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This file consists of supplementaries for both theoretical
analysis and experiments. In Section A, we present the
proof of Theorem 1 in Section 3. In Section B, we present
more detailed settings of the numerical experiments includ-
ing descriptions of datasets, compared methods, model ar-
chitecture, and data generation procedures.

A. Proofs
We present all proofs for Section 3 here. For the sake of
conciseness and readability, we denote ~Yy as the collection
of all partial label sets containing the true label y, i.e. ~Yy :=
{~y ∈ ~Y|y ∈ ~y}.

In order to achieve the risk consistency result for the LW
loss in Theorem 1, we first present in Theorem A.1 the risk
consistency result for an arbitrary loss function L̄(~y, g(x))
under the generalized assumption that partial label sets fol-
lows the label-specific sampling.

Theorem A.1 Denote qz := P(z ∈ ~y |Y = y, x). Then
the partial loss function L̄(~y, g(x)) is risk-consistent with
respect to the supervised loss function with the form

L(y, g(x)) =
∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)L̄(~y, g(x)), (1)

where ~Yy := {~y ∈ ~Y | y ∈ ~y} denotes the partial label set
containing label y.

Proof 1 (of Theorem A.1) For any x ∈ X , there holds

R̄(L̄, g(X))

= E~Y |X [L̄(~Y , g(x))|X = x]

=
∑
~y∈2[K]

L̄(~y, g(x))P(~Y = ~y|X = x)
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=
∑
~y∈2[K]

L̄(~y, g(x))
∑
y∈y

P(~Y = ~y, Y = y|X = x)

=
∑
~y∈2[K]

L̄(~y, g(x))

·
∑
y∈y

P(~Y = ~y|Y = y,X = x)P(Y = y|X = x)

=

K∑
y=1

P(Y = y|X = x)

·
∑
~y∈2[K]

P(~Y = ~y|Y = y,X = x)L̄(~y, g(x)),

and

R(L, g(X)) = EY |X [L(Y, g(x))|X = x]

=

K∑
y=1

L(y, g(x))P(Y = y|X = x).

Since P(~Y = ~y|Y = y,X = x) = 0 for ~y not containing y,
if we have

L(y, g(x)) =
∑
~y∈2[K]

P(~Y = ~y|Y = y,X = x)L̄(~y, g(x))

=
∑
~y∈~Yy

P(~Y = ~y|Y = y,X = x)L̄(~y, g(x)),

=
∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)L̄(~y, g(x)),

then there holds

R̄(L̄, g(X)) = R(L, g(X)).

Besides, to prove Theorem 1, we need the following result
shown in Lemma A.1.

Lemma A.1 Let y be the true label of input x, qz := P(z ∈
~y|Y = y,X = x) for z ∈ Y , and ~Yy := {~y ∈ ~Y|y ∈ ~y}.
Then there holds∑

~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt) = 1.
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Proof 2 (of Lemma A.1) Since qy = 1, we have∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)

=
∑
~y∈~Yy

∏
s∈~y,s6=y

1 · qs
∏
t/∈~y

(1− qt)

=
∑
~y∈~Yy

∏
s∈~y,s6=y

qy · qs
∏
t/∈~y

(1− qt)

=
∑
~y∈~Yy

∏
s∈~y

qs
∏
t/∈~y

(1− qt)

=
∑
~y∈~Yy

P(~Y = ~y|Y = y,X = x)

=
∑
~y∈~Y

P(~Y = ~y|Y = y,X = x)

= 1,

where the second last equation holds since P(~Y = ~y|Y =

y,X = x) = 0 for ~y /∈ ~Yy .

Proof 3 (of Theorem 1) According to Theorem A.1, we
have the partial loss function L̄ψ consistent with

Lψ(y, g(x))

=
∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)L̄ψ(~y, g(x))

=
∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)
∑
z∈~y

wzψ(gz(x))

+ β ·
∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)
∑
z/∈~y

wzψ(−gz(x)). (2)

The first term on the right hand side of (2) is∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)
∑
z∈~y

wzψ(gz(x))

=
∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)wyψ(gy(x))

+
∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)
∑

z∈~y\{y}

wzψ(gz(x))

=
∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)wyψ(gy(x))

+
∑
~y∈~Yy

∑
z∈~y\{y}

∏
s∈~y,s6=y

qs
∏

t∈[K]\~y

(1− qt)wzψ(gz(x)).

(3)

By Lemma A.1, we have∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt) = 1,

and therefore the first term in (3) becomes∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)wyψ(gy(x)) = wyψ(gy(x)).

(4)

For the second term in (3), since z 6= y and z ∈ ~y, we switch
the summations, and achieve∑

~y∈2[K]

∑
z∈~y\{y}

∏
s∈~y,s6=y

qs
∏

t∈[K]\~y

(1− qt)wzψ(gz(x))

=
∑
z 6=y

∑
~y∈~Yz∩~Yy

∏
s∈~y,s6=y

qs
∏

t∈[K]\~y

(1− qt)wzψ(gz(x))

=
∑
z 6=y

wzψ(gz(x))
∑

~y∈~Yz\~Yy

∏
s∈~y

qs
∏

t∈[K]\~y\{y}

(1− qt).

Without loss of generality, we assume y = K for notational
simplicity, and write∑

z 6=y

wzψ(gz(x))
∑

~y∈~Yz\~Yy

∏
s∈~y

qs
∏

t∈[K]\~y\{y}

(1− qt)

=
∑

z∈[K−1]

wzψ(gz(x))
∑

~y∈(2[K−1])z

∏
s∈~y

qs
∏

t∈[K−1]\~y

(1− qt)

=
∑

z∈[K−1]

wzψ(gz(x))qz

·
∑

~y∈(2[K−1])z

∏
s∈~y,s6=z

qs
∏

t∈[K−1]\~y

(1− qt).

Applying Lemma A.1 with ~Y = 2[K−1], we have∑
~y∈(2[K−1])z

∏
s∈~y,s6=z

qs
∏

t∈[K−1]\~y

(1− qt) = 1, (5)

and therefore the second term in (3) becomes∑
~y∈2[K]

∑
z∈~y\{y}

∏
s∈~y,s6=y

qs
∏

t∈[K]\~y

(1− qt)wzψ(gz(x))

=
∑
z 6=y

qzwzψ(gz(x)). (6)

Similarly, by switching the summations, the second term on
the right hand side of (2) becomes

β ·
∑
~y∈~Yy

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)
∑
z/∈~y

wzψ(−gz(x))

= β ·
∑
~y∈~Yy

∑
z/∈~y

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)wzψ(−gz(x))

= β ·
∑
z 6=y

∑
~y∈~Yy∩~Yz

∏
s∈~y,s6=y

qs
∏
t/∈~y

(1− qt)wzψ(−gz(x))
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= β ·
∑
z 6=y

∑
~y∈~Yz\~Yy

∏
s∈~y

qs
∏

t/∈~y,t 6=y

(1− qt)wzψ(−gz(x))

= β ·
∑
z 6=y

∑
~y∈(2[K−1])z

∏
s∈~y

qs
∏
t/∈~y

(1− qt)wzψ(−gz(x))

= β ·
∑
z 6=y

qz
∑

~y∈(2[K−1])z

∏
s∈~y,s6=z

qs
∏
t/∈~y

(1− qt)wzψ(−gz(x))

= β ·
∑
z 6=y

qzwzψ(−gz(x)), (7)

where the last equality holds according to (5).

By combining (4), (6), (7), we have

Lψ(y, g(x)) = wyψ(gy(x)) +
∑
z 6=y

qzwzψ(gz(x))

+ β ·
∑
z 6=y

qzwzψ(−gz(x))

= wyψ(gy(x))

+
∑
z 6=y

qzwz
[
ψ(gz(x)) + βψ(−gz(x))

]
.

Before proving Theorem 2, we define the inner risk of loss
function Lψ by

CLψ (g) := EY |XLψ(Y, g(X)) =
∑
y∈[K]

pyLψ(Y, g(X)),

where py := P(Y = y |x).

Proof 4 (of Theorem 2) By Theorem 1, we can write the
inner risk induced by the supervised loss Lψ as

CLψ (g) := EY |XLψ(Y, g(X))

=
∑
y∈[K]

py

(
wyqyψ(gy(x))

+
∑
z 6=y

wzqz
[
ψ(gz(x)) + βψ(−gz(x))

])
=
∑
y∈[K]

pywyqyψ(gy(x))

+
∑
y∈[K]

py
∑
z 6=y

wzqz
[
ψ(gz(x)) + βψ(−gz(x))

]
=
∑
y∈[K]

pywyqyψ(gy(x))

+
∑
z∈[K]

∑
y 6=z

pywzqz
[
ψ(gz(x)) + βψ(−gz(x))

]
=
∑
y∈[K]

pywyqyψ(gy(x))

+
∑
y∈[K]

∑
z 6=y

pzwyqy
[
ψ(gy(x)) + βψ(−gy(x))

]

=
∑
y∈[K]

(
pywyqyψ(gy(x))

+ (1− py)wyqy
[
ψ(gy(x)) + βψ(−gy(x))

])
,

where py := P(Y = y |x).

Due to the symmetric property of ψ(·), we have

CLψ (g) =
∑
y∈[K]

(
pywyqyψ(gy(x))

+ (1− py)wyqy
[
β + (1− β)ψ(gy(x))

])
=
∑
y∈[K]

wyqy(βpy − (β − 1))ψ(gy) + C1,

where C1 :=
∑
y∈[K] β(1− py)wyqy .

Next, we consider the constraint comparison method (CCM)
(Lee et al., 2004) defined by

LCCM (y, g(x)) :=
∑
k 6=y

ψ(−gk(x))

with the constraint
∑
k∈[K] gk = 0. The inner risk induced

by the constraint comparison method (CCM) has the form

CCCM (g) := EY |XLCCM (X,Y )

=
∑
y∈[K]

py
∑
z 6=y

ψ(−gz)

=
∑
y∈[K]

∑
z 6=y

pyψ(−gz)

=
∑
z∈[K]

∑
y 6=z

pyψ(−gz)

=
∑
y∈[K]

∑
z 6=y

pzψ(−gy)

=
∑
y∈[K]

(1− py)ψ(−gy).

Since ψ(·) is symmetric, we have

CCCM (g) =
∑
y∈[K]

(1− py)(1− ψ(gy))

=
∑
y∈[K]

(py − 1)ψ(gy) + C2,

where C2 := 1− py .

Denote y∗ := maxy∈[K] py. We have py∗ = 1. By Section
3.4, we have arg maxy∈[K] wy = arg maxy∈[K] py. Then
when β > 0, there holds

arg max
y∈[K]

wyqy(βpy − (β − 1)) = arg max
y∈[K]

(py − 1).
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which implies optimizing LLW and LCCM achieves the
same classifier. According to Example 3 in Section 5.3 of
(Tewari & Bartlett, 2007), when ψ is differentiable, LCCM
is proved to be consistent in the multi-class classification
setting. Therefore, optimizing (12) will also lead to the
Bayes classifier, which implies when there holds

R(Lψ, ĝn)→ R∗Lψ

there also holds

R(L0-1, ĝn)→ R∗, (8)

where L0-1 is the multi-class supervised loss. This finishes
the proof.

B. Supplementary for Experiments
B.1. Descriptions of Datasets

B.1.1. BENCHMARK DATASETS

In Section 4.1.1, we use four widely-used benchmark
datasets, i.e. MNIST(LeCun et al., 1998), Kuzushiji-MNIST
(Clanuwat et al., 2018), Fashion-MNIST(Xiao et al., 2017),
CIFAR-10(Krizhevsky et al., 2009). The characteristics of
these datasets are reported in Table 1. We concisely describe
these nine datasets as follows.

• MNIST: It is a 10-class dataset of handwritten digits,
i.e. 0 to 9. Each data is a 28× 28 grayscale image.

• Fashion-MNIST: It is also a 10-class dataset. Each
instance is a fashion item from one of the 10 classes,
which are T-shirt/top, trouser, pullover, dress, sandal,
coat, shirt, sneaker, bag, and ankle boot. Moreover,
each image is a 28× 28 grayscale image.

• Kuzushiji-MNIST: Each instance is a 28×28 grayscale
image associated with one label of 10-class cursive
Japanese (Kuzushiji) characters.

• CIFAR-10: Each instance is a 32×32×3 colored image
in RGB format. It is a ten-class dataset of objects
including airplane, bird, automobile, cat, deer, frog,
dog, horse, ship, and truck.

B.1.2. REAL DATASETS

In Section 4.1.2, we use five real-world partially la-
beled datasets (Lost, BirdSong, MSRCv2, Soccer Player,
Yahoo! News). Detailed descriptions are shown as follows.

• Lost, Soccer Player and Yahoo! News: They corp faces
in images or video frames as instances, and the names
appearing on the corresponding captions or subtitles
are considered as candidate labels.

• MSRCv2: Each image segment is treated as a sample,
and objects appearing in the same image are regarded
as candidate labels.

• BirdSong: Birds’ singing syllables are regarded as in-
stances and bird species who are jointly singing during
any ten seconds are represented as candidate labels.

Tabel 2 includes the average number of candidate labels
(Avg. # CLs) per instance.

B.2. Compared Methods

The compared partial label methods are listed as follows.

IPAL (Zhang & Yu, 2015) : It is a non-parametric method
that uses the label propagation strategy to iteratively update
the confidence of each candidate label. The suggested con-
figuration is as follows: the balancing coefficient α = 0.95,
the number of nearest neighbors considered k = 10, and the
number of iterations T = 100.

PALOC ((Wu & Zhang, 2018)): It adapts the popular one-
vs-one decomposition strategy to solve the partial label prob-
lem. The suggested configuration is the balancing coeffi-
cient µ = 10 and the SVM model.

PLECOC ((Zhang et al., 2017)): It transforms the partial
label learning problem to a binary label problem by E-COC
coding matrix. The suggested configuration is codeword
length L = d10 log 2(q)e and SVM model. Moreover, the
eligibility parameter τ is set to be one-tenth of the number
of training instances (i.e. τ = |D|/10).

Hyper-parameters for these three methods are selected
through a 5-fold cross-validation.

Next, we list three compared partial label methods based on
neural network models.

PRODEN((Lv et al., 2020)): It propose a novel estimator
of the classification risk and a progressive identification al-
gorithm for approximately minimizing the proposed risk
estimator. The parameters is selected through grid search,
where the learning rate lr ∈ {10−5, 10−4, . . . , 10−1} and
weight decay wd ∈ {10−6, 10−4, . . . , 10−2}. The opti-
mizer is stochastic gradient descent (SGD) with momentum
0.9.

RC & CC((Feng et al., 2020)): The former method is a novel
risk-consistent partial label learning method and the latter
one is classifier-consistent based on the generation model.
For the two methods, the suggested parameter grids of learn-
ing rate and weight decay are both {10−6, 10−5, . . . , 10−1}.
They are implemented by PyTorch and the Adam optimizer.

For all these three compared methods, hyper-parameters are
selected so as to maximize the accuracy on a validation set,
constructed by randomly sampling 10% of the training set.
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Table 1. Summary of benchmark datasets.

Dataset # Train # Test # Feature # Class

MNIST 60, 000 10, 000 784 10
Kuzushiji-MNIST 60, 000 10, 000 784 10
Fashion-MNIST 60, 000 10, 000 784 10
CIFAR-10 50, 000 10, 000 3, 072 10

Table 2. Summary of real-world partial label datasets.

Dataset # Examples # Features # Class Avg # CLs Task Domain

Lost 1, 122 108 16 2.23 Automatic face naming
BirdSong 4, 998 38 13 2.18 Bird song classification
MSRCv2 1, 758 48 23 3.16 Object classification
Soccer Player 17, 472 279 171 2.09 Automatic face naming
Yahoo! News 22, 991 163 219 1.91 Automatic face naming

The mini-batch size is set as 256 and the number of epochs
is set as 250. They all apply the cross-entropy loss function
to build the partial label loss function.

B.3. Details of Architecture

In this section, we list the architecture of three models,
linear, MLP, and ConvNet. The linear model is a linear-
in-input model: d − 10. MLP refers to a 5-layer fully
connected networks with ReLU as the activation function,
whose architecture is d − 300 − 300 − 300 − 300 − 10.
Batch normalization was applied before hidden layers. For
both models, the softmax function was applied to the output
layer, and `2-regularization was added.

The detailed architecture of ConvNet (Laine & Aila, 2016)
is as follows.

0th (input) layer: (32*32*3)-

1st to 4th layers: [C(3*3, 128)]*3-Max Pooling-

5th to 8th layers: [C(3*3, 256)]*3-Max Pooling-

9th to 11th layers: C(3*3, 512)-C(3*3, 256)-C(3*3, 128)-

12th layers: Average Pooling-10

where C(3*3, 128) means 128 channels of 3*3 convolutions
followed by Leaky-ReLU (LReLU) active function, [·] ∗ 3
means 3 such layers, etc.

B.4. Matrix Representations of Alternative Data
Generations

Case 1: Each true label has a unique similar label with
probability q1 > 0 to enter the partial label set, while all
other labels are not partial labels. When q1 = 0.5, the data
generation corresponds to the one proposed in (Lv et al.,

2020). A matrix representation is

1 q1 0 0 0 0 0 0 0 0
0 1 q1 0 0 0 0 0 0 0
0 0 1 q1 0 0 0 0 0 0
0 0 0 1 q1 0 0 0 0 0
0 0 0 0 1 q1 0 0 0 0
0 0 0 0 0 1 q1 0 0 0
0 0 0 0 0 0 1 q1 0 0
0 0 0 0 0 0 0 1 q1 0
0 0 0 0 0 0 0 0 1 q1
q1 0 0 0 0 0 0 0 0 1


where the element in the i-th row and the j-th column repre-
sents the conditional probability P(j ∈ ~Y |Y = i, x).

Case 2: Each true label has two similar labels with probabil-
ity q1 > 0 to be partial labels, while all other labels are not
partial labels. Here we let q1 = 0.3. A matrix representation
is 

1 q1 0 0 0 0 0 0 0 q1
q1 1 q1 0 0 0 0 0 0 0
0 q1 1 q1 0 0 0 0 0 0
0 0 q1 1 q1 0 0 0 0 0
0 0 0 q1 1 q1 0 0 0 0
0 0 0 0 q1 1 q1 0 0 0
0 0 0 0 0 q1 1 q1 0 0
0 0 0 0 0 0 q1 1 q1 0
0 0 0 0 0 0 0 q1 1 q1
q1 0 0 0 0 0 0 0 q1 1


Case 3: In this case, we allow more pairs of similar labels.
For each true label, there exist a pair of most similar labels
with probability q1 to be partial labels, two pairs of less sim-
ilar labels with probabilities q2 and q3 respectively. Assume
that q1 > q2 > q3 > 0. Other labels are taken as non-partial
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labels. We let q1 = 0.5, q2 = 0.3, q3 = 0.1. A matrix
representation is

1 q1 q2 q3 0 0 0 q3 q2 q1
q1 1 q1 q2 q3 0 0 0 q3 q2
q2 q1 1 q1 q2 q3 0 0 0 q3
q3 q2 q1 1 q1 q2 q3 0 0 0
0 q3 q2 q1 1 q1 q2 q3 0 0
0 0 q3 q2 q1 1 q1 q2 q3 0
0 0 0 q3 q2 q1 1 q1 q2 q3
q3 0 0 0 q3 q2 q1 1 q1 q2
q2 q3 0 0 0 q3 q2 q1 1 q1
q1 q2 q3 0 0 0 q3 q2 q1 1


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