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Abstract
We formally study how contrastive learning learns
the feature representations for neural networks
by analyzing its feature learning process. We
consider the case where our data are comprised
of two types of features: the more semantically
aligned sparse features which we want to learn
from, and the other dense features we want to
avoid. Theoretically, we prove that contrastive
learning using ReLU networks provably learns
the desired sparse features if proper augmenta-
tions are adopted. We present an underlying prin-
ciple called feature decoupling to explain the
effects of augmentations, where we theoretically
characterize how augmentations can reduce the
correlations of dense features between positive
samples while keeping the correlations of sparse
features intact, thereby forcing the neural net-
works to learn from the self-supervision of sparse
features. Empirically, we verified that the fea-
ture decoupling principle matches the underlying
mechanism of contrastive learning in practice.

1. Introduction
Self-supervised learning (Devlin et al., 2019; Mikolov et al.,
2013; Sutskever et al., 2014; Jing & Tian, 2020) has demon-
strated its immense power in different areas of machine
learning (e.g. BERT (Devlin et al., 2019) in natural lan-
guage processing). Recently, it has been discovered that
contrastive learning (e.g., Tian et al. (2019); He et al. (2020);
Chen et al. (2020a); Chen et al. (2020); Grill et al. (2020);
Chen & He (2020)), one of the most typical forms of self-
supervised learning, can indeed learn representations of im-
age data that achieve superior performance in many down-
stream vision tasks. Moreover, as shown by the seminal
work (He et al., 2020), the learned feature representations
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can even outperform those learned by supervised learning in
several downstream tasks. The remakable potential of con-
trastive learning methods poses challenges for researchers
to understand and improve upon such simple but effective
algorithms.

Contrastive learning in vision learns the feature representa-
tions by minimizing pretext task objectives similar to the
cross-entropy loss used in supervised learning, where both
the inputs and “labels” are derived from the unlabeled data,
especially by using augmentations to create multiple views
of the same image. The seminal paper Chen et al. (2020b)
has demonstrated the effects of stronger augmentations
(comparing to supervised learning) for the improvement
of feature quality. Tian et al. (2020a) showed that as the aug-
mentations become stronger, the quality of representations
displayed a U-shaped curve. Such observations provided
insights into the inner-workings of contrastive learning. But
it remains unclear what has happened in the learning pro-
cess that renders augmentations necessary for successful
contrastive learning.

Some recent works have been done to understand contrastive
learning from theoretical perspective (Arora et al., 2019;
Wang & Isola, 2020; Tsai et al., 2020). However, these
works have not analyzed how data augmentations affect
the feature learning process in neural networks, which
we deem as crucial to understand how contrastive learning
works in practice. We state the fundamental questions we
want to address below, and provide tentative answers to all
the questions by building theory on a simplified model that
shares similar structures with real scenarios, and we provide
some empirical evidence through experiments to verify the
validity of our models.

Fundamental Questions
1. How do neural networks trained by contrastive
learning learn their feature representations efficiently,
and are the representations similar to those learned in
supervised learning?
2. Why does contrastive learning in deep learning col-
lapse in practice when no augmentation is used, and
how do standard data augmentations help contrastive
learning?
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Supervised Features Contrastive Features
(of adversarial trained Wide-ResNet) (of adversarial-contrast trained Wide-ResNet)

Figure 1. The difference between supervised features and contrastive features (in the higher layers of Wide-ResNet 34x5 over CIFAR10).
While both features contain shapes of objects, the supervised features are more colorful than the contrastive features. (here both crop-resize
and color distortion were used in contrastive learning, while no color distortion was used in supervised learning. The adversarial-contrast
learning follows Kim et al. (2020)). And we use the visualization technique in Allen-Zhu & Li (2020b).

1.1. Our Contributions

In this paper we directly analyze the feature learning pro-
cess of contrastive learning for neural networks (i.e. learning
the hidden layers of the neural network). Our results hold
for certain data distributions based on sparse coding model.
Mathematically, we assume our input data are of the form
x = Mz+ξ , where Mz is called the sparse signal such that
‖z‖0 = Õ(1), and ξ is the spurious dense noise, where we
simply assume that ξ follows from certain dense distribu-
tions (such that span(ξ) ≡ span(x)) with large norm (e.g.,
‖ξ‖2 = poly(d) � ‖Mz‖2 ≈ Õ(1)). Formal definition
will be presented in Section 2, as we argue that sparse cod-
ing model is indeed a proper provisional model to study
the feature learning process of contrastive learning over the
given data set.

Theoretical results. Over our data distributions based on
sparse coding model, when we perform contrastive learning
by using stochastic gradient descent (SGD) to train a one-
hidden-layer neural networks with ReLU activations:

• If no augmentation is applied to the data inputs, the
neural networks will learn feature representations that
emphasize the spurious dense noise, which can easily
overwhelm the sparse signals.

• If natural augmentation techniques (in particular, the
random mask defined in Definition 2.3) are applied to
the training data, the neural networks will avoid learn-
ing the features associated with dense noise but pick
up the features on the sparse signals. Such a differ-
ence of features brought by augmentation is due to a
principle we refer to as “feature decoupling”. More-
over, these features can be learned efficiently simply by
doing a variant of Stochastic Gradient Descent (SGD)
over the contrastive training objective (after data aug-
mentations).

• The features learned by neural networks via contrastive
learning (with augmentations) is similar to the features

learned via supervised learning (under sparse coding
model). This claim holds as long as two requirements
are satisfied: (1) The sparse signals in the data have
not been corrupted by augmentations in contrastive
learning; (2) The labels in supervised learning depends
mostly on the sparse signals.

Therefore, our theory indicates that in our model, the success
of contrastive learning of neural networks relies essentially
on the data augmentations to remove the features associated
with the spurious dense noise. We abstract this process into
a principle below, which we show to hold in neural networks
used in real-world settings as well.

Feature Decoupling
Augmentations in contrastive learning serve to decou-
ple the correlations of spurious features between the
representations of positive samples. Moreover, after
the augmentations, the neural networks will ignore the
decoupled features and learn from the similarities of
features that are more resistant to data augmentations.

We will prove that contrastive learning can successfully
learn the desired sparse features using this principle. The
intuitions of our proof will be present in Section 4.

Empirical evidence of our theory. Empirically, we con-
duct multiple experiments to justify our theoretical state-
ments, and the results indeed matches our theory. We show:

• When no proper augmentation is applied to the
data, the neural network will learn features with
dense patterns. As shown in Figure 2, Figure 3 and
Figure 4: If no augmentations are used, the learned
features are completely meaningless and the represen-
tations are dense; If only crop-resize augmentations
are used, then the mixture of color features (which also
generate dense firing patterns) will remain in the neural
network and prevent further separation of clusters.
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Message ❶: If no augmentations are 
applied to the inputs, the weights of neural 
nets will not stay at random initialization. 
Contrastive learning is still performing 
feature learning without augmentation, 
but these features emphasize on the 
spurious noise instead of the true signals. 
Message ❷: Applying only crop-resize 
augmentations can help neural networks 
learn some of the semantically meaningful 
features, but it fail to remove the dense 
mixture of color features learned by 
contrastive learning. 
Message ❸: Applying color distortion 
augmentations can help neural networks 
to remove some of the dense mixture of 
color features so that the edge (and shape) 
features are learned with much better 
quality. 

The effect of crop-resize 
augmentations

The effect of color 
distortion augmentations

(with full augmentations) (with crop-resize)
Wide-ResNet Features

(without augmentation)

(with full augmentations)
AlexNet Features

(with crop-resize) (without augmentation)

Figure 2. Evidence of feature decoupling: how do augmentations affect the features learned by neural networks in contrastive learning.
The two different augmentations we have conducted here are color distortions and crop-resize.The color distortions we used consist of
color jittering and random grayscale.

• Standard augmentations removes features associ-
ated with dense patterns, and the remaining fea-
tures learned by contrastive learning do exhibit
sparse firing pattern. As shown in Figure 3 and Fig-
ure 4, if no (suitable) augmentations are applied, the
neural networks will learn dense representations of im-
age data. After the augmentations, neural networks
will successfully form separable clusters of representa-
tions for image data, and the learned features indeed
emphasizes sparse signals.

• The features learned in contrastive learning resem-
ble the features learned in supervised learning. As
shown in Figure 1, the shape features (filters that ex-
hibit shape images) of the higher layer of Wide ResNet
via supervised learning are similar to those learned in
contrastive learning. However, color features learned
in supervised learning are much more than those in
contrastive learning. This verifies our theoretical re-
sults that features preserved under augmentations will
be learned by both contrastive and supervised learning.

1.2. Related Work

Self-supervised learning. Self/un-supervised representa-
tion learning has a long history in the literature. In natural
language processing (NLP), self-supervised learning has
been the major approach (Mikolov et al., 2013; Devlin et al.,
2019). In vision, the generative approach has been the fa-

vored approach (Radford et al., 2016; Arjovsky et al., 2017;
Kingma & Welling, 2014). The initial works (Carreira-
Perpiñán & Hinton, 2005; Smith & Eisner, 2005; Gutmann
& Hyvärinen, 2012) of contrastive learning focus on learn-
ing the hidden latent variables of the data. Later the attempts
to use self-supervised to help pretraining brought the con-
trastive learning to vision (Oord et al., 2018; Tian et al.,
2019; He et al., 2020; Chen et al., 2020a; Chen et al., 2020;
Grill et al., 2020; Chen & He, 2020). On the theoretical
side, there has been a lot of papers trying to understand
un/self-supervised learning (Coates et al., 2011; Radhakr-
ishnan et al., 2018; Arora et al., 2019; Nguyen et al., 2019;
Lee et al., 2020; Wang & Isola, 2020; Tsai et al., 2020;
Tian et al., 2020a; Tosh et al., 2020; 2021). For contrastive
learning, Arora et al. (2019) assume that different positive
samples are independently drawn from the same latent class,
which reduce the problem to supervised learning. Wang &
Isola (2020) pointed out the tradeoff between alignment and
uniformity. Tsai et al. (2020); Tian et al. (2020a) proposed
to analyze contrastive learning from information-theoretic
framwork. Lee et al. (2020) used a pretext task similar to
generative approach, but is restricted to the linear models.
These papers did not discuss how features are learned in
neural networks and how augmentations affect the learned
features, which are essential to understand contrastive learn-
ing in practice. (Tian et al., 2020b) tried to analyze the
learning process, but their augmentation can fix the class-
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Color distortions can further decouple 

different classes

CropResize augmentations can slightly 

increase in-class correlations. 

Without AugmentationsWith Crop and Resize

Without Color DistortionsWith Full Augmentations

Figure 3. Evidence supporting our theoretical framework: the effects of augmentations on the learned representations of Wide-ResNet
34x5 over CIFAR10 visualized via t-SNE. The differences bewteen features learned under different augmentations shows that the neural
networks will indeed learn dense representations if augmentation is not powerful enough.

related node and resample the others (even the latent nodes)
in their generative models, reduceing the problem to super-
vised learning.

Theory of neural networks. There are many prior works
on the supervised learning of neural networks. The works
(Li & Yuan, 2017; Brutzkus & Globerson, 2017; Ge et al.,
2018; Soltanolkotabi, 2017; Li et al., 2018) focus on the
scenarios where data inputs are sampled from Gaussian dis-
tributions. We consider in our paper the Gaussian part of
the data to be spurious and use augmentation to prevent
learning from them. Our approach is also fundamentally dif-
ferent from the neural tangent kernel (NTK) point of view
(Jacot et al., 2018; Li & Liang, 2018; Du et al., 2019; Allen-
Zhu et al., 2019b;a;c; Chen et al., 2019). The NTK approach
relies on approximating via first order taylor-expansion with
extreme over-parameterization. More importantly, NTK can-
not explain the feature learning process of neural networks
because it is only doing linear regression over prescribed
feature map, instead of learning the features. Some works
consider the regimes beyond NTK (Allen-Zhu & Li, 2019;
2020a;b; Allen-Zhu & Li, 2020; Li et al., 2020; Bai & Lee,
2020), which shedded insights to the innerworkings of neu-
ral networks in practice.

2. Problem Setup
Notations. We use O,Ω,Θ notations to hide univer-
sal constants with respect to d and Õ, Ω̃, Θ̃ notations to
hide polylogarithmic factors of d. We use the notations
poly(d), polylog(d) to represent constant degree polynomi-
als of d or log d. We use [d] as a shorthand for the index
set {1, . . . , d}. For a matrix M ∈ Rd′×d, we use Mj ,

where j ∈ [d], to denote its j-th column. We say an event
happens with high probability (or w.h.p. for short) if the
event happens with probability at least 1− e−Ω(log2 d). We
use N (µ,Σ) to denote standard normal distribution in with
mean µ and covariance matrix Σ.

2.1. Data Distribution.

We present our sparse coding model below, which form the
basis of our analysis.

Definition 2.1 (sparse coding model (Dx,Dz,Dξ)). We
assume our raw data samples x ∈ Rd1 are generated i.i.d.
from distribution Dx in the following form:

x = Mz + ξ ∼ Dx, z ∼ Dz, ξ ∼ Dξ = N (0, σ2
ξId1

)

Where z ∈ Rd. We refer to z as the sparse signal and ξ
as the spurious dense noise. We assume d1 = poly(d) for
simplicity. We have the following assumptions on M, z, ξ
respectively:1

• The dictionary matrix M = [M1, . . . ,Md] ∈
Rd1×d is a column-orthonormal matrix, and satisfies
‖Mj‖∞ ≤ Õ

(
1√
d1

)
for all j ∈ [d].

• The sparse latent variable z = (z1, . . . , zd)
> ∈

{−1, 0, 1}d is sampled from Dz , we assume all zj’s
are symmetric around zero, satisfying Pr(|zj | = 1) =

1The choice of Pr(|zj | = 1) = Θ( log log d
d

) instead of Θ( 1
d
)

here is to avoid the scenario where z could be zero with probability
≥ Ω(1). Most of our other requirements above on the data distri-
bution can be relaxed. Although our theory tolerates a wider range
of these parameters, we choose to present the simplest setting.
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Histograms of Neuron Activation Sparsity

Trained without color distortions

Trained with color distortions

Contrastive Features Supervised Features

↓ Add Color DistorƟons ↓       

Trained without color distortions

Trained with color distortions

Figure 4. Another evidence supporting our theoretical framework. After adding the color distortion to augmentation, the neurons of
AlexNet (2nd to 5th layer) exhibit sparser firing patterns over input images of CIFAR10. Meanwhile the networks obtained from
supervised learning always have sparse activations regardless of augmentations. These observations indicate that (1). In contrastive
learning, augmentations can indeed help neural nets focus on the sparse signals. (2). Sparse signals are indeed more important for the
downstream tasks (such as supervised classification).

Θ
(

log log d
d

)
, and are identically distributed and inde-

pendent across all j ∈ [d].

• For the spurious dense noise ξ ∼ N (0, σ2
ξId1

), we

assume its variance parameter σ2
ξ = Θ(

√
log d
d ).

Why sparse coding model. Sparse coding model was first
proposed by neuroscientists to model human visual systems
(Olshausen & Field, 1997; 2004), where they provided ex-
perimental evidence that sparse codes can produce coding
matrices for image patches that resemble known features
in certain portion of the visual cortex. It has been further
studied by (Földiák & Young, 1998; Vinje & Gallant, 2000;
Olshausen & Field, 2004; Protter & Elad, 2009; Yang et al.,
2009; Mairal et al., 2014) to model images based on the
sparse occurences of objects. For the natural language data,
sparse code is also found to be helpful in modelling the
polysemy of words (Arora et al., 2018). Thus we believe
our setting share some similar structures with practical sce-
narios.

Why sparse signals are more favorable. Theoretically,
we argue that sparse signals are more favorable as we can
see from the properties of our sparse signals Mz and dense
signals ξ:

1. The significance of sparse signal. Since σ2
ξ =

Θ
(√

log d
d

)
, the `2-norm of ξ becomes ‖ξ‖22 ≥

Ω(poly(d)) � ‖Mz‖2 w.h.p. However, whenever
there is one zj 6= 0, we have |〈Mz,Mj〉| ≥ Ω(1)

while |〈ξ,Mj〉| ≤ Õ( 1√
d
) with high probability. This

indicates that even if the dense signal is extremely large
in norm, it cannot corrupt the sparse signal.

2. The individuality of dense signal. For each j ∈ [d],
the sparse feature ±Mj are shared by at least Ω̃( 1

d )
of the population. However, for polynomially many
independent dense signal ξi, with high probability we
have |

〈
ξi
‖ξi‖2 ,

ξj
‖ξj‖2

〉
| ≤ Õ( 1

poly(d) ) for any i 6= j,
which shows that the dense signal ξ is in some sense
“individual to each sample”. This also suggests that
any representations of the dense signal can hardly
form separable clusters other than isolated points.

2.2. Learner Network and Contrastive Learning
Algorithm

We use a single-layer neural net f : Rd1 → Rm with ReLU
activation as our contrastive learner, where m is the number
of neurons. More precisely, it is defined as follows:

f(x) = (h1(x), . . . , hm(x))> ∈ Rm,
hi(x) = ReLU(〈wi, x〉 − bi)− ReLU(−〈wi, x〉 − bi)

Such activation function hi is a symmetrized version of
ReLU activation. We initialize the parameters by w(0)

i ∼
N (0, σ2

0Id1
) and b

(0)
i = 0, where σ2

0 = Θ( 1
d1poly(d) ) is

small (and also theoretically friendly). Corresponding to the
two types of signals in Definition 2.1, we call the learned
weights of neural networks {wi}i∈[m] “features”, and we
expand the weight of a neuron as

wi =
∑
j∈[d]〈wi,Mj〉Mj +

∑
j∈[d1−d]〈wi,M⊥j 〉M⊥j
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where we name the directions Mj and M⊥j as follows:

• We call M = [Mj ]j∈[d] the sparse features, which
is the features associated with our sparse signals Mz.
These are the desired features we want our learner
network to learn.

• We call M⊥ = {M⊥j }j∈[d1−d] (the orthogonal com-
plement of M) the spurious dense features, which is
only associated with our dense signal ξ. These are the
undesired features for our learner.

Definition 2.2 (Contrastive loss). Our contrastive loss func-
tion is based on the similarity measure defined as follows:
let x and x′ be two samples in Rd1 , and f : Rd1 → Rd be a
feature map, the similarity of the representations of x and
x′ is defined as

Simf (x, x′) := 〈f(x),StopGrad(f(x′))〉 (2.1)

The StopGrad(·) operator here means that we do not com-
pute its gradient in optimization, which is inspired by recent
works (Grill et al., 2020; Chen & He, 2020). Now sup-
pose we are given a pair of positive data samples xp, x′p
and a batch of negative data samples {xn,s}s∈N (we write
{xn,s}N for short), let τ be the temperature parameter, the
contrastive loss is defined as2

L(f, xp, x
′
p, {xn,s}N)

:= −τ log

(
eSimf (xp,x

′
p)/τ∑

s∈N e
Simf (xp,xn,s)/τ

)
(2.2)

However, as shown by our experiments (see Figure 2 or
Figure 3), the success of contrastive learning rely on the
augmentations adopted in generating the positive samples
(and also the negative samples). We present our augmenta-
tion method RandomMask below, which is an analog of the
random cropping data augmentation used in practice.

Definition 2.3 (RandomMask and DD). We first define a
distribution DD over the space Rd1×d1 of diagonal matrices
as follows: let D = diag(D`,`)`∈[d1] ∼ DD be a diagonal
matrix with {0, 1} entries, its diagonal entries D`,` are sam-
pled from Bernoulli

(
1
2

)
independently. Now suppose we

are given a positive sample xp ∼ Dx, we generate D ∼ DD,
and then apply the matrix D to generate x+

p and x++
p as

follows:

x+
p := 2Dxp, x++

p := 2(I−D)xp
2The contrastive loss (2.2) defined here have used the unnor-

malized representations instead of the normalized ones, which is
simpler to analyze theoretically. As shown in (Chen et al., 2020a),
contrastive learning using unnormalized representation can also
achieve meaningful (more than 57%) ImageNet top-1 accuracy in
linear evaluation of the learned representations.

Remark 2.4. We do not apply any augmentation to our neg-
ative samples in order for simplicity of theory. And also we
point out that adding such augmentations do not reveal any
further insights, since we do not expect the augmentation to
decouple any correlations other than that between positive
samples. Nevertheless our theory can easily adapt to the
setting where augmentations are applied to every input data.

Intuitions behind the RandomMask augmentation. Intu-
itively, the RandomMask data augmentation simply masks
out roughly a half of the coordinates in the data. The con-
trastive learning objective asks to learn features that can
match two disjoint set of the coordinates of given data points.
Suppose we can maintain the correlations of desired signals
between the disjoint coordinates and remove the undesired
correlations, then we can force the algorithm to learn from
the desired signals. We will discuss the effects of augmenta-
tions with more detail in Section 4.

Significance of our analysis on the data augmentations.
Our analysis on the data augmentation are fundamentally dif-
ferent from those in (Tsai et al., 2020; Tian et al., 2020b; Wei
et al., 2020; Lee et al., 2020). In (Tsai et al., 2020; Tian et al.,
2020b), they argued their data augmentations can change
the latent variables unretaled to the downstream tasks, while
real-life augmentations can only affect the observables, and
cannot identify which latents are the task-specific ones. (Wei
et al., 2020) assumed their augmentations are only picking
data points inside a small neighborhood of the original data
(in the observable space), which is also untrue in practice.
Indeed, common augmentations like crop-resize and color
distortions can considerably change the data, making it very
distant to the original data in the observable space. Our anal-
ysis of RandomMask makes a step toward understanding
realistic data augmentations in deep learning.

Training algorithm using SGD. We consider two cases:
training with augmentation and without augmentation:

• With Augmentation. We perform stochastic gradient
descent on the following objectives: for each training
iterations t ≥ 0 and the contrastive learner ft, the
objectives is defined as follows:

Obj(ft) := L(ft) + λ
∑
i∈[m]

‖w(t)
i ‖

2
2,

L(ft) := E
x+
p ,x

++
p ,N

[
L(ft, x

+
p , x

++
p ,N)

]
where λ ∈ [ 1

d1.001 ,
1

d1.499 ] is the regularization param-
eter, L(ft) is the population loss and xp, {xn,s}N are
sampled from Dx, x+

p , x
++
p are obtained by applying

RandomMask to xp. At each iteration t, let η = 1
poly(d)

be the learning rate, we update as:

w
(t+1)
i ← w

(t)
i − η∇wiObj(ft)
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• Without Augmentation. We perform stochastic gra-
dient descent on the following modified objectives
ObjNA(ft):

ObjNA(ft) := LNA(ft) + λ
∑
i∈[m]

‖w(t)
i ‖

2
2,

LNA(ft) := E
xp,N

[L(ft, xp, xp,N)]

where λ ≤ O(1/d) can be arbitrary. The learning rate
η ≤ o(1) can also be arbitrary. We update as:

w
(t+1)
i ← w

(t)
i − η∇wiObjNA(ft)

We manually tune bias3 b
(t)
i during the training process as

follows: let T1 = Θ
(

d log d1

η log log d

)
be the iteration when all

‖w(0)
i ‖2 ≤ γc0‖w

(t)
i ‖2. At t = T1, we reset the bias b(t)i =√

2 log d
d ‖w(t)

i ‖2 and update by b
(t+1)
i = b

(t)
i (1 + ηb,t),

where ηb,t = max{ηd ,
‖w(t+1)

i ‖2
‖w(t)

i ‖2
− 1} if b(t)i ≤

polylog(d)√
d

.

3. Main Results
We now state the main theorems of this paper in our setting.
We argue that contrastive learning objective learns com-
pletely different features with/without data augmentation.
Moreover, to further illustrate the how these learned
features are different with/without data augmentation,
we also consider two simple downstream tasks to eval-
uate the performance of contrastive learning. We argue
that using a linear function taking the learned representa-
tion as input to perform these tasks can be more efficient
than using raw inputs, it should be considered as successful
representation learning.

Definition 3.1 (downstream tasks). We consider two simple
supervised tasks, regression and classification, based on the
label functions defined below:

• Regression: For each x = Mz + ξ ∼ Dx, we define
its label y = 〈w?, z〉, where w? ∈ Rd.

• Classification: For each x = Mz+ ξ ∼ Dx, we define
y = sign(〈w?, z〉), where w? ∈ Rd.

where in both cases we assume w? satisfies |w?j | = Θ(1)
for all j ∈ [d].

Given these downstream tasks, our goal of representations
learning is to obtain suitable feature representations and
train a linear classifier over them. Specifically, let f(·) be

3In fact, when trained without augmentations, the biases can
be tuned arbitrarily as long as the neurons are not killed. It will
not affect our results.

the obtained representation map, we use optimization tool4

to find w∗ such that

w∗ = arg min
w∈Rm

E[L̃(w>f(x), y)]

where L̃(·, ·) is the loss function for the downstream tasks
considered: For regression, it is the `2 loss L̃(ŷ, y) =

(ŷ − y)2; For classification, it is the logistic loss L̃(ŷ, y) =
log(1 + e−ŷy). It should be noted that these tasks can be
done efficiently by neural networks via supervised learning
as shown by Allen-Zhu & Li (2020b). However, such task
cannot be done by doing linear regression over the input
x, since even if one can locate the desired features M, the
noise level σ2

ξ = Θ(
√

log d
d ) is still much larger than the

signal size E[z2
j ] = Θ( log log d

d ), thus linear models will fail
with constant probability.

3.1. Contrastive Learning Without Augmentations

We present our theorem for the learned features without
using any augmentations.

Theorem 3.2 (Contrastive features learned without augmen-
tation). Let fNAt be the neural network trained by conrtas-
tive learning without any data augmentations, and using
|N| = poly(d) many negative samples, we have objective
guarantees LNA(fNAt ) = o(1) for any t ≥ poly(d)

η . More-
over, given a data sample x = Mz + ξ ∼ Dx, with high
probability it holds:〈

fNAt (x)

‖fNAt (x)‖2
,
fNAt (ξ)

‖fNAt (ξ)‖2

〉
≥ 1− Õ

(
1

poly(d)

)
This results means that in the representations of ft, the
sparse signal Mz are completely overwhelmed by the spuri-
ous dense signal ξ. It would be easy to verify the following
corollary:

Corollary 3.3 (Downstream task performance). The
learned network fNAt , where t ≥ 0, fail to achieve meaning-
ful `2-loss/accuracy in the downstream tasks in Definition
3.1. More specifically, no matter how many labeled data
we have for downstream linear evaluation (where fNAt is
frozen):

• For regression, we have

E
x∼Dx

|y − 〈w∗, fNAt 〉(x)|2 ≥ Ω(1)

• For classification, we have

Pr
x∼Dx

[y = sign(〈w∗, fNAt (x)〉)] = o(1)

4Since the downstream learning tasks only involve linear learn-
ers on convex objectives, for simplicity, we directly argue the
property of the minimizer for these downstream training objec-
tives.
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3.2. Contrastive Learning With Augmentation

We present our results of the learned features after successful
training with augmentations.
Theorem 3.4 (Contrastive features learned with augmen-
tation). Let m = d1.01 be the number of neurons, τ =
polylog(d), and |N| = poly(d) be the number of nega-
tive samples. Suppose we train the neural net ft via con-
trastive learning with augmentation, then for some itera-
tions T ∈ [T3, T4], where T3 = d1.01

η , T4 = d1.99

η , we have
objective guarantees

1

T

∑
T3≤t<T

Obj(ft) ≤ o(1),
1

T

∑
T3≤t<T

L(ft) ≤ o(1)

Moreover, for each neuron i ∈ [m] and t ∈ [T3, T4], con-
trastive learning will learn the following set of features:

w
(t)
i =

∑
j∈Ni

αi,jMj +
∑
j /∈Ni

α′i,jMj +
∑

j∈[d1]\[d]

βi,jM
⊥
j

where αi,j ∈ [ τdc , τ ], |Ni| = O(1), α′i,j ≤ o( 1√
d
)‖w(t)

i ‖2
and |βi,j | ≤ o( 1√

d1
)‖w(t)

i ‖2, for some small constant c <
1

1000 . Furthermore, for each dictionary atom Mj , there are
at most o(m/d) many i ∈ [m] such that j ∈ Ni, and at
least Ω(1) many i ∈ [m] such that Ni = {j}.

This result indicates the following: let x = Mz + ξ ∼ Dx
be a data sample and ft, t ∈ [T3, T4] be the trained ner-
work, then ‖ft(x) − ft(Mz)‖2 ≤ Õ( 1√

d
) with high prob-

ability, while ‖f(Mz)‖2 ≥ Ω(1) with probability at least
1 − 1

polylog(d) . Thus the learned feature map has suc-
cessfully removed the spurious dense noise ξ from the
model/representation. We have a direct corollary following
this theorem.
Corollary 3.5 (Downstream task performance). The
learned feature map ft, t ∈ [d

1.01

η , d
1.49

η ] obtained by con-
trastive learning perform well in all the downstream tasks
defined in Definition 3.1. Specifically, we have

1. For the regression task, with sample complexity at most
Õ(d), we can obtain w∗ ∈ Rm such that

E
x∼Dx

|y − 〈w∗, ft(x)〉|2 = o(1)

2. For the classification task, again by using logistic re-
gression over feature map ft, with sample complexity
at most Õ(d), we can find w∗ ∈ Rd such that

Pr
x∼Dx

[y = sign(〈w∗, ft(x)〉)] = 1− o(1)

4. Proof Intuition: The Feature Decoupling
Principle

Theoretically speaking, contrastive learning objectives can
be view as two parts, as was also argued in Wang & Isola

(2020):

L = −Simf (xp, x
′
p) + τ log

(∑
x∈B

eSimf (xp,x)/τ

)

where the first part −Simf (xp, x
′
p) emphasize simi-

larity between positive samples, and the second part
τ log

{∑
x∈B eSimf (xp,x)/τ

}
emphasize dissimilarities be-

tween the positive and negative samples. To understand
what happens in the learning process, we separately discuss
the cases of learning with/without augmentations below:

Why does contrastive learning prefer spurious dense
noise without augmentation? Without data augmenta-
tion, we simply have xp = x′p. In this case, contrastive learn-
ing will learn to emphasize the signals that simultaneously
maximize the correlation 〈f(x++

p ), f(x+
p )〉 = ‖ft(xp)‖22

and minimize 〈f(xn,s), f(x+
p )〉 by learning from all the

available signals. However, in our sparse coding model
x = Mz + ξ, the spurious dense features ξ has much
larger `2-norm and the least correlations between dif-
ferent samples (see Section 2 for discussion). In contrast,
the sparse signals Mz =

∑
jMjzj display larger corre-

lations between different samples because of possible co-
occurences of features Mj (i.e., at least Ω̃( 1

d ) portion of the
data contain feature Mj). Thus the our contrastive learner
will focus on learning the features associated with the dense
noise ξ, and fail to emphasize sparse features.

Feature Decoupling: How does augmentation remove the
spurious dense noise: Theoretically, we show how data
augmentations help contrastive learning, which demonstrate
the principle of feature decoupling.

Specifically, under our data model defined in Definition 2.1,
if no augmentations are applied to the two positive sam-
ples x+

p , x
++
p generated from xp = Mzp + ξp ∼ Dx, their

correlations will mostly come from the inner product of
noise 〈ξp, ξp〉, which can easily overwhelm those from the
sparse signals 〈Mzp,Mzp〉. Nevertheless, we have a sim-
ple observation: each coordinate ξj are independent, which
enables a simple method to decorrelate the positive samples
– By randomly applying two completely opposite masks D
and I −D to the data x to generate two positive samples
x+
p and x++

p . From our observation, such augmentations
can make the dense signals Dξ and (I − D)ξ of x+

p and
x++
p independent to each other. This independence will de-

couple the dense features between positive samples, which
substantially reduces the gradients of the dense features.

However, the sparse signals are more resistant to data
augmentation. As long as the sparse signals Mz =∑
j∈[d] Mjzj span across the space, they will show up

in both x+
p and x++

p , so that their correlations will re-
main in the representations. More precisely, whenever a
sparse signal Mj is present (meaning its latent variable
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zj 6= 0), it can be recovered both from 2DMz and from
2(I − D)Mz with the correct decoding: e.g. we have
Tb(〈Mj , 2Dx〉) ≈ Tb(〈Mj , 2(I − D)x〉) ≈ zj , where
Tb(x) = x1|x|≥b is a threshold operator with a proper bias
b > 0. Unless in very rare case Mj is completely masked by
augmentations (that is DMj = 0 or (I−D)Mj = 0), the
sparse signals will remain their correlations in the feature
representations, which will be reinforced by neural networks
following the SGD trajectory.

5. Conclusion and Discussion
In this work, we show a theoretical result toward under-
standing how contrastive learning method learns the feature
representations in deep learning. We present the feature de-
coupling principle to tentatively explain how augmentations
work in contrastive learning. We also provide empirical
evidence supporting our theory, which suggest that augmen-
tations are necessary if we want to learn the desired features
and remove the undesired ones. We hope our theory could
shed light on the innerworkings of how neural networks
perform representation learning in self-supervised setting.

However, we also believe that our results can be significantly
improved if we can build on more realistic data distributions.
For example, real life image data should be more suitably
modeled as “hierachical sparse coding model” instead of
the current simple linear sparse coding model. We believe
that deeper network would be needed in the new model.
Studying contrastive learning over those data models and
deep networks is an important open direction.
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P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo,
Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos,
R., and Valko, M. Bootstrap Your Own Latent A New
Approach to Self-Supervised Learning. Ar, pp. 14, 2020.

Gutmann, M. U. and Hyvärinen, A. Noise-contrastive es-
timation of unnormalized statistical models, with appli-
cations to natural image statistics. Journal of Machine
Learning Research, 13(Feb):307–361, 2012.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 9729–9738,
2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.
8571–8580, 2018.

Jing, L. and Tian, Y. Self-supervised visual feature learning
with deep neural networks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1–1,
2020.

Kim, M., Tack, J., and Hwang, S. J. Adversarial self-
supervised contrastive learning. In Advances in Neural
Information Processing Systems, volume 33, 2020.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In ICLR 2014 : International Conference on
Learning Representations (ICLR) 2014, 2014.

Lee, J. D., Lei, Q., Saunshi, N., and Zhuo, J. Predict-
ing What You Already Know Helps: Provable Self-
Supervised Learning. arXiv:2008.01064 [cs, stat], Au-
gust 2020.

Li, Y. and Liang, Y. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. In Advances in Neural Information Processing
Systems, pp. 8157–8166, 2018.

Li, Y. and Yuan, Y. Convergence analysis of two-layer neural
networks with relu activation. In Advances in neural
information processing systems, pp. 597–607, 2017.

Li, Y., Ma, T., and Zhang, H. Algorithmic regularization in
over-parameterized matrix sensing and neural networks
with quadratic activations. In COLT 2018: 31st Annual
Conference on Learning Theory, pp. 2–47, 2018.

Li, Y., Ma, T., and Zhang, H. R. Learning over-parametrized
two-layer relu neural networks beyond ntk. In COLT, pp.
2613–2682, 2020.

Mairal, J., Bach, F., and Ponce, J. Sparse Modeling for
Image and Vision Processing. 2014.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

Nguyen, T. V., Wong, R. K. W., and Hegde, C. Benefits
of jointly training autoencoders: An improved neural
tangent kernel analysis. arXiv preprint arXiv:1911.11983,
2019.

Olshausen, B. A. and Field, D. J. Sparse coding with an
overcomplete basis set: A strategy employed by v1 ?
Vision Research, 37(23):3311–3325, 1997.

Olshausen, B. A. and Field, D. J. Sparse coding of sensory
inputs. Current Opinion in Neurobiology, 14(4):481–487,
2004.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Protter, M. and Elad, M. Image sequence denoising via
sparse and redundant representations. IEEE Transactions
on Image Processing, 18(1):27–35, 2009.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. In ICLR 2016 : International Con-
ference on Learning Representations 2016, 2016.



Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning

Radhakrishnan, A., Yang, K., Belkin, M., and Uhler, C.
Memorization in overparameterized autoencoders. arXiv
preprint arXiv:1810.10333, 2018.

Smith, N. A. and Eisner, J. Contrastive estimation: Training
log-linear models on unlabeled data. In Proceedings
of the 43rd Annual Meeting on Association for Com-
putational Linguistics, ACL ’05, pp. 354–362, USA,
2005. Association for Computational Linguistics. doi:
10.3115/1219840.1219884.

Soltanolkotabi, M. Learning relus via gradient descent.
In Advances in Neural Information Processing Systems,
volume 30, pp. 2007–2017, 2017.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to Se-
quence Learning with Neural Networks. In Advances in
Neural Information Processing Systems 27, volume 27,
pp. 3104–3112, 2014.

Tian, Y., Krishnan, D., and Isola, P. Contrastive multiview
coding. In ECCV (11), pp. 776–794, 2019.

Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., and
Isola, P. What makes for good views for contrastive
learning. In Advances in Neural Information Processing
Systems, volume 33, 2020a.

Tian, Y., Yu, L., Chen, X., and Ganguli, S. Understanding
self-supervised learning with dual deep networks. arXiv
preprint arXiv:2010.00578, 2020b.

Tosh, C., Krishnamurthy, A., and Hsu, D. Contrastive esti-
mation reveals topic posterior information to linear mod-
els. arXiv preprint arXiv:2003.02234, 2020.

Tosh, C., Krishnamurthy, A., and Hsu, D. Contrastive learn-
ing, multi-view redundancy, and linear models. In Algo-
rithmic Learning Theory, pp. 1179–1206. PMLR, 2021.

Tsai, Y.-H. H., Wu, Y., Salakhutdinov, R., and Morency,
L.-P. Demystifying self-supervised learning: An
information-theoretical framework. 2020.

Vinje, W. E. and Gallant, J. L. Sparse coding and decor-
relation in primary visual cortex during natural vision.
Science, 287(5456):1273–1276, 2000.

Wang, T. and Isola, P. Understanding contrastive represen-
tation learning through alignment and uniformity on the
hypersphere. In ICML, pp. 9929–9939, 2020.

Wei, C., Shen, K., Chen, Y., and Ma, T. Theoretical Analysis
of Self-Training with Deep Networks on Unlabeled Data.
arXiv:2010.03622 [cs, stat], October 2020.

Yang, J., Yu, K., Gong, Y., and Huang, T. Linear spatial
pyramid matching using sparse coding for image classi-
fication. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1794–1801, 2009.




