
Composing Normalizing Flows for Inverse Problems

A. Proof of Hardness Results
A.1. Preliminaries

A Boolean variable is a variable that takes a value in {−1, 1}.
A literal is a Boolean variable xi or its negation (¬xi). A
clause is set of literals combined with the OR operator, e.g.,
(x1 ∨ ¬x2 ∨ x3). A conjunctive normal form formula is
a set of clauses joined by the AND operator, e.g. (x1 ∨
¬x2 ∨x3)∧ (x1 ∨¬x3 ∨x4). A satisfying assignment is an
assignment to the variables such that the Boolean formula
is true.

The 3-SAT problem is the problem of deciding if a con-
junctive normal form formula with three literals per clause
has a satisfying assignment. We will show that conditional
sampling from flow models allows us to solve the 3-SAT
problem.

We ignore the issue of representing samples from the con-
ditional distribution with a finite number of bits. However
the reduction is still valid if the samples are truncated to a
constant number of bits.

A.2. Design of the Additive Coupling Network

Given a conjunctive normal form with m clauses, we design
a ReLU neural network with 3 hidden layers such that the
output is 0 if the input is far from a satisfying assignment,
and the output is about a large number M if the input is
close to a satisfying assignment.

We will define the following scalar function

δε(x) = ReLU

(
1

ε
(x− (1− ε))

)
− ReLU

(
1

ε
(x− (1− ε))− 1

)
− ReLU

(
1

ε
(x− 1)

)
+ ReLU

(
1

ε
(x− 1)− 1

)
.

This function is 1 if the input is 1, 0 if the input x has
|x − 1| ≥ ε and is a linear interpolation on (1 − ε, 1 + ε).
Note that it can be implemented by a hidden layer of a neural
network and a linear transform, which can be absorbed in
the following hidden layer. See Figure 9 for a plot of this
function.

For each variable xi, we create a transformed variable x̃i
by applying x̃i = δε(xi)− δε(−xi). Note that this function
is 0 on (−∞,−1 − ε] ∪ [−1 + ε, 1 − ε] ∪ [1 + ε,∞), −1
at xi = −1, 1 at xi = 1, and a smooth interpolation on the
remaining values in the domain.

Every clause has at most 8 satisfying assignments. For
each satisfying assignment we will create a neuron with the

Figure 9: Plot of the scalar function used to construct an ad-
ditive coupling layer that can generate samples of satisfying
3-SAT assignments.

following process: (1) get the relevant transformed values
x̃i, x̃j , x̃k, (2) multiply each variable by 1/3 if it is equal to
1 in the satisfying assignment and −1/3 if it is equal to −1
in the satisfying assignment, (3) sum the scaled variables,
(4) apply the δε function to the sum.

We will then sum all the neurons corresponding to a satisfy-
ing assignment for clause Cj to get the value cj . The final
output is the value M × ReLU(

∑
j cj − (m− 1)), where

M is a large scalar.

We say that an input to the neural network x corresponds to
a Boolean assignment x′ ∈ {−1, 1}d if for every xi we have
|xi−x′i| < ε. For ε < 1/3, if the input does not correspond
to a satisfying assignment of the given formula, then at least
one of the values cj is 0. The remaining values of cj are at
most 1, so the sum in the output is at most (m − 1), thus
the sum is at most zero, so the final output is 0. However,
if the input is a satisfying assignment, then every value of
cj = 1, so the output is M .

A.3. Generating SAT Solutions from the Conditional
Distribution

Our flow model will take in Gaussian noise x1, . . . , xd, z ∼
N(0, 1). The values x1, . . . , xd will be passed through
to the output. The output variable y will be z +
fM (x1, . . . , xd), where fM is the neural network described
in the previous section, andM is the parameter in the output
to be decided later.

Let A be all the valid satisfying assignments to the given
formula. For each assignment a, we will define Xa to be the
region Xa = {x ∈ Rd : ‖a− x‖∞ ≤ ε}, where as above ε
is some constant less than 1/3. Let XA =

⋃
a∈AXa.

Given an element x ∈ Xa, we can recreate the correspond-
ing satisfying assignment a. Thus if we have an element of
XA, we can certify that there is a satisfying assignment. We

Composing Normalizing Flows for Inverse Problems

will show that the distribution conditioned on y = M can
generate satisfying assignments with high probability.

We have that

p(XA | y = M) =
p(y = M,XA)

p(y = M,XA) + p(y = M,XA)

If we can show that p(y = M,XA) � p(y = M,XA),
then we have that the generated samples are with high prob-
ability satisfying assignments.

Note that,

p(y = M,XA) = p(y = M | XA)P (XA)

≤ p(y = M | XA).

Also notice that if x ∈ XA, then fM (x) = 0. Thus y ∼
N (0, 1) and P (y = M | XA) = Θ(exp(−M2/2)).

Now consider any satisfying assignment xa. Let X ′a be the
region X ′a = {x ∈ Rd : ‖a − x‖∞ ≤ 1

2m}. Note that for
every x in this region we have fM (x) ≥M/2. Additionally,
we have that P (X ′a) = Θ(m)−d. Thus for any x ∈ X ′a, we
have p(Y = M | x) & exp(−M2/8). We can conclude
that

p(y = M,XA) ≥ p(Y = M,X ′a)

=

∫
X′a

p(Y = M | x)p(x) dx

& exp(−M2/8−Θ(d logm)).

For M = O(
√
d logm), we have that p(y = M,XA) is

exponentially smaller than p(y = M,XA). This implies
that sampling from the distribution conditioned on y = M
will return a satisfying assignment with high probability.

A.4. Hardness of Approximate Sampling

Definition 2. The complexity class RP is the class of de-
cision problems with efficient random algorithms that (1)
output YES with probability 1/2 if the true answer is YES
and (2) output NO with probability 1 if the true answer is
NO. It is widely believed that RP is a strict subset of NP .

A simple extension of the above theorem shows that even
approximately matching the true conditional distribution in
terms of the total variation (TV) distance is computationally
hard. TV distance is defined as dTV(p, q) = supE |p(E)−
q(E)| ≤ 1, where E is an event. The below corollary shows
that it is hard to conditionally sample from a distribution
that is even slightly bounded away from 1.

Corollary 3. The conditional sampling problem remains
hard even if we only require the algorithm to sample from
a distribution q such that dTV(p(· | x = x∗), q) ≤ 1 −
1/poly(d), where d is the dimension of the distribution.

We show that the problem is still hard even if we require
the algorithm to sample from a distribution q such that
dTV(p(x | y = y∗), q) ≥ 1/poly(d).

Consider the event XA from above. We saw that p(XA |
y = M) ≥ 1− exp(−Ω(d)). We have that dTV(p(· | y =
M), q) ≥ 1− exp(−Ω(d)− q(XA)).

Suppose that the distribution q has q(XA) ≥ 1/poly(d).
Then by sampling a polynomial number of times from q
we sample an element of XA, which allows us to find a
satisfying assignment. Thus if we can efficiently create such
a distribution, we would be able to efficiently solve SAT
and RP = NP. As we are assuming this is false, we must
have q(XA) ≤ 1/poly(d), which implies dTV(p(· | y =
M), q) ≥ 1− 1/poly(d).

B. Missing Derivations
B.1. Derivation of Equation (4)

Here we present a detailed derivation of Equation (4). Note
that this equality is true up to a constant w.r.t. f̂ .

Lours(f̂)

, DKL(qx(x) ‖ px(x | ỹ = y∗))

= Ex∼qx [log qx(x)− log px(x, ỹ = y∗)] + log px(ỹ = y∗)

A
= Ex∼qx [log qx(x)− log px(x)− log pσ(ỹ = y∗ | x)]

B
= Ex∼qx [log qx(x)− log px(x)]

+ Ex∼qx [− log pσ(ỹ = y∗ | y = A(x))]

= DKL(qx(x) ‖ px(x))

+ Ex∼qx [− log pσ(ỹ = y∗ | y = A(x))]

C
= DKL(qz(z) ‖ px(z)) + Ez∼qz

[
1

2σ2
‖A(f(z))− y∗‖22

]

In (A), we drop log px(ỹ = y∗), as it is constant w.r.t. f̂ .
In (B), we use the conditional independence ỹ ⊥⊥ x | y.
In (C), we use the invariance of KL divergence under invert-
ible transformation to rewrite it in terms of z.

B.2. Joint VI vs. Marginal VI

We also provide a justification for using the joint VI loss
as discussed in Section 4. Specifically, we show that the
joint VI loss in eq. (4) is an upper bound to the intractable
marginal VI loss. Assuming the partitioning x = (x1,x2),

Composing Normalizing Flows for Inverse Problems

we have:

(Joint KL)
= DKL(qx(x) ‖ px(x|x̃1 = x∗))

= Eqx [log qx(x1,x2)− log px(x1,x2|x̃1 = x∗)]

= Eqx
[
log qx(x2) + log qx(x1 | x2)

− log px(x2|x̃1 = x∗)− log px(x1 | x̃1 = x∗,x2)

]
= Eqx [log qx(x2)− log px(x2|x̃1 = x∗)]

+ Eqx
[
Eqx(x1|x2)

[
log qx(x1 | x2)− log px(x1 | x̃1 = x∗,x2)

]]
= DKL(qx(x2) ‖ px(x2|x̃1 = x∗))

+ Eqx(x2) [DKL(qx(x1 | x2) ‖ px(x1|x̃1 = x∗,x2))]

≥ DKL(qx(x2) ‖ px(x2|x̃1 = x∗))

= (Marginal KL),

where the last inequality is due to the nonnegativity of KL.
Note that equality holds when

DKL(qx(x1 | x2) ‖ px(x1|x̃1 = x∗,x2)) = 0,

i.e. when our variational posterior matches the true condi-
tional.

C. Experiment Details
C.1. Our Algorithm

Algorithm 1 Training the pre-generator for a given observa-
tion under transformation. We assume that f̂ is an invertible
neural network with parameters θ.

1: Input: y∗: observation, A: differentiable measurement
function.

2: for i = 1 . . . num_steps do
3: for j = 1 . . .m do
4: Sample ε(j) ∼ N (0, I)

5: z(j) ← f̂(ε(j)) (reparametrization trick)
6: end for
7: L ← 1

m

m∑
j=1

[
log qz(z(j))− log pz(z(j))

+ 1
2σ2

∥∥A(f(z(j)))− y∗
∥∥2
2

]
8: θ ← θ −∇θL (gradient step)
9: end for

C.2. Hyperparameters: Base Model and Pre-generator

See Table 3 and Table 4 for the hyperparameters used to
define the network architectures train them. For the color

datasets CIFAR-10 and CelebA-HQ, we used 5-bit pixel
quantization following Kingma & Dhariwal (2018). Addi-
tionally for CelebA-HQ, we used the same train-test split
(27,000/3,000) of Kingma & Dhariwal (2018) and resized
the images to 64× 64 resolution. Uncurated samples from
the base models are included for reference in Figure 10.

Table 3: Hyperparameters used to train the base models
used in our experiments.

Base Models MNIST CIFAR-10 CelebA-HQ

Image resolution 28× 28 32× 32 64× 64
Num. scales 3 6 6
Res. blocks per scale 8 12 10
Res. block channels 32 64 80
Bits per pixel 8 5 5
Batch size 128 64 32
Learning rate 0.001 0.001 0.001
Test set bits-per-dim 1.053 1.725 1.268

Table 4: Hyperparameters used to define and train the pre-
generator for each of our experiments.

Base Models MNIST CIFAR-10 CelebA-HQ

Image resolution 28× 28 32× 32 64× 64
Num. scales 3 4 3
Res. blocks per scale 3 4 3
Res. block channels 32 48 48
Batch size 64 32 8

C.3. Hyperparameters: Image Inpainting

We randomly chose 900/500/300 images from
MNIST/CIFAR-10/CelebA-HQ test sets, applied masks
defined in Section 6.1, and generated samples conditioned
on the remaining parts. FID and other sample quality
metrics were computed using 6 conditional samples per
test image for all MNIST experiments, and 8 conditional
samples for all CIFAR-10 and CelebA-HQ experiments.

For VI Methods (Ours & Ambient VI)

• Learning rate: 1e−3 for MNIST; 5e−4 for the others
• Number of training steps: 4000 for CelebA-HQ; 1000

for the others

For Langevin Dynamics

• Learning rate: 5e−4 for all datasets
• Length of chain: 1000 for CIFAR-10; 4000 for the

others

For PL-MCMC

• Learning rate: 5e−4

Composing Normalizing Flows for Inverse Problems

Figure 10: Unconditional samples from the base models used for our experiments. From left: MNIST, 5-bit CIFAR-10, and
5-bit CelebA-HQ models.

• Length of chain: 2000 for MNIST
• σa = 1e−3, σp = 0.05

C.4. Hyperparameters: Compressed Sensing

For Ours and (Asim et al., 2019)

• Learning rate: 5e−4
• Number of training steps: 4000
• For (Asim et al., 2019), we used the same training ob-

jective used in their Compressed Sensing experiments:
arg minz ‖AG(z)− y∗‖22

For (Bora et al., 2017)

• Learning rate: 0.02
• Regularization coefficient: λ = 0.1
• Following (Bora et al., 2017), we repeated each run

three times and initialized z0 using samples from
N (0, σ2I) where σ = 0.1. Then we used the best
result out of the three runs for evaluation.

C.5. Hyperparameters: Inverse Problems

Please see Table 5.

Table 5: Hyperparameters for the extra inverse problem
experiments.

Colorize CS CS SR (2×)

Dataset CelebA-HQ CIFAR-10
Learning rate 5e−4 5e−4 5e−4 5e−4

σ 0.05 0.05 0.05 0.05
Batch size 8 8 32 32

Number of steps 1000 2000 1000 1000

