ;.
To leverage observations from other datasets, we have to
accommodate another desiderata: discrimination between
datasets. Even if a target configuration X; stays close to x;/,
it is likely that the ¢'-th observation from the m-th dataset
contributes little if the m-th and the target dataset are wildly
different. Based on (Kim et al., 2019) modelling the simi-
larity between in-dataset configurations with the multihead
attention mechanism (Vaswani et al., 2017), we design our
dataset-aware attention unit Ay, as,

ry = A9a (rth-i-l’ o arn1+t7r%ﬂ e ’rYA:[M;)A(j)’
:MultiHead(g(fcj),g(XO:M),ROZM s),
= [head(g(%;), g(X ), R*M )]/},

where X; € H;;, when we train the parameters 0
of the neural process model by conditioning on H, j,
to predict the observations H;pn. ¢(x;) € R is the
query, and g(X%M) serves as the keys with XM =

[X; X1 - s XM] including both in-dataset observations
X ={xy }:L/I:-;ZH and cross-dataset ones X = {x7?}7,",
(Ym = 1,---,M). R*M = [R;R};--;RM] with R =

{ro}p and R™ = {r}}2) (vm = 1,---, M) pro-

vides the values to be attentively aggregated. Each head
of the multihead attention follows head; = softmax (s o
[g(fcj)]ng[W’j]Tg(XOZM)/\/F)RO‘MW3, where W4,
Wg, Wi e R™*4 are parameters. The final values r, are
produced by concatenating all | r/d| heads.

highlight S =
My ><TM)])

We especially
softmax ([1(1X(mrtt=tn) gl (IxXTH .. g
which measures the similarity between the target and
all datasets. Note that 1'*7" denotes a row vector of
all ones in length T™. The 51m11ar1ty is estimated as
s = kg D0, cos(ry, & Zt,, r7%) where we condition
on the mean embedding of the () nearest observations
from the m-th dataset to each configuration x;. cos(-,-)
refers to the cosine similarity between vectors. For more
details about the dataset-aware attention and the similarity
between datasets, please kindly refer to Appendix A.2.
Apart from liberating practitioners from manually defining
meta-features of a dataset, the mean embedding is more
descriptive and pertinent to the HPO behaviours.

Note that when we finally make predictions for target con-

nx
figurations {X;}7~), we have

r.=Ap, (rlv' T4ty riu' T ré\“/IM?Xj)
=MultiHead (g(%,), g(X”"),R"M ),
where in this case the keys X*M = [X;X!; .. XM
include both in-dataset observations X = {x,}// %}

and cross-dataset ones X™ = {x7}7",, and R*M =
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Algorithm 1 Transferable Neural Processes (TNP) for Hy-
perparameter Optimization

Input: Observations on M datasets 7—[%1 . 'HT vy #
of trials T'; acquisition function a; target conﬁguratlons
{x; }?;‘1; fine-tuning rate «; meta update rate ¢; # of
initial configurations n;.
Output: The best hyperparameter configuration x*.
Randomly initialize 0, {x1, }?;1, and set y* =0
for m = 1to M do

Perform k gradient steps on :

O =0 — aVEL(Hw 4 |H, 1.6)

Tm R
X’;j = XIJ O‘VXIJEI({XIJ} £110),
V.] = 1 cyNnr
Update 6 and {X[j}
9—9—!—6( —9) X7; —x1]—|—e(x’f7 X71;)
end for

Query the values of f at {Xr;}},, and obtain the initial
observation set Ho={(X1;,Jr;)} L
fort =1to7 do
Fine-tune TNP by £ gradient steps:
0 = 0 — aVEL( 0)
Fit TNng to Htfli
Xy 4 argMaXye g ynx, a(TNPy, (x))

Evaluate y; = f(x:) and update the observation set
He=Hi—1U{(xe,9¢)}
if y; > y* then
X*7 y* — Xy, Yt
end if
end for
return x*

R;R';
Ym =1,
softmax([l(lx(”1+t)), s11xTH g

s RM] with R={ry }})'"" and R" = {r}}}] ",
-, M). The similarity accordingly takes s =
M1(1><TM)]).

To conclude, the proposed dataset-aware attention unit al-
lows a target configuration to attend those similar observed
configurations of related datasets. Though this dataset-
aware attention raises the time complexity to O(nx (ny +

t+ 2%21 T™)), the training can be approximately linear
by conducting the attention in parallel. Moreover, TNP
searches hyperparameters significantly faster in terms of

SMBO iterations, i.e., a small value of ¢.

Transferring parameters As mentioned above, analo-
gous to GPs, TNP with dataset-aware attention learns an
implicit kernel characterizing the similarity between config-
urations of historical observations and target configurations.
While GPs requires an analytic kernel, e.g., Matérn-5/2, to
be specified by experts, the kernel of TNP is data-driven.
Under the assumption that different response functions f
sampled to optimize Eqn. (2) by sampling different datasets

are from the same underlying distribution, the kernel is glob-
ally shared and progressively improved as training proceeds.
Unfortunately, this assumption runs counter to practical sce-
narios where a global kernel cannot accommodate a wide
range of datasets. The hierarchical Bayesian model is qual-
ified to alleviate the problem: there is a global kernel on
which each dataset-specific kernel is statistically depen-
dent. Without loss of scalability and end-to-end training of
neural networks, we follow the strategy of model agnostic
meta-learning (Finn et al., 2017) which has been proved its
equivalence to hierarchical Bayesian inference (Grant et al.,
2018). Given the transferable parameters 6 for TNP char-
acterizing the global kernel, the dataset-specific parameters
0} dictating the customized kernel for the m-th dataset are
further optimized (fine-tuned) in %k gradient steps, i.e.,

Op =0 — AV L(HFm [ M 5,0),

where « is the learning rate for fine-tuning. The transferable
parameters 6 is afterwards updated by

6=0+e07 —0),

where € denotes the meta-learning rate. As shown in the
meta-training stage of Figure 2, each time we sample the
m-th dataset as the target and the rest of M datasets as
historical datasets. First, initialized with é TNP optimizes

L(MHfom | Hipm ,,0) in k gradient steps, where we follow
Section 4.1 by d1v1d1ng the observation set H7'\. into two
parts. In turn, §;" updates the transferable initialization 6.
During meta-testing, it is straightforward to first fine-tune
TNP on Hy, ie., O = 0 — aVEL(Hen|Hy . 0), and then
make predictions for the j-th target configuration X; using
TNPy, , namely the TNP equipped with the parameters 0j,.

Initializing SMBO with well-generalized configurations
The initial configurations have been demonstrated crucial to
the success of SMBO (Lindauer & Hutter, 2018; Wistuba
et al., 2015) — those configurations which achieve larger val-
ues of f (here we discuss the maximization of f in Eqn. (1))
are prone to speed up the SMBO. Fortunately, we are pro-
vided with M observation sets ’;’-L/,lT1 RN H%w which offer
a treasure of the configurations with higher f values. There-
fore, we again formulate the problem of learning initial
configurations as a hierarchical Bayesian inference prob-
lem. Similar to inferring 6 in Eqgn. (3), we learn the set
of well-generalized initial configurations {X;}Z; which
are fine-tuned for each m-th dataset. The only difference
is the loss with regard to {Xr;}7L,, which enforces the
predictions and the uncertainties of at least one of the ini-

tial configurations are maximized, i.e., £;({xr;}},[0) =

nr KT 715
2t Z,LI T u1]+znl o7 015. The reason why we

impose the softmax with o > 0 is to ensure the diversity
of the initial configurations, so that TNP as the surrogate
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benefits from those initial configurations with either large
predictions to exploit or high uncertainties to explore. The
overall learning algorithm is presented in Algorithm 1.

5. Experiments
5.1. Experimental Setup

Datasets First of all, we consider the OpenML (Van-
schoren et al., 2014) platform which contains a large num-
ber of datasets covering a wide range of applications. The
OpenML datasets are heterogeneous in both feature and
label spaces. For example, the meta-datasets (wine and
oh5.wc) in Figure 5c have 13 and 3,012 numeric features,
while the target dataset (kr-vs-kp) has 36 nominial features.
Wine and oh5.wc have 3 and 10 classes, respectively, while
kr-vs-kp is a binary classification task. Due to time con-
straint, we select 100 supervised classification datasets that
have fewer than 100,000 instances and no missing values.
The training, validation, and test sets of each dataset are
exactly the same as OpenML provides. The hyperparam-
eters are optimized on validation sets, while we compare
different HPO methods by reporting the performance of
the best configuration returned on test sets. For compar-
ison with those baselines using meta-features to measure
the similarity between datasets, we extract a list of meta-
features for each dataset following Table 1 in (Wistuba
et al., 2015). We improve the classification accuracy of
Logistic Regression (LR) and fully connected networks
(FCN) on all OpenML datasets. For LR, the dimension
of the hyperparameter space is four, including the learn-
ing rate € [1075,10°] for SGD, the 12-regularization
coefficient 7o € [0, 1], the batch size B € [20, 2000], and
the dropout ratio v € [0,0.75]. For FCN, a total of ten
hyperparameters for FCN are tuned, including the learn-
ing rate n € [107%,10°], the £2 regularization strength
B € [1078,1071], the batch size B € [32,512], the two pa-
rameters gamma y € [1072,107!] and power € € [0, 1] for
decaying the learning rate, the momentum m € [0.3,0.999)
for optimization, the number of hidden units for the two
layers dy, do € [25,2'2], and the dropout rates for the two
layers p1, p2 € [0,0.99].

Besides OpenML, we also investigate the effectiveness of
TNP on three popular computer vision datasets, including
CIFAR-10 (Krizhevsky & Hinton, 2009), MNIST (LeCun
et al., 1995), and SVHN (Netzer et al., 2011). We take
the last 10,000, 10,000, and 6,000 training instances as the
validation set for CIFAR-10, MNIST, and SVHN, respec-
tively. Each of them is also described with meta-features.
Here we focus on a three-layer convolutional neural net-
work in which each layer consists of a convolution with
batch normalization and ReLU activation functions fol-
lowed by max pooling. All convolutions have the filter
size of 5 x 5. We tune five hyperparameters including

1 —=TNP_bs32

1.2 TNP_bs128

TNP_r64

L1S| ——TNP_r256

—=TNP_alphale-5

1.1 —TNP_alphale-3
TNP_epsilon0.001
TNP_epsilon0.1
TNP_k10

I = |~ TNP

i GP_LI

1.05

average rank over all datasets

0 20 40 60 80 100
trials

Figure 3. Comparing the average improvement of all TNPs over
GP_LI with different hyperparameters.

the learning rate € [107°%,10°] for Adam, the batch size
B € [32,512], and the number of hidden units for the three
layers, dy, d, d3 € [2%, 28], respectively. Note that we do
not perform data augmentation in this experiment.

Baselines We consider 9 baseline methods. All methods in-
cluding ours are based on the SMBO framework, and use the
expected improvement (EI) as the acquisition function. The
baselines fall into four groups based on the surrogate model
and whether knowledge is leveraged from other datasets.
1) No surrogates: random search (RS) (Bergstra & Bengio,
2012); 2) Surrogates without neural networks: Gaussian Pro-
cesses with a Matérn-5/2 kernel (GP) (Snoek et al., 2012)
and random forests (SMAC) (Hutter et al., 2011); 3) Sur-
rogates with neural networks: DNGO (Snoek et al., 2015)
and BOHAM (Springenberg et al., 2016); 4) Surrogates
with knowledge transfer: multitask GPs (MTGP) (Swer-
sky et al., 2013) and EFFICIENT (Yogatama & Mann,
2014) that transfer observations without and with meta-
features, respectively, ranking-weighted Gaussian Process
ensemble (RGPE) (Feurer et al., 2018) that transfers param-
eters from past GPs, and GP_LI (Wistuba et al., 2015) that
leverages past observations to learn initial configurations.
Hyperparameter settings of the baselines can be found in
Appendix B.1.

Evaluation Metrics We compare in terms of the maximum
classification accuracy achieved so far, the average rank over
all datasets indicating the rank of a method, the scaled aver-
age distance to the maximum, and the empirical cumulative
distribution function (ECDF) of the number of datasets that
have achieved the maximum in a trial. In Appendix B.2, we
give details of the last three metrics.

Network Setup The encoder, the decoder, and the attention
embedding function g are all implemented as a two-layer
multilayer perceptron with r = 128 hidden units. Follow-
ing (Garnelo et al., 2018a), we first pre-train the network
by sampling 30, 000 batches of GP functions with length
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Figure 5. Comparison of the maximum accuracies achieved on three randomly selected datasets.

scale | ~ U[0.3,1.0] and kernel scale o = 1.0, where the
dimension of each GP function amounts to that of the hy-
perparameter space. We set the batch size, the number of
gradient steps k, the learning rate o for Adam, and the meta
update rate € to be 64, 10, le-5, and 0.01, respectively. We
summarize all hyperparameter settings of TNP in Appendix
C.1. In Figure 3, we study the hyperparameter sensitivity.
We vary the values of the hyperparameters and report the
improvement ratios of TNPs with different hyperparameters
over the most competitive baseline GP_LI. Despite the vari-
ance, TNPs with different hyperparameters still outperform
GP_LI, especially in few trials. More results on hyperpa-
rameter sensitivity could be found in Appendix C.1.

5.2. Results on OpenML Datasets

Effectiveness of hyperparameter optimization For each
OpenML dataset, we obtain 100 historical observations by
running GPs to optimize the hyperparameters of LR on it
in 100 trials. Taking each of the 100 datasets as a target,
we first randomly sample M =2 of the 99 others as histori-
cal meta-datasets for ours as well as other transfer learning
baselines. Figure 4 shows the performance comparison

of all methods, where TNP consistently and significantly
outperforms other baselines. Note that the average rank
is averaged over all 100 OpenML datasets each of which
is run 10 times repeatedly. The similar applies to comput-
ing the average distance to the maximum and the ECDF.
Unsurprisingly, random search without a surrogate model
performs the worst. GPs proves itself almost the most robust
algorithm without knowledge transfer, as long as a sufficient
number of observations have been collected. Consequently,
despite the superiority of some baselines at the beginning
(Iess than 40 trials), e.g., DNGO, GPs becomes increasingly
powerful. Since all transfer learning baselines fail to si-
multaneously transfer parameters, observations and initial
configurations, they seem to be competent only at the very
beginning and bring about negative transfer afterwards. All
methods share the same n; =3 initial configurations, except
that GP_LI and TNP learn the initial configurations from
historical datasets. Though GP_LI approaches TNP within
ny =3 initial configurations, afterwards, it lags behind TNP
which also transfers parameters and observations. As shown
in Figure 4c, in the 10-th trial, TNP has achieved the maxi-
mum accuracy on 50% of the datasets, which significantly
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improves the baselines by 25%. All these results consolidate
the effectiveness of TNP, especially in the first few trials.

We also randomly select three datasets and compare the max-
imum classification accuracies achieved so far in Figure 5.
The performance of baselines varies from dataset to dataset.
EFFICIENT outperforms GPs in the first ten trials in Fig-
ure Sb, while it is almost the worst in Figure 5a. MTGP
which learns the similarity between datasets and thereupon
transfers observations is a little more robust than EFFI-
CIENT relying on meta-features, which suggests the vulner-
ability of the similarity learned by meta-features. Instead,
by precisely learning the similarity as defined in Section 4.2,
TNP promotes more transferable knowledge between simi-
lar datasets and simultaneously alleviates negative transfer
between wildly dissimilar ones. In Appendix C.7, we give
a detailed ablation study to demonstrate that the learned
similarity by TNP is more effective than that based on meta-
features. In particular, the most similar source dataset to the
target according to TNP is vineyard (0.243) for Figure 5a,
new3s.wc (0.286) for Figure 5b, and oh5.wc (0.2599) for
Figure 5c. TNP benefits the most in Figure 5b by leveraging
new3s.wc with the greatest similarity (0.286).

While optimizing the hyperparameters of a fully connected
network, as shown in Figure 9, the behaviors of the base-
lines are completely different from those during HPO for
the logistic regression model. GP_LI, which is almost the
most competitive during optimizing LR, is inferior espe-
cially in the beginning — it is likely that the predictive power
of GP which learning the initial configurations depends on
becomes less effective as the dimension of hyperparameters
gets larger. TNP by transferring parameters and observa-
tions, however, remains highly predictive towards higher
dimensional HPO and thereby learns more generalized ini-
tial configurations. We also observe that two baselines that
transfer observations, including MTGP and EFFICIENT,
are more qualified in this case. In conclusion, we highlight
TNP’s consistent superiority, even though the dimension of
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Figure 9. The average ranks of all algorithms while optimizing
the hyperparameters of FCN on 100 OpenML datasets.

the hyperparameter search space increases to 10.

Ablation Studies First, we aim to study the influence of
different components on the performance of TNP. As shown
in Figure 6, the performance of TNP without fine-tuning a
globally-shared kernel to each target dataset drops the most.
The set of well-generalized initial configurations is also cru-
cial to warm-start HPO. Leveraging observations from other
datasets also plays an important part in the effectiveness
of TNP. More empirical evidence for mutual reinforcement
of these compoenents can be found in Appendix C.2. Sec-
ond, we increase the number of historical datasets, i.e., M.
Figure 7 tells that even if M increases to 50, TNP still out-
performs the other transfer learning baselines. By virtue
of the joint transfer of observations, parameters, and initial
configurations, TNP is robust against more noisy datasets as
M and the difficulty of knowledge transfer increases. Note
that here we also enable RGPE and EFFICIENT to be capa-
ble of learning initial configurations, denoted as RGPE_LI
and EFFICIENT_LI, and compare with them. More com-
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Figure 10. Comparison of the maximum accuracies achieved on three computer vision datasets.

parison results when M = 10 and M = 20 can be found
at Appendix C.3. We also investigate the influence of the
number of initial configurations in Appendix C.4 and the
insensitivity to random seeds in Appendix C.5, respectively.

Efficiency In Figure 8, we compare the average CPU time
overhead by different algorithms. Note that the CPU time
overhead characterizes the time taken by a HPO algorithm
to determine the next configuration to evaluate, and does
not include the time to evaluate a selected configuration
which varies significantly from configuration to configura-
tion. Since both MTGP and EFFICIENT transfer observa-
tions and scale cubically with the number of observations,
the computational costs for them become extraordinarily
expensive when M increases. The two Bayesian neural
network methods with MCMC sampling, i.e., DNGO and
BOHAMIANN, are also very slow. Though TNP simulta-
neously transfers observations and parameters, it does not
sacrifice the computational efficiency too much. This paves
the way for wide application of TNP in the real world. Fig-
ure 8 is averaged over datasets and trials, while more results
across trials are reported in Appendix C.6.

5.3. Results on Computer Vision Datasets

In light of the computational cost of each trial, here we
perform HPO within only 20 trials, being more practical
for real-world deployment. Regarding each of the three
datasets as the target, the other two serve as M = 2 his-
torical datasets. Again TNP is effective on all the three
datasets by achieving competent classification accuracies
even within the first 5 trials. As the most challenging dataset,
CIFAR-10 benefits the most from the other two. Compared
with diverse OpenML datasets, the three datasets fall in the
same category of computer vision and are much more simi-
lar. As a consequence, most of transfer learning baselines,
e.g., MTGP, outperform GPs, while it is not the case on
OpenML datasets. Another reason is that the number of
hyperparameters increases to five in this experiment, which

requires more observations for GPs to succeed. The HPO re-
sults of FCN with 10 hyperparameters on OpenML datasets
in Figure 9 also provide the justification.

6. Conclusion

We introduced TNP as a novel end-to-end hyperparameter
optimization algorithm. Equipped with NPs as the surro-
gate, for the first time, TNP harnesses the collective power
of observations, parameters for the surrogate, and initial con-
figurations for SMBO from previous datasets. Besides, TNP
enjoys the advantages of neural processes with high scalabil-
ity, which lays the foundation for practical use in real-world
applications. In the future, we are committed to conquer the
challenge of comparing datasets in heterogeneous feature
spaces, so that the between-dataset similarity takes into ac-
count not only the hyperparameter performances but also
the dataset distribution.
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