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Abstract

Generative probabilistic modeling of biological
sequences has widespread existing and potential
application across biology and biomedicine, from
evolutionary biology to epidemiology to protein
design. Many standard sequence analysis meth-
ods preprocess data using a multiple sequence
alignment (MSA) algorithm, one of the most
widely used computational methods in all of sci-
ence (Van Noorden et al., 2014). However, as
we show in this article, training generative proba-
bilistic models with MSA preprocessing leads to
statistical pathologies in the context of sequence
prediction and forecasting. To address these prob-
lems, we propose a principled drop-in alternative
to MSA preprocessing in the form of a structured
observation distribution (the “MuE” distribution).
We prove theoretically that the MuE distribution
comprehensively generalizes popular methods for
inferring biological sequence alignments, and pro-
vide a precise characterization of how such bi-
ological models have differed from natural lan-
guage latent alignment models. We show empiri-
cally that models that use the MuE as an observa-
tion distribution outperform comparable methods
across a variety of datasets, and apply MuE mod-
els to a novel problem for generative probabilistic
sequence models: forecasting pathogen evolution.

1. Introduction

High-throughput sequencing is pervasive across biology and
biomedicine, and critical to both past and ongoing discover-
ies and technological advancements. Analyzing large scale
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sequence data, making predictions about unobserved or fu-
ture sequences, and generating new functional sequences,
are major and growing challenges with relevance to epi-
demiology (predicting pathogen evolution), immunology
(characterizing antibody repertoires), molecular evolution
(mapping substructure within protein families), protein de-
sign, and many more subfields of biology and biomedicine.
In principal, generative probabilistic modeling enables (a)
modular and uncertainty-aware data analysis, (b) formal
mathematical statement of underlying assumptions, and (c)
generation of new samples, which in the case of sequences
can be synthesized and tested in the laboratory (taking ad-
vantage of recent rapid progress in high-throughput synthe-
sis) (Kucukelbir et al., 2017; Russ et al., 2020). However,
although machine learning and statistics offer an extraor-
dinary array of generative probabilistic models, extending
existing methods to apply to biological sequences while ac-
counting for domain-specific prior knowledge is nontrivial.

When analyzing biological sequence data, a standard ap-
proach is to preprocess the data before building any models
by constructing a multiple sequence alignment (MSA). MSA
algorithms are among the most widely used methods in all
of science; according to a 2014 analysis, the 10th most cited
scientific article of all time is an MSA algorithm, ahead of
all other computational data analysis and statistics articles
(Van Noorden et al., 2014; Thompson et al., 1994; 1997).
Recent major advances in machine learning and statistical
methods for protein structure prediction, variant effect pre-
diction for clinical genetics, protein design, epidemiological
tracking, and more have continued to rely on MSAs (Marks
et al., 2011; Frazer et al., 2020; Russ et al., 2020; Hadfield
et al., 2018). Although MSAs are a powerful tool for under-
standing sequence evolution, in Section 4.1 of this article
we show that employing MSAs as preprocessing introduces
statistical pathologies in the context of generative sequence
prediction and forecasting.

As a principled, drop-in alternative to MSA preprocess-
ing, this article provides a structured observation distribu-
tion for biological sequences, the “mutational emission”
(“MuE”) distribution. Observation distributions are a com-
mon general-purpose technique for extending continuous-
space models to other types of data, perhaps most familiar
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Figure 1. (A) A standard approach to building biological sequence models is to preprocess the data by constructing an MSA. (B) We
propose modifying the model instead of the data using the MuE distribution.

in the context of generalized linear models, where they are
sometimes also referred to as “error”, “emission”, or “out-
put” distributions. For instance, to predict count data, one
might use a Poisson as an observation distribution, or to
predict positive continuous data, one might use a Gamma.
Good observation distributions account for both the support
of the data and common forms of variability or noise in the
data. For biological sequences, we propose using the MuE
as an observation distribution. The MuE takes the form of a
latent alignment model in which the regressor sequence can
also be latent (Deng et al., 2018).!

The major contributions of the article are (1) identification of
statistical pathologies introduced by widely-used MSA pre-
processing methods, (2) a drop-in general purpose alterna-
tive, the MuE distribution, (3) a unified and comprehensive
theoretical framework for cataloging and rederiving existing
biological latent alignment models from the MuE and (4) a
novel application of generative probabilistic sequence mod-
els enabled by these advancements: forecasting pathogen
evolution. At the most practical level, our approach pro-
vides a complete recipe for applying one’s generative model
of choice to biological sequence data while avoiding the
pathologies of MSA preprocessing: add a MuE.

2. Method
2.1. Background: MSA Preprocessing

MSA algorithms are applied to families of evolutionarily re-
lated biological sequences (proteins, RNA or DNA) in order
to infer sites in each sequence that are likely to be related
to one another, meaning that they descend from a common
ancestor. MSAs can be used as the basis for extrapolation:
for instance, knowledge about one region in one sequence
can be used to make guesses about related regions in related
sequences. MSAs can also be used to understand biological
function: for instance, if particular amino acids at particu-
lar sites are highly conserved across sequences, it may be
evidence that they are crucial to biological function. Gener-
ative probabilistic models of MSAs have seen widespread

"We will refer to biological alignments (diagrammatic represen-
tations of relatedness between sequences) as “multiple sequence
alignments” (Durbin et al., 1998). We will refer to machine learn-
ing alignments (latent variables which indicate which positions in
one sequence generate which positions in another sequence) as
“latent alignments” (Deng et al., 2018).

success on these and many other tasks, including predicting
the clinical impacts of genetic mutations, inferring three-
dimensional protein and RNA structure, and designing new
proteins (Frazer et al., 2020; Marks et al., 2011; Weinreb
et al., 2016; Russ et al., 2020). We next briefly describe how
such MSA-based models are built, as well as their advan-
tages and flaws. In Section 2.2 we introduce our alternative,
MuE observation models, which directly generate sequences
rather than MSAs. MuE observation models infer related
sites but also simultaneously (1) account for uncertainty in
which sites are related, (2) allow rigorous model evaluation
and (3) enable prediction and forecasting of sequences.

Let {Y1,...,Yn} be a dataset of N sequences, which may
each be different in length, and let B denote the alphabet
(e.g. B={A,T,G,C} for DNA). MSA algorithms convert
the sequence dataset into an N by J matrix, an MSA, adding
gap symbols “—” such that sites in the same matrix column
are those inferred to be related (Figure 1A). Mathematically,
MSA algorithms can be summarized as nonlinear functions
fusa that take in datasets of sequences and return processed
datasets, {YMSA,h e YMSA,N} = fMSA({)/la ey YN}),
foreachi € {1,..., N}, we have Yysa,; € (BU{-})7.
Note J itself will depend on the input dataset.

Preprocessing sequence data by constructing an MSA is
useful in that it (1) converts the data into a matrix, and
(2) adjusts for common sources of variability in biological
sequence data, in particular insertion and deletion muta-
tions. MSA preprocessing makes building statistical mod-
els of sequences more straightforward. For instance, start-
ing from an arbitrary model py that generates continuous
matrices V; € R7*(B+1) where B := |B], one gen-
eral strategy is to employ a softmax linker function and
a categorical observation distribution (softmax(V;); =
exp(Vijp)/ >y exp(Vijw) for j € {1,...,J}). The
complete approach is (Figure 1A),

Preprocess: {Ymsa.1,--- Ymsan} = fusa({Y1,..., Yn}),
Model: V; ~ py
Ywmsa,; ~ Categorical(X; := softmax(V;)).

1

By allowing arbitrary py, this method enables, for exam-
ple, the application of generative image models (such as
variational autoencoders) to biological sequence data (Ries-
selman et al., 2018). However, as we describe in depth
in Section 4.1, MSA preprocessing introduces substantial
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problems: each row of the output matrix Yysa,; depends
via fmsa on the entire input dataset {Y7,..., Yy} and we
cannot know ahead of time how future raw data Yy
will change preprocessed past data Yysa,i<n. This makes
likelihood-based model evaluation on newly observed or
heldout data ill-defined.

2.2. The Mutational Emission Distribution

As a drop-in alternative to MSA preprocessing, we intro-
duce the “mutational emission” (“MuE”) distribution. The
MuE can be used in place of the Categorical observation
distribution in Equation 1,

Model: V; ~ pg

Y; ~ MuE(X; := softmax(V;), ¢, ¢, al® a®), @)
where ¢, ¢, a(o), and a® are parameters of the MuE, and
V; € RM*P where M and D are hyperparameters rather
than dimensions of the input data. The MuE avoids the
pathologies of MSA preprocessing by directly generating
complete, variable-length sequences (Figure 1B). We refer
generically to models that use a MuE observation distri-
bution, such as Equation 2, as “MuE observation” models.
(See Figure S1 for a diagram of MuE observation mod-
els and Table S1 for a notation reference.) In the limiting
case where X; is a one-hot encoding of a sequence (i.e.
Xima € {0,1} and Y, X .0 = 1), the MuE can be
interpreted biologically as generating a mutant Y; of the
“ancestral” sequence X;, with some probability of insertion
and deletion mutations (controlled by c, a®, and a(t)) and
of substitution mutations (controlled by ¢) (Section 2.3). A
latent variable W; in the MuE determines which positions
in the regressor X; — intuitively, which sites in the “ances-
tral” sequence — generate which positions in Y;, and can
be interpreted as defining a pairwise alignment between X;
and Y;. The latent variables W7, ..., Wy define a multiple
sequence alignment of the dataset Y7, ..., Y (Section 4.2).
Intuitively, the MuE “adds in”, through a generative process,
the same mutations that MSA algorithms are intended to
“filter out” of the data via preprocessing.

The MuE is a hidden Markov model (HMM) with block-
structured emission and transition matrices. Let A p denote
the D — 1 dimensional simplex, Ap :={v:v € ]RD, Vg >

0, va=1}.

Definition 2.1 (MuE) MuE(z, ¢, ?,a®,a®)) is an HMM

with K = 2M + 1 latent states. The initial probability of

each latent state is given by a\®) € Ay, the latent state

transition matrix is ) € (A )X, and the emission matrix
is © € (Ap)¥. The matrices have block structure

(1,1) (1,2)

z:= {ﬂ t, a® .= {3(271) 3(272)] ,

where © € (Ap)M, ¢ € (Ap)MH1, 0 € (Ap)P, AL ¢
RMXM gnd A2:2) ¢ RIMAUDXMAY) | The transition ma-
trix must satisfy Condition 2.2.

Condition 2.2 (Biological latent alignments) Entries of
ALY A2 AR gnd AR2) pelow the main diagonal
must be zero. Entries of AV and A2 on the main
diagonal must also be zero.

Condition 2.2, an upper triangular restriction, is illus-
trated in Figure 2A and justified in depth in Section 4.2.
We use w to denote a latent state path taken by the
HMM, while W; denotes the specific latent state path
taken when generating sequence Y; given X; following
Y; ~ MuE(X;, ¢, £, a9, a®).

2.3. Biological Interpretation of the MuE

To describe the biological interpretation of the MuE and
its parameters, we consider examples of different latent
paths w = (ws,...,wy,) through state space and the se-
quences Y ~ pyur(y|z, w) that these paths will generate
(Figure 2B). Assume to start that D = B and { = Ip,
where I is the B x B identity matrix, and consider the
limiting case where x is a one-hot encoding of a sequence
(in Figure 2B, the DNA sequence TACGC). We consider
three example w values:

1. w=(1,2,..., M) (no mutation). The generated ¥’
will be an exact copy of z, i.e. Y = x if Y is repre-
sented as a one-hot encoding (Figure 2B top).

2.w=(1,...,m—1,m+1,..., M) (deletion). The
generated Y will be missing the mth letter of z, i.e.
Y = (24,.. ..,x ) (Figure 2B mid-
dle).

5 Tm—1yTm+1, -

3w = (L,....mM+m+1m+1,...,M) (in-
sertion). The generated Y will have an additional
letter inserted after the mth letter of x, with a
probability over letters determined by c,,4+1, i.e.
Y = (v1,..,Zm, S, Tmt1,-..,2n) Where S ~
Categorical(cy,+1) (Figure 2B bottom).

Condition 2.2 guarantees that the states k € {1,..., M} cor-
responding to x are each visited at most once and in sequen-
tial order. Paths such as {1,...,m,m,..., M} (repeat) and
{1,...,m+1,m,..., M} (backtracking) are not allowed
under Condition 2.2. More general matrices ¢ € (Ag)?
allow for substitution mutations, with the probability of con-
verting from letter d to letter b given by ¢4 ;. For example,
ifw=(1,...,M), then Y ~ Categorical(x - £), thatis Y’
is a mutant of = with substitution probabilities determined
by ¢ and no insertion or deletion mutations.

MuE observation models directly generalize models that use
MSA preprocessing in the special case where the dataset
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Figure 2. (A) Condition 2.2 allows only the positions of a™® in dark purple to be non-zero. (B) Example latent state paths w taken by the
Markov model in the MuE, and sequences Y that they can generate, given x is a one-hot encoding of the DNA sequence TACGC. Rows
correspond to positions 1, . .., L, columns correspond to latent states 1, . .., K. (C) w defines a pairwise alignment between X and Y via
Definition 4.3. (D) The collection of w values describe a multiple sequence alignment of the generated sequences Y (Section 4.2).

sequences are all the same length and the MSA algorithm
does not add any gap symbols (that is, when fyisa(+) is the
identity). Assume D = B, and consider the “no mutation
limit” where ¢ = Ip, a(lo) =1, and Agjir)bﬂ = 1 for all
m € {1,..., M — 1}. In this case we find, for samples Y’
of length M, that Y ~ MuE(z, ¢, £,a®,a®)) simplifies
to Y ~ Categorical(z). Thus Equation 2 and Equation 1
become equivalent. In practice, we typically select priors
on the MuE to favor the no mutation limit, since it serves as
a null hypothesis.

2.4. Inference

The marginal likelihood of the MuE with the latent state vari-
able of the HMM integrated out, pyug (yz, ¢, £, al®), a®),
is analytically tractable via the HMM forward algorithm
and differentiable. The standard forward algorithm requires
O(L) sequential matrix multiplications, where L is the
length of the sequence (typically a few hundred amino acids
in our setting), but it can also be parallelized to achieve
O(log L) time (Sdrkk#d & Garcia-Fernandez, 2020; Rush,
2020). Using the MuE marginal likelihood allows infer-
ence with automatic differentiation variational inference,
stochastic gradient MCMC, and related scalable approx-
imate Bayesian inference algorithms (Section S4.1) (Ku-
cukelbir et al., 2017; Welling & Teh, 2011). We have made
available an implementation of the MuE distribution as part
of the probabilistic programming language Pyro, making it
straightforward to explore different MuE observation mod-
els and inference methods (https://docs.pyro.ai/
en/dev/contrib.mue.html, Section S4.2) (Bing-
ham et al., 2019).

3. Related Work

Methods that use MSA preprocessing. MSA preprocess-
ing is widely used as a starting point for biological sequence
data analysis, perhaps most commonly in combination with
other non-probabilistic analysis methods. One very com-

mon class of probabilistic methods that nearly always use
MSA preprocessing is phylogenetic models, which are cen-
tral to evolutionary biology and genomic epidemiology, and
widely used in nearly every other area of biology (Hadfield
et al., 2018; Felsenstein, 2004). Another is fitness models,
including Potts models and variational autoencoder models,
which are used to infer the structure of proteins and RNA,
predict the functional effects of clinical variants, design new
proteins, etc. (Marks et al., 2011; Hopf et al., 2017; Frazer
et al., 2020; Russ et al., 2020).

Standard methods that avoid MSA preprocessing. Al-
though MSA preprocessing is problematic from the perspec-
tive of probabilistic modeling, the use of probabilistic mod-
els to infer multiple sequence alignments — that is, in order
to accomplish the preprocessing — is standard. Perhaps the
most widely used such method is the profile HMM, which,
besides being used to infer multiple sequence alignments, is
also at the core of modern sequence database search meth-
ods and is used to define sequence families, among many
other applications (Durbin et al., 1998; Johnson et al., 2010;
El-Gebali et al., 2019). In Section 4.2 we show that the
MuE distribution generalizes a variety of popular methods
including the profile HMM. While connections between var-
ious methods have been described before, the generalization
offered by the MuE is both unified and comprehensive, de-
limiting the extent of the model class (Holmes, 2017). Note
also that some of these models can be trained by interpreting
an MSA as a point estimate of the latent alignment variable;
this is distinct from the more common usage of MSA pre-
processing described in Section 4.1 and is not subject to
the same pathologies. The most closely related method to
MuE observation models is the hidden Potts model (Wilburn
& Eddy, 2020); we go further by providing a generalized
approach to building and inferring similar models.

Natural language processing methods There has been in-
tense recent interest in applying advances from natural lan-
guage processing to biological sequences (Rives et al., 2019;
Shin et al., 2021; Alley et al., 2019). The MuE is a type


https://docs.pyro.ai/en/dev/contrib.mue.html
https://docs.pyro.ai/en/dev/contrib.mue.html

A structured observation distribution for biological sequences

Multiple sequence

alignment #1
Observe:

Multiple sequence

Sequence data alignment #2

Observe:

Y TATGC Y1,Ys,Ys Yasa,i TATGC Y, Yarsa,1 TA_TGC
Yo TATC ——5 Yusa2 TAT-C ——p Yusa2 TA-T-C
Y3 T Yusas TAGTC Yusas TAGT-C

Yusas TAGTGC

% T
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of latent alignment model, a key model class in natural
language processing; Deng et al. (2018) detail the close
relationship between latent alignment and popular attention
network methods. MuE observation models differ from stan-
dard latent alignment models in that (1) rather than regress
on an observed sequence (e.g. a sentence in a language to
be translated), the model regresses on a latent sequence X,
and (2) the MuE is structured such that its latent alignment
variable is interpretable as a biological alignment, not an
alignment in the more generic sense used in natural lan-
guage processing (Sections 4.2 and 4.3). Note that while the
MuE itself is a relatively simple latent alignment model (an
HMM), complex neural networks can be used to generate
the latent sequence X;; from a deep learning perspective,
the MuE can be thought of as a biologically interpretable
final layer.

4. Theory
4.1. Pathologies in MSA Preprocessing

MSA preprocessing is typically applied to static sequence
datasets and used for parameter inference problems; its
statistical pathologies emerge when when we attempt to
predict unobserved or future sequences. To explain these
pathologies, we focus on the i.i.d. case.”> Consider the
following modeling assumption, which is nearly universal
in statistics:

Assumption 4.1 (Li.d. data and model) Ler po(x) be a
probability distribution defined over a space X, i.e. po(x) €
P(X) where P(X) is the set of all probability distributions
over X. We (1) assume that we observe independently
and identically distributed samples X1, Xa,... ~ po(x).
In order to describe this process, we introduce a model
M = {q(z]0) : 0 € O}. We (2) assume q(z|0) € P(X)
forall 6 € ©.

Now consider models that use MSA preprocessing and take
the following form, of which Equation 1 is a special case:

Preprocess: {Yumsa,i1,-- -, Ymsa v} = fmusa({¥1, ..

i d
Model: Yusa.i ~ p(ynsa),
Note that phylogenetic models, although not usually repre-

sented as i.i.d., are typically exchangeable and so possess an i.i.d.
representation by de Finetti’s theorem (Weinstein et al., 2020).

where p(ymsa) € P((BU {—=})7). If we attempt to em-
ploy Assumption 4.1 to describe the preprocessed data
YMmsa1,--., Ymsa, v we see that it is violated. Part 1
of Assumption 4.1 fails because the preprocessed data
cannot consist of independent observations: if a data-
point Y41 is added to the dataset, then past data, i.e.
YMmsa,1;-- -, Ymsa,n, can be altered (Figure 3). For in-
stance, the new sequence may provide additional evidence
to the MSA algorithm that sites in previously observed se-
quences are related to one another. Part 2 of Assumption 4.1
fails because the model is not defined over a space that en-
compasses future data: if a datapoint Yy is added to the
dataset, the value of J may change (Figure 3). For instance,
the new sequence might be longer than any seen before.
These failures occur on real sequence datasets, for typical
values of N (Figure S2). Practically, the fact that MSA mod-
els violate Assumption 4.1 makes rigorous likelihood-based
evaluation of their generalization capacity untrustworthy. If
we do not know what space future data lives in, or how past
data will be altered with future measurements, it is hard to
trust that the average log likelihood of our model on a held
out test set is genuinely reflective of future model perfor-
mance. More technically, the violation of Assumption 4.1
causes standard justifications for the use of Bayes factors,
heldout likelihood, prequential evaluation, etc. to fail, see
e.g. Dawid (1984); Vapnik (1999); Dawid (2011).

Using MSA preprocessing also fails to account for uncer-
tainty in the alignment (Wu et al., 2012; Toth-Petroczy et al.,
2016). The goal of an MSA algorithm is to infer related
sites among a set of sequences, but the resulting MSA is
only a point estimate of this quantity.

4.2. Inferring Alignments

In this section we connect the MuE distribution to previously
proposed probabilistic and non-probabilistic methods for
inferring biological sequence alignments including MSAs,
and describe how MuE observation models can be used to
infer related sites and MSAs themselves. We start by more
formally describing a biological pairwise alignment between
two sequences X and Y, and then establish a connection
with the latent state variable W in the MuE. Pairwise align-
ments serve as a diagrammatic representation of how two
sequences X and Y may be related via insertion, deletion
and substitution mutations.

Definition 4.2 (Biological pairwise alignment) Ler X
and Y be sequences of length M and L respectively. A

., Yn}), pairwise alignment A of X and Y with J columns is a

matrix [A@ AT where A®) ¢ (BU{-})! is a
column vector of length J consisting of the letters of X,
in order, and interspersed with gap symbols; similarly for
AW, The alignment A must satisfy the condition that for

every j € {1,...,J} either A§I) € Bor A;y) € B or both.
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Let j; be the column of the alignment .4 in which the /th
letter of Y falls, i.e. A = Yiforl e {1,...,L}. Let
g; indicate whether the column j; in A contains a gap,
ie. g = ]I(Ag»f) = -), where I(-) is the indicator func-
tion which takes value 1 when the expression is true and
0 otherwise. Given X and Y, the sets {j1,...,5r} and
{g1,--., gL} together uniquely define an alignment A (Re-
mark S2.1). We can define a map from the latent state path
W to a pairwise alignment .4 of X and Y.

Definition 4.3 (From latent states to biological alignments)

Given W ~ pyur(w|X,Y), let go = (W, > M) and
=W, — Mg + 25;11 g, forl € {1,..., L}. Note that
this map is invertible.

Under this definition, when g; = 0, the letter Y] is generated
based on a letter Xy, in the MuE, and Y; and X,,, are placed
in the same column of the pairwise alignment .A; when
g1 = 1, however, Y; does not depend on X at all (it depends

on c instead) and .A;f) has the gap symbol (Figure 2C).

A 700 of probabilistic and non-probabilistic methods have
been proposed for inferring biological sequence alignments
from data. Here we show that many of the most widely used
methods can be unified as special case examples of the MuE
which use Definition 4.3 to convert from W to A.?

Proposition 4.4 (Unified) For different choices of parame-
tersc, £, a9, and a™®, (1) the Thorne-Kishino-Felsenstein
model (Thorne et al., 1991), (2) the profile HMM, and (3) the
conditional distribution of a sequence Y given a sequence
X under the pair HMM (Durbin et al., 1998) are all spe-
cial cases of the distribution MuE(X, ¢, £, a®), a®), with
a state-specific probability of the Markov chain terminating
at each step. For another choice of parameters, the maxi-
mum a posteriori estimator 1 := argmax,,pvug (Y| X, w)
corresponds to the Needleman-Wunsch alignment.

See Section S2.2 for a proof. In the context of the pro-
file HMM, point estimates of the latent alignment vari-
ables Wy, ..., Wy associated with each observed sequence
Y1, ..., Yy are used to construct a multiple sequence align-
ment of the dataset by effectively merging pairwise align-
ments; sites in each Y; generated by the same position in
X are considered related, and placed in the same column.
The same logic and algorithm can be applied to MuE ob-
servation models to define an MSA based on W1, ..., Wy
(Figure 2D; Section S2.3).

The MuE offers not only a unified but also a comprehensive
framework in the sense that HMMs which fail to satisfy

3So far we have not specified a model for the length L of the
sequence Y. In the following proposition, we assume that there is
some probability of the latent Markov chain terminating after each
step [, and that this probability depends on the current state W;.
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Figure 4. Predictive performance on a randomly heldout test set.
Dotted line marks theoretically expected performance of the sub-
stitution matrix BLOSUMBG62 as a reference point (Section S5).

Constraint 2.2 cannot be interpreted, using Definition 4.3,
as biological alignments (proof in Section S2.4):

Proposition 4.5 (Comprehensive) Consider the setup of
Definition 4.3 and assume each latent state k € {1,..., K}
of the MuE is Markov accessible under a®) and a®® (mean-
ing that it can be reached with non-zero probability). Con-
dition 2.2 is both necessary and sufficient to guarantee that
with probability 1, W defines a valid pairwise alignment of
X and'Y via Definition 4.3.

4.3. Comparison to Natural Language Models

Latent alignment models are used in natural language pro-
cessing, often in combination with hard attention methods
for inference (Deng et al., 2018). We can compare the MuE
directly with a classic latent alignment model for statisti-
cal translation. The Vogel et al. (1996) model takes the
form of a MuE model where X and Y are sentences in
different languages, except that Condition 2.2 is violated
(Section S2.5). As a result latent alignments are allowed to
“double back” and rearrange the ordering of words in the
regressor sentence X to generate Y.

5. Experiments
5.1. Predictive Performance

We have seen that models that use MSA preprocessing can-
not be rigorously evaluated for their ability to predict se-
quences. In this section we empirically compare the predic-
tive performance of MuE observation models to a standard
model that possesses the same latent alignment structure,
the profile HMM (pHMM) (Proposition 4.4).

Survey We started by examining five datasets of related
protein sequences, ranging in size from 1,000 to 10,000
sequences (Section S6.1). Four were taken from non-
redundant sequence databases: sequences similar to dihy-
drofolate reductase (DHFR), serine recombinase (PINE),
cyclin dependent kinase inhibitor 1B (CDKN1B) and the
human papillomavirus E6 protein (VE6) (Hopf et al., 2017;
Toth-Petroczy et al., 2016; Tamarozzi & Giuliatti, 2018).
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Table 1. Heldout perplexity on patient immune repertoire samples
(each with 6,000 to 20,000 sequences). MS: multiple sclerosis.
HC: healthy control. HC 1 consists of B cell receptors, the rest T
cell receptors.

Dataset HC1 HC2 HC3 MS1 MS2 MS3

pHMM 429 359 356 3.59 347 354
ICAMuE 2.87 233 234 245 219 2.26

The fifth dataset consisted of human T cell receptor (TCR)
sequences from a healthy donor, obtained using single cell
sequencing.

We extended probabilistic PCA and VAE models using the
MuE observation distribution; we refer to these models as
“FactorMuE” and “LatentNeuralMuE” respectively (model
architectures are detailed in Section S3). We used stochastic
variational inference, estimating the ELBO gradient using
automatic differentiation, the reparameterization trick, and
an inference network, and optimizing with Adam (Kucukel-
bir et al., 2017; Kingma & Welling, 2014; Rezende et al.,
2014; Kingma & Ba, 2015). We evaluated model perfor-
mance on a randomly held out 10% of sequences, quantified
in terms of per residue (that is, per letter) perplexity (Sec-
tion S5). The results show that FactorMuE models offer a
consistent improvement over the standard pHMM model in
every dataset, with an average change in perplexity of —1.50
and log Bayes factor > 10? across all datasets (Figure 4;
Section S6.1). Meanwhile, the more complex LatentNeural-
MuE model also improves over the pHMM in each dataset
and overall (average perplexity change —0.42), but under-
performs relative to the simpler FactorMuE model.

Patient immune repertoires We next explored further the
application of MuE observation models to patient immune
repertoire sequencing data, including both B and T cell re-
ceptors, taken from patients with autoimmune disease (mul-
tiple sclerosis) and healthy controls (Section S6.2) (Ramien
et al., 2019). Understanding immune receptor repertoires is
of crucial biomedical importance, but MSAs are considered
highly untrustworthy when applied to this kind of data (see
e.g. Figure S2). We extended another continuous model, an
independent component analysis (ICA) model, with a MuE
observation distribution (“ICAMuE”; Section S3.4). On a
heldout 20% of data we find substantial improvements in
perplexity over the pHMM across all six datasets (Table 1).

Disordered proteins Roughly ~50% of the human pro-
teome contains regions classified as disordered, but com-
mon bioinformatic pipelines are often considered highly un-
trustworthy when applied to disordered proteins because of
uncertain MSAs. We examined 56 datasets, each consisting
of sequences evolutionarily related to a disordered region
of a human protein, that had been discarded in an MSA-
based sequence modeling study (Toth-Petroczy et al., 2016).
The study had sought in part to determine whether epistatic

correlation occurred between amino acids at aligned sites
(columns of the MSA), but was stymied in these particular
datasets by highly uncertain MSAs. In a pHMM, condi-
tional on a latent alignment W;, the probability of observing
a particular amino acid at a particular position in Y; is inde-
pendent of all other positions. In MuE observation models
such as the FactorMuE, LatentNeuralMuE and ICAMuE,
however, py induces correlation between positions in Y; con-
ditional on W; (Riesselman et al., 2018). To infer whether
there is indeed epistatic correlation in a dataset, therefore,
we can perform model selection, comparing a MuE ob-
servation model and a pHMM. Note that our approximate
Bayesian inference procedure (for both models) integrates
over all possible latent alignments, and that the pHMM is
nested inside the MuE observation models in the sense of
nested model selection (Dawid, 2011). We found that on 19
datasets an ICAMUuE outperformed a pHMM at predicting a
heldout 20% of sequences, finding evidence of epistatic cor-
relation despite high alignment uncertainty; among these 19
datasets, the median perplexity decrease was 1.3 (Table S2,
Section S6.3).

5.2. Learning Complex Biology

We examined further what the FactorMuE model had
learned from a dataset of TCR sequences. T cell recep-
tors are made up of two separate amino acid chains, «
and (3, which each develop according to a complex process
of genome rearrangement termed V(D)J recombination, in
which different V, D and J segments in the genome are, with
some randomness and additional mutations, joined together
with a constant region to produce a complete sequence (Fig-
ure SA). We cross-referenced the latent representations of
each sequence recorded in the dataset against supervised
annotations of its segment types (Section S7). We found
that the latent space is divided evenly in two, with one side
containing TCRa sequences and one side TCR3 sequences
(Figure 5B left). Each side contains clusters, which cor-
respond with the type of V segment found in each TCR
sequence (Figure 5B middle). The shorter J segments are
found uniformly distributed across their corresponding « or
£ half, reflecting their ability to recombine with different
V segments (Figure 5B right). See Section S7 for further
results.

We next examined features learned by the FactorMuE model.
In MuE observation models, we can separate out variation at
conserved positions from variation produced by insertions
and deletions by holding the latent alignment variable W;
fixed. In particular, we calculated

B 1/2
~ N 2
v = {Z (E[Yisltivet, 21] — El¥ipliner, %)) )
b=1

where the expectation is with respect to the variational ap-
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Figure 5. (A) Illustration of the TCRA genomic locus; the TCR« locus is analogous, with C, in place of Cg and no D segments (based on
Abbas et al. (2018), Figure 8.7). (B) Inferred latent space representation of the TCR dataset, colored according to supervised annotations.
Left: C, and Cg chains. Middle: V types, Va2, ... V3o (detailed legend in Figure S7). Right: J subtypes, Ji.1,... 2.7 (detailed legend in
Figure S7). (C) V (green), J (yellow) and constant C (gray) regions of the TCR/ chain in the reference structure PDB:2BNR, as well as
V-J junction nucleotides (red) (Figure S7). (D) Projections v of latent space vectors (left, in orange) into sequence space. Transparent
areas correspond to the portion of the sequence that is not measured in the experiment. Arrows indicate peaks in v.

proximation to the posterior, 2z, and z; are the head and
tail of a vector in the latent space, Wi is the maximum a
posteriori estimate of Wis based on a reference sequence
Yiet,and ! € {1,..., Lot } where Ly is the length of Y.
We plotted the vector  on a TCR crystal structure for the
reference sequence, and compared to a supervised annota-
tion of the constant, V, D and J segments of the reference
sequence (Figure SCD). Consistent with the annotation of
the latent representation, the vector normal to the hyper-
plane separating TCR«a from TCRJ chains in the latent
space (vector 1 in Figure 5D) primarily alters the sequence
of the constant region, while the orthogonal vector (vector
2 in Figure 5D) primarily determines the sequence of the
V segment. Along vector 2, the region of largest variation
(the largest peak in v;) was the buried C-terminal end of the
V segment, corresponding to the start of the CDR3 region,
the key specificity-determining region of the receptor. Inter-
estingly, even along vector 1 we observe high values of v,
in the V segment, suggesting that there are systematic and
heterogeneous differences between the V segment sequence
distribution used in TCR« chains and in TCR/ chains (see
Section S7 for further analysis).

5.3. Evolutionary Forecasting

We explored a novel application of generative probabilis-
tic sequence models, evolutionary forecasting, which takes
advantage of the capacity of MuE observation models to
predict future sequences. Influenza A is responsible for an
estimated 500,000 deaths a year and is an ongoing pandemic
threat (Iuliano et al., 2018). It is also a model organism for

understanding the dynamics of rapidly evolving pathogens,
and forecasting its evolution is crucial in preparing vac-
cines and designing therapeutics (Luksza & Lissig, 2014;
Laursen & Wilson, 2013). Previous forecasting methods
have focused on predicting the relative fitness of existing
strains in future years (Luksza & Lissig, 2014; Bush et al.,
1999), or the antigenic properties of newly emerged strains
(Neher et al., 2016; Hie et al., 2021). We instead predict the
full amino acid sequence of the HA1 protein, the primary
site of interaction with the immune system (Wiley et al.,
1981). From the GISAID database we constructed a training
set of influenza A(H3N2) HA1 sequences collected from
patient samples from 1968 through 2013, and evaluated our
predictions on sequences collected from 2014 through Octo-
ber 2019 (420 out of 2,042 sequences held out, 21% of the
dataset) (Section S8) (Shu & McCauley, 2017). Insertions
and deletions are considered rare, though not absent, in pa-
tient samples, so this dataset also offers an opportunity to
evaluate MuE observation models in a distinct regime from
that considered previously in Section 5.1.

As a benchmark we again used the pHMM, which can cap-
ture the observation that there exist key highly variable sites
in the HA1 protein, an underlying motivation behind previ-
ous prediction methods such as Bush et al. (1999). We then
incorporated sequence collection time as a covariate in new
MuE observation models, using a linear regression model
(“RegressMuE”) and a neural network (“NeuralMuE”) with
MuE observation distributions (Section S3). The pHMM
achieves a per residue perplexity of 1.32 and the Regress-
MuE improves this to 1.24 (log Bayes factor > 10%; Fig-
ure 6A). This per residue perplexity difference corresponds
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Figure 6. (A) Predictive performance measured by heldout per residue perplexity; models are trained on data from 1968-2013, tested
on 2014-2020. (B) Magnitude of the shift in amino acid preference over time v, for the RegressMuE, projected onto a reference HA1
structure (PDB:40O5N). The full hemagglutinin protein is shown on the left. (C) Classical epitope regions of the HA1 protein. (D) Inferred
latent representation from a FactorMuE model, with sequences colored by the time at which the sample was collected (Section S8). (E)
Y-axis: orthogonal projection of the latent representation of each sequence onto the least squares fit line relating z; and z2. X-axis: time at
which each sample was collected. Two clusters of outliers are marked by t and .

to a factor of ~10'° improvement in per sequence perplexity.
The NeuralMuE has similar per residue perplexity (1.26) to
the RegressMuE.

Next we investigated in detail what the model can tell us
about how HA1 proteins have changed over time. We com-
puted the magnitude of the shift in amino acid preference
from 1968 to 2019 inferred by the model, with the latent
MuE alignment variable kept fixed (quantified as v;, defined
analogously to Equation 3 with times ¢y and ¢; replacing la-
tent representations zg and z1) (Figure 6B; Section S8). We
found that sites with a large shift are often associated with
antigenicity, consistent with the hypothesis that immune
evasion is a key driver of influenza evolution. Residues
that make up the classical epitope regions A-E of influenza
show significantly larger shifts as compared to residues out-
side these regions (mean v of 0.54 in epitopes A-E versus
0.09 in non-epitope sites, one sided Mann-Whitney U test
p < 10~ '8; Figures 6C and S12) (Wiley et al., 1981; Mufioz
& Deem, 2005). The same observation holds for residues
identified as key determinants of immune escape in recent
high-throughput mutational antigenic profiling experiments
(mean v; of 0.80 in sites with antigenic selection versus
0.24 elsewhere, one sided Mann-Whitney U test p < 10~%;
Section S8) (Lee et al., 2019).

The latent space representation of the influenza HA1 dataset
learned by the FactorMuE model shows the data falling
approximately along a line (Figure 6D; Section S8). The
position of a sequence along this line is linearly proportional
to the time at which the sequence was collected, though
this information was not included in the model (correlation
coefficient p = 0.94; Figure 6E) (Novembre & Stephens,
2008). Two clusters of outliers violate the proportionality
rule. The first (marked by 1) originated from mis-annotated
entries in the GISAID database (Section S8). The second
cluster (marked by 1) appears in the early 2010s, but the
latent representation of these sequences is close to that of

sequences from the mid-1990s to early 2000s. Among this
cluster of sequences, the ones that have been fully annotated
were all collected from an outbreak in the United States
of A(H3N2)v triple-reassortant viruses containing matrix
protein genes from pandemic A(HIN1)pdm09. In 1998,
A(H3N2)-derived viruses jumped from humans to swine,
causing a large outbreak among swine, before recombining
with other strains to produce this A(H3N2)v outbreak among
humans in the 2010s (Jhung et al., 2013; Skowronski et al.,
2012). The epidemiological history is consistent with our
unsupervised latent representation, which shows that the
cluster of outliers appearing in 2010-2013 most closely
matches human samples last seen around 2000.

6. Discussion

MSAs are a powerful tool for analyzing biological se-
quences, but MSA preprocessing leads to statistical patholo-
gies in generative models. MuE observation models offer a
direct alternative to MSA preprocessing that does not aban-
don the underlying biological ideas that have made MSAs so
successful. We hope that the MuE will enable rigorous appli-
cation of a wide variety of new models and methodologies
to biological sequence data.

Acknowledgments

We thank Chris Sander, John Ingraham, Smita Krish-
naswamy, Alan Amin, Will Grathwohl and members of the
Marks lab for discussion. We thank Elizabeth Wood for dis-
cussion and assistance with the T cell data, and Fritz Ober-
meyer and Eli Bingham for assistance with the Pyro imple-
mentation. We thank the anonymous reviewers for feedback
and suggestions. ENW is supported by the Fannie and John
Hertz Foundation. DSM is supported by the Chan Zucker-
berg Initiative and an NIH TRO1 grant (RO1CA260415).



A structured observation distribution for biological sequences

References

Abbas, A. K., Lichtman, A. H., and Pillai, S. Cellular and
Molecular Immunology. Elsevier, ninth edition, 2018.

Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M.,
and Church, G. M. Unified rational protein engineering
with sequence-based deep representation learning. Nat.
Methods, 16(12):1315-1322, December 2019.

Bingham, E., Chen, J. P, Jankowiak, M., Obermeyer, F.,
Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Hors-
fall, P., and Goodman, N. D. Pyro: Deep universal proba-
bilistic programming. J. Mach. Learn. Res., 20(28):1-6,
2019.

Bush, R. M., Bender, C. A., Subbarao, K., Cox, N. J., and
Fitch, W. M. Predicting the evolution of human influenza
A. Science, 286(5446):1921-1925, December 1999.

Dawid, A. P. Present position and potential developments:
Some personal views: Statistical theory: The prequential
approach. Journal of the Royal Statistical Society: Series
A (General), 147(2):278-292, 1984.

Dawid, A. P. Posterior model probabilities. In Bandyopad-
hyay, P. S. and Forster, M. R. (eds.), Philosophy of Statis-
tics, volume 7, pp. 607-630. North-Holland, Amsterdam,
January 2011.

Deng, Y., Kim, Y., Chiu, J., Guo, D., and Rush, A. La-
tent alignment and variational attention. In Advances in
Neural Information Processing Systems, pp. 9735-9747,
2018.

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G.
Biological sequence analysis: probabilistic models of

proteins and nucleic acids. Cambridge university press,
1998.

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani,
A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar,
G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Pal-
adin, L., Piovesan, D., Tosatto, S. C. E., and Finn, R. D.
The pfam protein families database in 2019. Nucleic
Acids Res., 47(D1):D427-D432, January 2019.

Felsenstein, J. Inferring phylogenies. Sinauer associates,
Sunderland, MA, 2004.

Frazer, J., Notin, P., Dias, M., Gomez, A., Brock, K., Gal,
Y., and Marks, D. Large-scale clinical interpretation of
genetic variants using evolutionary data and deep learning.
December 2020.

Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Pot-
ter, B., Callender, C., Sagulenko, P., Bedford, T., and
Neher, R. A. Nextstrain: real-time tracking of pathogen
evolution. Bioinformatics, 34(23):4121-4123, December
2018.

Hie, B., Zhong, E. D., Berger, B., and Bryson, B. Learning
the language of viral evolution and escape. Science, 371
(6526):284-288, 2021.

Holmes, I. H. Solving the master equation for indels. BMC
Bioinformatics, 18(1):255, May 2017.

Hopf, T. A., Ingraham, J. B., Poelwijk, F. J., Schirfe, C.
P. I, Springer, M., Sander, C., and Marks, D. S. Muta-
tion effects predicted from sequence co-variation. Nat.
Biotechnol., 35(2):128-135, February 2017.

Iuliano, A. D., Roguski, K. M., Chang, H. H., Muscatello,
D. J., Palekar, R., Tempia, S., Cohen, C., Gran, J. M.,
Schanzer, D., Cowling, B. J., Wu, P.,, Kyncl, J., Ang,
L. W., Park, M., Redlberger-Fritz, M., Yu, H., Espenhain,
L., Krishnan, A., Emukule, G., van Asten, L., Pereira da
Silva, S., Aungkulanon, S., Buchholz, U., Widdowson,
M.-A., Bresee, J. S., and Global Seasonal Influenza-
associated Mortality Collaborator Network. Estimates of
global seasonal influenza-associated respiratory mortal-
ity: a modelling study. Lancet, 391(10127):1285-1300,
March 2018.

Jhung, M. A., Epperson, S., Biggerstaff, M., Allen, D., Bal-
ish, A., Barnes, N., Beaudoin, A., Berman, L., Bidol,
S., Blanton, L., Blythe, D., Brammer, L., D’Mello, T.,
Danila, R., Davis, W., de Fijter, S., Diorio, M., Durand,
L. O., Emery, S., Fowler, B., Garten, R., Grant, Y., Green-
baum, A., Gubareva, L., Havers, F., Haupt, T., House, J.,
Ibrahim, S., Jiang, V., Jain, S., Jernigan, D., Kazmierczak,
J., Klimov, A., Lindstrom, S., Longenberger, A., Lucas,
P., Lynfield, R., McMorrow, M., Moll, M., Morin, C.,
Ostroff, S., Page, S. L., Park, S. Y., Peters, S., Quinn, C.,
Reed, C., Richards, S., Scheftel, J., Simwale, O., Shu,
B., Soyemi, K., Stauffer, J., Steffens, C., Su, S., Torso,
L., Uyeki, T. M., Vetter, S., Villanueva, J., Wong, K. K.,
Shaw, M., Bresee, J. S., Cox, N., and Finelli, L. Outbreak
of variant influenza A(H3N?2) virus in the united states.
Clin. Infect. Dis., 57(12):1703-1712, December 2013.

Johnson, L. S., Eddy, S. R., and Portugaly, E. Hidden
markov model speed heuristic and iterative HMM search
procedure. BMC Bioinformatics, 11:431, August 2010.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In /CLR, 2015.

Kingma, D. P. and Welling, M. Auto-Encoding variational
bayes. In International Conference on Learning Repre-
sentations ICLR, April 2014.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and
Blei, D. M. Automatic differentiation variational infer-
ence. J. Mach. Learn. Res., 18(14):1-45, January 2017.



A structured observation distribution for biological sequences

Laursen, N. S. and Wilson, I. A. Broadly neutralizing an-
tibodies against influenza viruses. Antiviral Res., 98(3):
476483, June 2013.

Lee, J. M., Eguia, R., Zost, S. J., Choudhary, S., Wilson,
P. C., Bedford, T., Stevens-Ayers, T., Boeckh, M., Hurt,
A. C., Lakdawala, S. S., Hensley, S. E., and Bloom, J. D.
Mapping person-to-person variation in viral mutations
that escape polyclonal serum targeting influenza hemag-
glutinin. Elife, 8, August 2019.

Luksza, M. and Lissig, M. A predictive fitness model for
influenza. Nature, 507(7490):57-61, March 2014.

Marks, D. S., Colwell, L. J., Sheridan, R., Hopf, T. A,,
Pagnani, A., Zecchina, R., and Sander, C. Protein 3D
structure computed from evolutionary sequence variation.
PLoS One, 6(12):¢28766, December 2011.

Muiioz, E. T. and Deem, M. W. Epitope analysis for in-
fluenza vaccine design. Vaccine, 23(9):1144-1148, Jan-
uary 2005.

Neher, R. A., Bedford, T., Daniels, R. S., Russell, C. A., and
Shraiman, B. I. Prediction, dynamics, and visualization of
antigenic phenotypes of seasonal influenza viruses. Proc.
Natl. Acad. Sci. U. S. A., 113(12):E1701-9, March 2016.

Novembre, J. and Stephens, M. Interpreting principal com-
ponent analyses of spatial population genetic variation.
Nat. Genet., 40(5):646—649, May 2008.

Ramien, C., Yusko, E. C., Engler, J. B., Gamradt, S., Patas,
K., Schweingruber, N., Willing, A., Rosenkranz, S. C.,
Diemert, A., Harrison, A., Vignali, M., Sanders, C.,
Robins, H. S., Tolosa, E., Heesen, C., Arck, P. C., Schef-
fold, A., Chan, K., Emerson, R. O., Friese, M. A., and
Gold, S. M. T cell repertoire dynamics during pregnancy
in multiple sclerosis. Cell Rep., 29(4):810-815.e4, Octo-
ber 2019.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In Proceedings of the 31st International
Conference on Machine Learning, 2014.

Riesselman, A. J., Ingraham, J. B., and Marks, D. S. Deep
generative models of genetic variation capture the effects
of mutations. Nat. Methods, 15(10):816-822, October
2018.

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Guo, D.,
Ott, M., Zitnick, C. L., Ma, J., and Fergus, R. Biological
structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. April 2019.

Rush, A. M. Torch-Struct: Deep structured prediction li-
brary. February 2020.

Russ, W. P, Figliuzzi, M., Stocker, C., Barrat-Charlaix, P.,
Socolich, M., Kast, P., Hilvert, D., Monasson, R., Cocco,
S., Weigt, M., and Ranganathan, R. An evolution-based
model for designing chorismate mutase enzymes. Science,
369:440-445, 2020.

S#rkkd, S. and Garcia-Fernandez, A. F. Temporal paral-
lelization of bayesian smoothers. IEEE Trans. Automat.
Contr., 66(1):299-306, 2020.

Shin, J.-E., Riesselman, A. J., Kollasch, A. W., McMahon,
C., Simon, E., Sander, C., Manglik, A., Kruse, A. C., and
Marks, D. S. Protein design and variant prediction using
autoregressive generative models. Nat. Commun., 12(1):
2403, April 2021.

Shu, Y. and McCauley, J. GISAID: Global initiative on
sharing all influenza data - from vision to reality. Euro
Surveill., 22(13), March 2017.

Skowronski, D. M., Janjua, N. Z., De Serres, G., Purych,
D., Gilca, V., Scheifele, D. W., Dionne, M., Sabaiduc, S.,
Gardy, J. L., Li, G., Bastien, N., Petric, M., Boivin, G.,
and Li, Y. Cross-reactive and vaccine-induced antibody
to an emerging swine-origin variant of influenza a virus
subtype H3N2 (H3N2v). J. Infect. Dis., 206(12):1852—
1861, December 2012.

Tamarozzi, E. R. and Giuliatti, S. Understanding the role of
intrinsic disorder of viral proteins in the oncogenicity of
different types of HPV. Int. J. Mol. Sci., 19(1), January
2018.

Thompson, J. D., Higgins, D. G., and Gibson, T. J.
CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice.
Nucleic Acids Res., 22(22):4673-4680, November 1994.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F.,
and Higgins, D. G. The CLUSTAL_X windows interface:
flexible strategies for multiple sequence alignment aided
by quality analysis tools. Nucleic Acids Res., 25(24):
4876—4882, December 1997.

Thorne, J. L., Kishino, H., and Felsenstein, J. An evolution-
ary model for maximum likelihood alignment of DNA
sequences. J. Mol. Evol., 33(2):114-124, August 1991.

Toth-Petroczy, A., Palmedo, P., Ingraham, J., Hopf, T. A.,
Berger, B., Sander, C., and Marks, D. S. Structured states
of disordered proteins from genomic sequences. Cell, 167
(1):158-170.e12, September 2016.

Van Noorden, B. Y. R., Maher, B., and Nuzzo, R. Nature
explores the most-cited research of all time. Nature, 514:
550-553, 2014.


https://29(4):810�815.e4

A structured observation distribution for biological sequences

Vapnik, V. N. An overview of statistical learning theory.
IEEE Trans. Neural Netw., 10(5):988-999, 1999.

Vogel, S., Ney, H., and Tillmann, C. HMM-based word
alignment in statistical translation. In Proc. of the 16th
International Conference on Computational Linguistics
(COLING ’96), pp. 836-841, 1996.

Weinreb, C., Riesselman, A. J., Ingraham, J. B., Gross, T.,
Sander, C., and Marks, D. S. 3D RNA and functional
interactions from evolutionary couplings. Cell, 165(4):
963-975, May 2016.

Weinstein, E. N., Frazer, J., and Marks, D. S. Deconvolving
fitness and phylogeny in generative models of molecular
evolution. In Learning Meaningful Representations of
Life Workshop at Neural Information Processing Systems,
2020.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
international conference on machine learning (ICML),
pp. 681-688, 2011.

Wilburn, G. W. and Eddy, S. R. Remote homology search
with hidden potts models. PLoS Comput. Biol., 16(11):
€1008085, November 2020.

Wiley, D. C., Wilson, 1. A., and Skehel, J. J. Structural
identification of sites of Hong Kong influenza and their
involvement in antigenic variation. Nature, 289, 1981.

Wu, M., Chatterji, S., and Eisen, J. A. Accounting for
alignment uncertainty in phylogenomics. PLoS One, 7
(1):e30288, January 2012.





