
Solving Inverse Problems with a Flow-based Noise Model

A. Omitted Proof
A.1. Proof for Denoising

Proof of Theorem 4.1. We first show that gradient descent
with sufficiently small learning rate will converge to x̄, the
locally-optimal solution of Equation (9). Recall the loss
function L(x) := q(x) + 1

2σ2 ‖x − y‖2 (we subsume the
scaling 1

2 into 1
σ2 without loss of generality). Notice in the

ball Bdr (x∗) :=
{
x ∈ Rd | ‖x− x∗‖ ≤ r

}
, L is

(
µ+ 1

σ2

)
strongly-convex. We next show there is a stationary point
x̄ ∈ Bdr (x∗) of L(x).

∇L(x̄) = 0 =⇒ ∇q(x̄) +
1

σ2
(x̄− y) = 0

=⇒ ∇q(x̄)−∇q(x∗) =
1

σ2
(y − x̄)

=⇒ 〈∇q(x̄)−∇q(x∗), x̄− x∗〉

=
1

σ2
〈y − x̄, x̄− x∗〉

From strong convexity of q,

〈∇q(x̄)−∇q(x∗), x̄− x∗〉 ≥ µ‖x̄− x∗‖2.

Thus,

1

σ2
〈y − x∗, x̄− x∗〉

=
1

σ2
〈(y − x̄) + (x̄− x∗) , x̄− x∗〉

=
1

σ2
〈y − x̄, x̄− x∗〉+

1

σ2
〈x̄− x∗, x̄− x∗〉

= 〈∇q(x̄)−∇q(x∗), x̄− x∗〉+
1

σ2
‖x̄− x∗‖2

≥ µ‖x̄− x∗‖2 +
1

σ2
‖x̄− x∗‖2

=

(
µ+

1

σ2

)
‖x̄− x∗‖2

Finally, by Cauchy-Schwartz inequality,

〈y − x∗, x̄− x∗〉 ≤ ‖y − x∗‖ · ‖x̄− x∗‖.

So we get ‖x̄ − x∗‖ ≤ 1
1+µσ2 ‖y − x∗‖ ≤ ‖δ‖ ≤ r, in

other words, x̄ ∈ Bdr (x∗).

Notice L is
(
µ+ 1

σ2

)
strongly-convex in Bdr (x∗), which

contains the stationary point x̄. Therefore x̄ is a local min-
imizer of L(x). Also note that we implicitly require q to
be twice differentiable, meaning in a compact set Bdr (x∗)
its smoothness is upper bounded by a constant M . Thus
gradient descent starting from y ∈ Bdr (x∗) with learning
rate smaller than 1

M will converge to x̄ without leaving the
(convex) set Bdr (x∗).

B. Additional Experimental Results
Here we include experimental results and details not in-
cluded in the main text. Across all the experiments, we
individually tuned the hyperparameters for each method.

B.1. Experimental Details

Dataset. For MNIST, we used the default split of 60,000
training images and 10,000 test images of (LeCun et al.,
1998). For CelebA-HQ, we used the split of 27,000 training
images and 3,000 test images as provided by (Kingma &
Dhariwal, 2018).

During evaluation, the following Python script was used to
select 1000 MNIST images and 100 CelebA-HQ images
from their respective test sets:

np.random.seed(0)
indices_mnist = np.random.choice(

10000, 1000, False)
np.random.seed(0)
indices_celeba = np.random.choice(

3000, 100, False)

Note that CelebA-HQ images were further resized to 64×64
resolution.

Noise Distributions. For the sinusoidal noise used in the
experiments, the standard deviation of the k-th pixel/row is
calculated as:

σk = 0.1 ·
(

exp

(
sin(2π · k

16
)

)
− 1

)
/(e− 1),

clamped to be in range [0.001, 1]. For Figure 9b,
we used vary the coefficient 0.1 to values in
{0.05, 0.1, 0.2, 0.3, 0.4}.

For the radial noise used in the additional experiment below,
the standard deviation of each pixel with `2 distance is
d from the center pixel (31, 31) is computed as: σk =
0.1 ·exp(−0.005 ·d2), clamped to be in range [0.001, 1000].

B.2. Additional Result: Removing RADIAL Noise

Consider the measurement process y = x+ δradial, where
each pixel follows a Gaussian distribution, but with variance
that decays exponentially in distance to the center point. For
a pixel whose `2 distance to the center pixel is d, the stan-
dard deviation is computed as σ(d) = exp

(
−0.005 · d2

)
.

See Figure 8 and Figure 9a for reconstructions as well as
PSNR plot comparing the methods considered.

B.3. Additional Result: 1-bit Compressed Sensing

Figure 9b shows the performance of each method at differ-
ent noise scales for a fixed number of measurements. We



Solving Inverse Problems with a Flow-based Noise Model

G
ro

un
d

Tr
ut

h

Out-of-Distribution ExamplesTest Set Examples

N
oi

sy
In

pu
t

O
ur

s
A

si
m

et
 a

l.
B

or
a

et
 a

l.
B

M
3D

Figure 8. Result of denoising RADIAL noise on CelebA-HQ faces and out-of-distribution images.

0.05 0.10 0.20 0.30 0.40
Noise scale

20

25

30

35

40

P
S

N
R

Ours

Asim et al.

Bora et al.

BM3D

(a) Result on denoising RADIAL noise at varying noise rates. Our
method achieves the same reconstruction performance even when
the noise has approximately 1.5× higher noise scale compared to
the best baseline method which is BM3D for this setting.

0.05 0.10 0.20 0.30 0.40
Noise scale at 500 measurements

10

11

12

13

14

P
S

N
R

Ours

Asim et al.

Bora et al.

(b) Result of 1-bit compressed sensing at different noise scale. Our
method obtains the best reconstructions, achieving similar PSNR
as (Asim et al., 2019) when the noise scale is 8× higher.

Figure 9. RADIAL denoising results (left) and 1-bit compressed sensing results at different noise levels (right).

observe that our method performs consistently better at all
noise levels.

C. Model Architecture and Hyperparameters
For the RealNVP models we trained, we used multiscale
architecture as was done in (Dinh et al., 2016), with residual

networks and regularized weight normalization on convolu-
tional layers. Following (Kingma & Dhariwal, 2018), we
used 5-bit color depth for the CelebA-HQ model. Hyper-
parameters and samples from the models can be found in
Table 1 and Figure 10.



Solving Inverse Problems with a Flow-based Noise Model

Hyperparameter CelebA-HQ MNIST
Learning rate 5e−4 1e−3
Batch size 16 128
Image size 64× 64× 3 28× 28× 1
Pixel depth 5 bits 8 bits
Number of epochs 300 200
Number of scales 6 3
Residual blocks per scale 10 6
Learning rate halved every 60 epochs 40 epochs
Max gradient norm 500 100
Weightnorm regularization 1e−5 5e−5

Table 1. Hyperparameters used for RealNVP models.

Figure 10. Samples from the RealNVP models used in our experi-
ments.

Figure 11. Out-of-distribution images used in our experiments. We
included different types of out-of-distribution instances including
grayscale images and cartoons with flat image areas.

D. Experiment Hyperparameters
Here we list the hyperparameters used for each experiment.
We used the Adam optimizer (Kingma & Ba, 2014) for all
appropriate methods below.

Denoising MNIST Digits.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,
2019): 400

• Optimization steps for Ours (MLE) and (Bora et al.,
2017): 1000

• Smoothing parameter for Ours (MAP & MLE): β = 1.0

• Regularization for (Asim et al., 2019): γ = 0.0

• Regularization for (Bora et al., 2017): λ = 0.01

Noisy Compressed Sensing.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,
2019): 300

• Optimization steps for (Bora et al., 2017): 1000

• Smoothing parameter for Ours (MAP): β = 100

• Regularization for (Asim et al., 2019): γ = 10

• Regularization for (Bora et al., 2017): λ = 0.001

• Regularization for LASSO: λ = 0.01

Denoising Sinusoidal Noise.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,
2019): 150

• Optimization steps for (Bora et al., 2017): 1000

• Smoothing parameter for Ours (MAP): β = 0.5

• Regularization for (Asim et al., 2019): γ = 2.0

• Regularization for (Bora et al., 2017): λ = 0.01

Noisy 1-bit Compressed Sensing.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,
2019): 200

• Optimization steps for (Bora et al., 2017): 1000

• Smoothing parameter for Ours (MAP): β = 1.0

• Regularization for (Asim et al., 2019): γ = 1.0

• Regularization for (Bora et al., 2017): λ = 0.01


