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This contains the supplemental appendix to the 2021 ICML paper. It is organized sequentially in reference to the main text;

S{N} refers back to section N in the main text.

A complete release of code for our implementation, including command line scripts to replicate the experiments in the paper

and links to the datasets, can be found at: https://bit.ly/3g9361W.

S4. Base learning algorithm: DreamCoder

The LAPS framework described in the main paper (Sec. 5)

is a general one for extending Bayesian models of program

learning to incorporate information from natural language

(see (Liang et al., 2010; Lake et al., 2015; Dechter et al.,

2013; Lake et al., 2013)). Our concrete implementation and

experiments use the DreamCoder approach of (Ellis et al.,

2021; 2018) as the base synthesis algorithm, which imple-

ments the hierarchical Bayesian formulation of program

learning. It defines a modular interface with two primary

learning components: a learned conditional inference model

for search (as a neural search heuristic); and a learned ab-

straction algorithm for updating the program prior (based

on program refactoring and compression) (Ellis et al., 2021).

Each of these learning components has been additionally

implemented in other work (such as (Devlin et al., 2017;

Polosukhin & Skidanov, 2018; Nye et al., 2019; Parisotto

et al., 2016; Balog et al., 2016) for neurally guided synthesis,

and (Dechter et al., 2013; Zhang et al., 2017; Shin et al.,

2019; Artzi et al., 2014; Dumancić & Cropper) for program

abstraction learning).

This supplementary section provides theoretical and im-

plementation details on the DreamCoder algorithm we use

in our experiments (summarized in Sec. 4). We match

our implementation as closely as possible to the original

work for comparison with published baselines. We provide

key details relevant to the language-guided extension, but

strongly recommend the original works which introduce the

DreamCoder algorithm (Ellis et al., 2021; 2018) for further

reference.

S4.1 Program prior and MDL equivalence

Hierarchical Bayesian program learning formulations re-

quire a prior over expressible programs. DreamCoder is

learned iteratively: it is initialized with a base library L0

and returns a library Lf containing program abstractions

learned from solving training tasks. Therefore, Dream-

Coder defines its program prior with respect to the cur-

rent library Li maintained at each iteration. This is pa-

rameterized as a simple PCFG P[ρ|L, θL] whose produc-

tions are of the form li → lj ∈ L, each with a real-valued

weight θLl, where the probability of a program ρ is given

by P[ρ|L, θL] =
∏

l∈ρ P[l|L, θL] (Sec. 4.1).

Minor complexity arises in order to support typing (Pierce,

2002): following (Ellis et al., 2018), the library Li is im-

plemented as a set of polymorphically typed λ-calculus

expressions. The only change this produces to the original

prior definition is to restrict the set of possible productions

under the PCFG: that is, permissible productions are of the

form li → lj ∈ {L|li → lj is well typed}. The prior proba-

bilities of programs are therefore calculated with respect to

the set of well-typed productions.

As discussed in the main paper, this prior definition is equiv-

alent to a minimum description-length prior over programs

under (L, θL) when all θL < 1.0, as the product of addi-

tional productions in an expression will strictly decrease as

the number of productions in an expression increases.

S4.2 Amortized conditional inference

Figure 1. Architecture of the neural model Qi(ρ|t,Li). The model

takes as input task examples t. These are encoded using a domain-

specific encoder E(t). Task encodings feed to an MLP and activa-

tion layer and output a tensor Q. This parameterizes a distribution

over program bigrams in the final DSL, which defines a conditional

distribution from which to enumerate programs during search.

To identify programs that solve tasks t while obtaining high

probability under P[ρ|L, θL], DreamCoder trains a neural

search heuristic Qi(ρ|t,Li) at each iteration i to approxi-

mate the inverse model.

The training procedure in (Ellis et al., 2021) (summarized in

Sec. 4.2) is a key contribution of the original work for learn-

ing in the distant supervision setting. The model is trained

on samples from the generative prior (providing an endless
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training stream of random synthesis tasks); and this proce-

dure should generalize immediately to any neural model for

predicting programs conditioned on the task specification

(e.g. (Devlin et al., 2017; Polosukhin & Skidanov, 2018;

Nye et al., 2019; Parisotto et al., 2016; Balog et al., 2016)).

The model is also supervised on any original training task

examples and their program solutions discovered during

learning.

In our experiments we use the baseline neural model archi-

tecture in (Ellis et al., 2021). This is parameterized by two

modular components:

1. A domain-specific task encoder E(t). This encodes the

task examples (e.g. images in the graphics program do-

main, or input-output strings in the text editing domain)

that are input to the neural model. This task encoder ar-

chitecture is defined domain-specifically based on the

form of the task examples (e.g. a CNN for the graphics

domain). It outputs a fixed dimensional embedding for

any given task as input to the model. In our experi-

ments this is a 64-dimensional embedding across all

domains (See S6.1 for domain-specific architectures;

and released code.)

2. A conditional model over programs Q(ρ|E(t)). This

component receives the task encoding as input and

outputs a distribution over programs. Following (Ellis

et al., 2021), this is a 2-layer fully-connected MLP

(with 64 hidden units and a final tanh activation layer)

that outputs a fixed-dimensional real-valued tensor en-

coding a distribution over programs in the library L as

output. The real-valued tensor corresponds to weights

over program primitives conditioned on their local con-

text in the syntax tree of the program, consisting of the

parent node in the syntax tree and which argument is

being generated. This functions as a ‘bigram transition

model’ over trees that encodes the likelihood of transi-

tions from one primitive to the next. Q returns this as a

(|L|+ 1)× (|L|+ 2)×A-dimensional tensor, where

A is the maximum arity of any primitive in the library.

This parameterization supports fast sampling of programs

during conditional synthesis: the neural model runs once per

task (to encode the task examples and produce the bigram

transition model) and the resulting parameterization can

then be used to sample programs during synthesis (e.g. by

enumerating programs by expanding trees (as ‘bigrams’

over parent and children primitives) ranked in order of their

likelihood starting from the program root.)

Following (Ellis et al., 2021), the neural model is trained

to optimize the following MAP inference objective on the

training tasks and the sampled tasks from the prior:

L
MAP=Et∼(L,θL)



logQ



argmaxρ P[ρ|t,L,θL]

∣

∣

∣

∣

t







(1)

S4.3 Abstraction learning as program compression

DreamCoder learns new abstractions to approximately opti-

mize for Eq. 2 (main paper), which infers an optimal library

and parameters with respect to the observed programs on

the training tasks.

The DreamCoder abstraction algorithm is a primary con-

tribution of the original work in (Ellis et al., 2021), and is

discussed extensively in (Ellis et al., 2021). We therefore

provide additional technical details here that are relevant to

its integration with LAPS in our experiments, but strongly

encourage referencing (Ellis et al., 2021) for the full imple-

mentation.

As discussed in (Ellis et al., 2021) and our main work,

DreamCoder approaches abstraction using an equivalence

between Eq. 3 and the minimum description length of the

prior (as the description length of the library) and the pro-

grams produced from the prior (under the PCFG definition

of the prior). Therefore, in practice, inferring the optimal li-

brary is equivalent to inferring the library which maximally

compresses the description length of the library and the

description length of programs which explain the training

tasks. In particular, DreamCoder optimizes the following

compression objective with respect to the training tasks T

and the finite beam Bt of program solutions discovered for

each training task during learning:

log P[L] + argmax
θL

∑

t∈T

log
∑

ρ∈Bt

P[t|ρ] max
ρ′ρ

P[ρ′|L, θL]

+ log P[θL|L]− |θL|0 (2)

The key aspect of this algorithm is that it considers abstrac-

tions which compress not only the programs as they are cur-

rently written, but any semantically equivalent refactorings

of these programs. Specifically, as programs are written in a

λ-calculus, refactoring refers to any program which is equiv-

alent up to β-reduction (i.e., function application/variable

substitution (Pierce, 2002)). A primary contribution of the

original work in (Ellis et al., 2021) is an efficient algorithm

for computing these refactorings that is unchanged when we

integrate language; we refer to the original text for details.

In our work, the primary important aspect of this aspect is

that refactorings are defined compositionally over the ex-

isting program primitives. Specifically, refactorings can be

efficiently calculated according to semantic equivalences

in the the λ-calculus (namely, that function application and

variable substitution guarantee that the resulting refactored

programs are equivalent. Abstractions created by variable
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substitution will always be composed of subcomponents

from the initial library.) We take advantage of this composi-

tionality when defining our joint abstraction algorithm over

natural language. Defining an initial compositional transla-

tion model between language and the program components

ensures that we can approximate compression in the joint

model after the programs are refactored, without needing to

induce an entirely new translation model over language and

the refactored programs.

S5. Our Approach: Language for Abstraction

and Program Search

This section now describes technical details for the concrete

LAPS implementation in our reported experiments, which

is defined over the DreamCoder implementation. We struc-

ture this section according to the parallel implementations

in the base algorithm for clarity. However, except for the

specifics of the joint-abstraction algorithm, the technical

implementation of each component should extend directly

to most other similar learned synthesis algorithms (e.g. the

joint model implementation should be reusable in any syn-

thesis algorithm that uses an explicit symbolic library of

primitives.)

S5.1 Joint prior over programs and language

LAPS extends the prior P[ρ] over programs under the library

to a joint prior J(ρ, dt) over programs for a given task

and their natural language descriptions dt (Sec. 5.1). We

formulate this prior as

J(ρ, dt) = P[ρ|L, θL]P[dt|ρ,L]

the product of the original prior over programs P [ρ|L, θL]
defined on the program library, and a program to descrip-

tions “translation” model T (dt|ρ,L) ≈ P[dt|ρ,L] that de-

scribes how descriptions are generated for programs written

in the library.

The concrete implementation described in the main paper

uses a translation model that additionally decomposes com-

positionally over language and programs–in particular, on

the basis of token-token translation distributions PT [w|l]
between words w ∈ dt and l ∈ L. Many available trans-

lation and semantic parsing models (such as synchronous

grammars over natural language and programs) preserve

this further compositional requirement (e.g. (Artzi et al.,

2014; Wong & Mooney, 2006)).

See Figure S3 (supplement) for example samples from the

generative model on the graphics domain at earlier and later

stages of training.

Our implementation uses a classical statistical machine

translation model (the Model 4 version of the IBM Statis-

tical Machine Translation models (Gal & Blunsom, 2013))

whose parameters can be tractably estimated from very few

paired programs and descriptions (in the distant supervision

setting used in the original work, there may be no more

than a couple of hundred training tasks in the full dataset,

and fewer than 10 solved tasks on which to train the trans-

lation model at any given time.) In addition to inference

in small data settings, this translation model has a fully

compositional generative definition (Gal & Blunsom, 2013)

that allows it to be easily used to train the neural amortized

inference model which conditions on language.

Despite this, however, this translation model (and the further

inductive biases used to specifically relate program trees to

sentences) make strong compositonality assumptions about

the relationship between program primitives and words as

a joint generative model of programs and language; we

find that these inductive biases are useful in the small data

setting and produce empirically successful results. However,

this is likely because of how the joint model is used during

training, which does not require a perfect generative model

of language (or language with respect to programs) for either

amortizing inference or abstraction in order to use language

as a heuristic during learning.

A full definition of the statistical translation model we use

can be found in (Gal & Blunsom, 2013). We re-summarize

important details here. The IBM family of translation

models estimates the conditional token-token probabilities

PT [w|l] on the basis of alignment variables al,d, which spec-

ify a direct correspondence between tokens in parallel texts

(e.g. a word in a task description and a program primitive.)

These alignments are many:many between tokens in pro-

grams and natural language sentences – a given word can

correspond to multiple primitives, and vice versa. Condi-

tioned on a set of alignments from paired programs and

descriptions, the conditional probabilities in both directions

(the probability of generating a program primitive in a pro-

gram based on the presence of a word in a sentence, and

vice versa) are defined by marginalizing over the alignment

variables. We provide one direction (PT [w|l]), as the other

is symmetrical:

PT [w|l] ∝
∑

a1

...
∑

am

P[w, a1...am|l] ∝

m
∏

i=1

q(ai|i, l,m)

where ai are alignment variables inferred over a paired cor-

pus and q(j|i, l,m) can be interpreted as the probability

of alignment variable ai (for the token with index i in a

program) taking value j (where j is an index into the corre-

sponding sentence) conditioned on the lengths l and m of

the program and natural language sentence (Gal & Blunsom,

2013).

These alignments are inferred by approximately inverting

the generative model in (Gal & Blunsom, 2013) to maxi-
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mize the likelihood of the observed paired sentences and

programs. One implementation detail: the alignment algo-

rithm operates over pairs of strings. For convenience we

infer alignments between sentences and linearized token

sequences in the program tree (which can be done with com-

plete recoverability of the original program tree (Andreas

et al., 2013)). This is another inductive assumption that we

choose after preliminary experimentation and find that our

implementation yields strong empirical results regardless.

The IBM translation model is a noisy-channel generative

model that requires an additional language model p(d) to

generate language (Gal & Blunsom, 2013; Heafield, 2011).

We use an efficient parallelized implementation for inferring

the translation model parameters from (Koehn et al., 2007),

which also contains a basic language model inference

algorithm inferred over the full corpus of training task

sentences (as a trigram model, which we again find simple

but effective for our very small data setting). Specific model

hyperparameters for all experiments are available in the

released code repo (in the experiment runtime commands.)

Mutual exclusivity: Section 5.1 of the main paper also

describes how the joint model can be modified to include

language-specific priors, such as a simple implementation

of the well-known mutual exclusivity prior documented

in the cognitive language-learning literature (Markman &

Wachtel, 1988; Gandhi & Lake, 2019) and given a Bayesian

formulation in (Frank et al., 2009). We provide an imple-

mentation to demonstrate that the joint model can be easily

extended: specifically, a simple mutual exclusivity assump-

tion can be added into the joint model by simply updating

the compositional translation model to include additional

distributions tME(dnew|l) where dnew are words that only

appear in unsolved training tasks and

tME(dnew|l) ∝ αP[l|L, θL]
−1

new words are now assumed to correspond to primitives in-

versely proportional to their current usage under the learned

program prior. As we show in the next section, incorporat-

ing this prior at the level of the joint model can be used to

approximate mutual exclusivity assumptions in the learned

search heuristic, encouraging exploration in the presence of

new words.

Practically, we calculate the mutual exclusivity prior in our

concrete implementation by leveraging the alignments upon

which our token-token translation probabilities are defined.

Specifically, we add pseudoalignments between each dnew
and each l ∝ αP[l|L, θL]

−1; when the token-token transla-

tion probabilities marginalize over the latent alignments and

these pseudo alignments, the resulting translation probabili-

ties encode the mutual exclusivity prior.

S5.2 Integrating the joint model into amortized

conditional search

Figure 2. Architecture of the language-conditioned neural model

Q(ρ|d, t). The model takes as input task examples t. These are

encoded using a domain-specific encoder E(t). The model ad-

ditionally takes in task descriptions d, encoded using a languag

encoder ED(t) (implemented as a GRU). Task encodings are con-

catendated and feed to an MLP and activation layer and output a

tensor Q. This parameterizes a distribution over program bigrams

in the final DSL, which defines a conditional distribution from

which to enumerate programs during search.

The amortized conditional inference model Q(ρ|t) (Sec.

4.2) extends straightforwardly in LAPS to condition on lan-

guage Q(ρ|d, t) (Sec. 5.2). Importantly, the training proce-

dure in Sec. 4.2 (training the neural model on samples from

the prior) also extends to the language-enriched condition

(training the neural model on samples from the joint prior,

which include generated language annotations.)

In our experiments we implement the concrete neural model

Q(ρ|d, t) in our experiments by extending modularly on the

original model in (Ellis et al., 2021) (and in the supplemental

S4.2) for direct comparison. Our full architecture therefore

has three modular components to additionally condition on

language:

1. A natural language task descriptions encoder ED(d).
This receives the task description d as input. We imple-

ment this as an RNN model using a bidirectional GRU

(Cho et al., 2014) with 64 hidden units; we embed

natural language symbols as 64-dimensional vectors,

and randomly initialize and backpropagate through the

embedding during training. We tokenize the sentences

in u on whitespace and concatenate each sentence, de-

limited by special start and end of sentence tokens. At

test time, we replace any OOV tokens with a special

UNK token.

2. A domain-specific task encoder E(t), following S4.2.

3. A bigram transition model over program primitives,

following S4.2. To condition jointly on ED(d) and

E(t) we simply concatenate these two embeddings

and update the first layer of the MLP to take the 128-

dimensional concatenated embeddings as input.
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5.3 Abstraction learning as joint model compression

Finally, the abstraction learning model in (Ellis et al., 2021)

can also be generalized to condition on language, by extend-

ing the optimal library inference algorithm with respect to

the program prior to an optimal library inference algorithm

with respect to the joint model over language and programs

(Eq. 6 and 7, main text.)

In our concrete implementation with respect to the Dream-

Coder algorithm, this means extending the description-

length compression objective – originally defined over the

program library and training task programs – to include

the translation model definition. The main paper defines a

description-length prior over the compositional translation

model (Eq. 10). Optimizing this tractably requires redefin-

ing the abstraction algorithm in (Ellis et al., 2021) – which

refactors λ-calculus programs via lambda-abstraction (see

S4.3 for a summary) – to also jointly re-estimate the descrip-

tion length of the translation model T (dt|ρ,L
′) using the

refactored programs under the new candidate library L′.

We implement an efficient approximation that can be cal-

culated with respect to the classical statistical translation

model described in S4.1 (Gal & Blunsom, 2013). In particu-

lar, we leverage the alignment-based definition (which uses

latent correspondences inferred between program tokens

and sentence tokens in paired programs and descriptions) to

approximate −H(PT [w|l]) = − log(PT [w|l]), the entropy

of the token-token translation probabilities.

Specifically, as the IBM model defines the conditional token-

token probabilities

PT [w|l] ∝
∑

a1

...
∑

am

P[w, a1...am|l]

marginalized over alignments, where (slightly abusing nota-

tion) in any given paired program and sentence description

we will have estimated a set of alignments awj ,lk...ln be-

tween the j-th token in the description corresponding to one

or more tokens lk...ln in the paired program. We therefore

define the description-length of each token-token transla-

tion as the sum of the description lengths of the alignments

which express it under a library L:

∑

ai

...
∑

am

P[d, a1...am|l,L] ∝
∑

a1

...
∑

am

|ai|L

and the description lengths under the refactored library L′

containing new abstractions compresses according to

|a′wj ,l
′

k
...l′n

|L′ < |a′wj ,lk...ln
|L ⇐⇒

{l′icontains only lk...ln as subcomponents|l′k...l
′
n}

(3)

and we say that a primitive l ∈ L is a subcomponent of

a refactored abstraction l ∈ L if the abstraction can be

β-reduced such that l appears in it. That is, a refactored

alignment a′ : wi → {l′...ln} is compressed only when a

new abstraction l′ encapsulates over a strict subset of the

constituent program primitives already aligned to the word

in the original alignment. This allows us to re-approximate

the description length of the new translation model with

respect to a semantically-equivalent program refactoring

without inducing PT [w|l] from scratch (which would require

retraining the full translation model over the sentences and

refactored programs.)

S6. Experiments

This section describes additional details on each of the do-

mains – string editing, compositional graphics, and scene

understanding – in Section 6 of the main paper (see Figure

2, main text for examples from all three domains, shown

along with the synthetic and human language annotations).

We also provide additional details on the model and baseline

hyperparameters available for each domain. All datasets

generated for these experiments (including human language

annotations) are released and links to static repositories are

provided in the code release. We also release a complete set

of commands to exactly replicate all model experiments.

All experiments for were conducted on a high-powered com-

puting cluster using a fixed training budget of wall-clock

search time per task for all models and baselines in a given

domain (determined via hyperparameter search using the

baseline model per domain, and reported on a per-domain

basis below). The experiments on the string editing and

graphics domains used models trained using 48 CPUs for

search (using the original parallel enumerative search imple-

mented in the released code for the DreamCoder model in

(Ellis et al., 2021)); and the experiments trained on the scene

reasoning task used 24 CPUs (as preliminary experiments

revealed that these experiments required shorter search time

for our main model, and we wished to reduce the carbon

footprint of the remaining experiments after our first two

domains.)

For all experiments we train the neural models for 1 ×104

gradient steps. For experiments with language-guided com-

pression, we use an upper bound of 5 new abstractions in-

troduced per iteration. For mutual exclusivity experiments,

we set αME = 0.1. For all experiments, during program-

only compression (see (Ellis et al., 2021) for a discussion

of program-only compression hyperparameters) we use the

hyperparameters from (Ellis et al., 2021) for parsimony with

earlier work: a structure penalty of 1.5 and pseudocounts =

30.
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S6.1 Domains

(See Figure 2, main text for examples from all three do-

mains, shown along with the synthetic and human language

annotations.) As discussed in the main paper, each domain

consists of a dataset of tasks; a set of procedurally generated

synthetic language annotations; and a set of human lan-

guage annotations provided by Mechanical Turk workers;

we also described the base primitives L0 with which all

models (including baselines and ablations) were initialized

for each domain.

S6.1.1 STRING EDITING

Tasks: structured string transformation problems taken

from a publicly released dataset in (Andreas et al., 2017)

(n=1000 train; n=500 test). Tasks consist of input dictio-

nary strings transformed using randomly sampled regular

expression transducer (n=30 examples per task). Transduc-

ers were sampled according to abstract templates defined

in (Andreas et al., 2017) and required identifying matched

sequences of characters and adding letters before them; re-

moving sequences; replacing them with new sequences, or

doubling the sequence each time they appeared (See Figure

2A, main text).

Language data: The human language dataset for this do-

main was previously collected by (Andreas et al., 2017). We

defined a synthetic grammar of high-level templates over the

ground truth regular expression transducers (corresponding

to the original templates used to generate the tasks.) The

synthetic templates were defined based on language from

the original human annotations, and in most cases closely

matched the true human provided annotations (which were

generally quite structured), though with significantly less

variation (the original language contained multiple human

descriptions per task. We generate a single synthetic for

each one. The synthetic dataset has a vocabulary size of

n=44 for both train and test. We use the human annota-

tions in the original dataset when evaluating on human data,

which have a vocabulary of n=727 (train) and n=622 (test).)

We generate a synthetic dataset on this domain partly be-

cause of inaccuracies noted in (Andreas et al., 2017). The

released code contains the complete generation procedure

for these synthetic annotations. See Figure 2A for represen-

tative tasks with examples, synthetic language, and human

descriptions.

Initial program primitives: We initialize all models with

a set L0 of LISP-like primitives that operate over substring

sequences to both construct regular expression match se-

quences and manipulate strings, augmented with three text

manipulation-specific primitives intended for executing con-

structed regular expression sequences; t is a polymorphic

type variable using standard Hindley-Milner polymorphism

typing (Pierce, 2002). The execution engine does include

a regex-matching model; however, the synthesis model is

naive to this execution engine and simply searches for ma-

nipulations over the input strings and the regexes as data

arrays.

L0 contains 14 substring manipulation primitives, given

below with type information. We also give a semantic gloss

for primitives that are not standard LISP primitives.

• if (bool → t → t → t)

• cons (t → list(t) → list(t))

• car (list(t) → t)

• cdr list(t) → list(t

• map ((t0 → t1) → list(t0) → list(t1))

• tail (list(t) → t)

• append (t → list(t) → list(t))

Appends element to end of list.

• revcdr (list(t) → list(t))

Takes all except the last element of the list.

• match (substr → substr → bool)

Returns true if the first argument, when executed as a

regular expression, matches the second argument.

• regexsplit (substr → fullstr →
list(substr))

Attempts to execute the first argument as a regular

expression, and splits the second argument into a list

of substrings, using the regular expression match as a

delimiter (and includes the matched sequences in the

returned list.)

• flatten (list(substr) → fullstr)

Flattens a list of substrings back into a string.

• rconcat (substr → substr → substr)

Concatenates two substrings.

• rnot (substr → substr)

Takes a substring argument s and returns the substring

literal [ˆ s]

• ror (substr → substr → substr)

Takes substring literals a and b and returns the substring

literal ((a)—(b))

We also include 26 character constants of type substr and

constants dot (regular expression wildcard character) and

empty (empty string).

Domain hyperparameters We largely follow prior work

(Ellis et al., 2021) to set algorithm training parameters; the
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earlier (Ellis et al., 2021) uses a 720s enumerative search

budget for solving both text editing and general list manip-

ulation tasks. We use the same 720s enumerative budget

here.

The encoder E(t) follows the domain-specific encoder used

for text and list editing problems in (Ellis et al., 2021), a

2-layer GRU with 64 hidden units. The model is trained

for a fixed gradient step budget (10,000 gradient steps) and

we sample equally at random between supervision on the

solved training tasks (and their solution programs in the

current DSL) and samples from the joint generative model.

As with (Ellis et al., 2021), when generating tasks from the

generative model, we use randomly sample inputs (on which

we execute generated programs to produce an output.)

S6.1.2 COMPOSITIONAL GRAPHICS

Tasks: inverse graphics problems (n=200 train; n=111 test)

where each synthesis problem is specified by an image and

solved by synthesizing a program in LOGO Turtle graph-

ics (Abelson & DiSessa, 1986). The domain is inspired by

the graphics domain in (Ellis et al., 2021) but intentionally

re-designed to be much more challenging (ground-truth pro-

grams are much longer on average in the base programming

language) and explicitly compositional: the training and

testing tasks contain simple shape tasks defined by composi-

tional parameters for a set of basic shapes (a small triangle,

a medium square; a small semicircle); complex shape tasks

that require inferring more challenging (and longer) param-

eterized shapes (a greek spiral with eight turns); and compo-

sitional tasks defined by geometric rules and relations over

the simple shapes (a seven sided snowflake with a short line

and a small triangle as arms; a small triangle connected by

a big space from a small circle) (See Figure 2C).

Simple parameterized shapes are either polygons (triangle,

square, [n] gon), curves (semicircle, circle) or lines. Simple

shapes are parameterized by one of three sizes (small or

short; medium; and big). When generating synthetic lan-

guage descriptions, pluralized objects are tokenized with

separate tokens for the noun lemma and a token for the plu-

ral suffix (e.g. square s).

Complex parameterized shapes require constructing more

complex images out of basic lines, and are intended to evalu-

ate performance on tasks that pose a greater search challenge

in the initial DSL, and whose structure is not directly cued

by compositional relationships over easier components. Fur-

ther, the complex shapes can be solved using abstractions

(e.g. for repeatedly rotating a pen at right angles) that are

not directly cued by shared lexical names – we evaluate the

algorithm’s ability to learn and use abstractions that corre-

spond to useful sublexical structures shared across multiple

lexemes. We define four template families for complex

shapes: spirals, staircases, zigzags, and stars.

Compositional graphics tasks invoke compositional rela-

tionships over the simple parameterized shapes. We define

templates for generating 6 families of compositional tasks:

nested, next to, separated by, connected by, in a row, and

snowflakes.

Language data: We gather human language annotations

by asking Mechanical Turk workers to write an image de-

scription for the rendered graphics images that specify each

task. Each worker labeled 20 training and 10 testing images

after viewing a disjoint, randomly sampled set of 15 exam-

ple images paired with their synthetic language captions.

(Workers were asked to write a short, clear description that

a person or robot could use to recreate the picture, and

told that the examples were paired with automatically gen-

erated captions as an example of the kinds of descriptions

you could write for this picture.) We control for description

quality by requiring workers to complete a reference task on

their own descriptions: after writing their initial annotations,

workers were required to correctly match each annotation to

the target image (from amidst a set of 12 distractors drawn

heuristically from similar images on the full task dataset,

and other images they themselves had described), and only

annotations correctly matched to the target image were re-

tained (workers were given a chance to redescribe pictures

they failed to match to their own captions.) We preprocess

the human dataset minimally to standardize number terms

(e.g. we use the same token type for both 3 and three) and

to split plurals into a lemma and suffix, as in the synthetic

dataset. The final dataset has a vocabulary size of n=562 for

both train and test.

As with the string editing domain, we define a synthetic

dataset using parameterized templates based on systematic

language reused in the human annotations (see Figure 2A for

a comparison between human annotations and synthetic lan-

guage); as with that domain, we choose a synthetic dataset

to ensure systematic re-use of high level terms for repeated

compositional objects (such as the “n-gon” or “snowflake”

terminology.)

We then generate graphics tasks by defining parameterized

templates over ground truth programs in L0, and a corre-

sponding generator for synthesizing natural language de-

scriptions based on each ground truth program. It is impor-

tant to note that the templates are defined at any extremely

high level and were written with respect to low-level pro-

grams in a simple graphics language (many of which were

derived by generalizing compositionally over complex struc-

tures in (Ellis et al., 2021), such as the ‘snowflake’ images).

Initial program primitives: For comparison with prior

work, our initial library on this domain (and the base lan-

guage used to generate the ground truth graphics programs)

is an implementation of the LOGO Graphics DSL used in

(Ellis et al., 2021), which consists of four typed, impera-
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tive primitives modeled within the λ−calculus with a state

monad S:

move: distance → angle → S → S

pen-up: (S → S) → S → S

for: int → (S → S) → S → S

get/set: (S → S) → S → S

as well as four arithmetic operators (+, -, *. /), integer

constants (1-9), unit distances and angles (1 meter and 2π
radians), and special values ∞ and ǫ.

Figure 3 (main text) shows examples of the graphics tasks,

synthetic descriptions, human descriptions, and sample pro-

grams in the ground truth initial DSL.

Domain hyperparameters We largely follow prior work

(Ellis et al., 2021) to set algorithm training parameters. Con-

sistent with the graphics program experiments in (Ellis et al.,

2021), we train all models, including baselines and abla-

tions, using an enumerative search budget of 1800s per task

(both when using pure enumerative search from the DSL

prior, and neurally-guided search conditioned on the task

examples and language descriptions); the results in Table

1 compare the relative advantage of our model given this

fixed search time. We train all models on 48 CPUs dur-

ing parallel enumerative search, and run the algorithm for

a maximum of 27 iterations (see learning curves. As we

run multiple random seed replications of models in this do-

main, we tuned the iteration limit based on performance on

the first replication, allowing models models to train while

performance continued to increase. To conserve computa-

tional resources, we later stopped several of our own model

replications before 27 iterations, as they had reached near

ceiling performance. As we report the best held-out test

score across all 27 iterations for any one model, the early

stopping would only serve to give a conservative estimate

on performance for these models.) We randomly reorder the

training set of tasks once before the first loop, then iterate

through batches of n=40 tasks at each iteration; learning

curves show results from evaluating on held-out tasks every

n=3 iterations.

The encoder E(t) follows the domain-specific encoder used

for the original graphics domain in (Ellis et al., 2021) for

a more direct comparison: we use a 6-layer CNN, where

each layer consists of a 64x64 2D convolutional sublayer

with kernel size = 3, a RELU activation sublayer, and a max-

pooling sublayer with kernel size = 2. The model is trained

for a fixed gradient step budget (10,000 gradient steps) and

we sample equally at random between supervision on the

solved training tasks (and their solution programs in the

current DSL) and samples from the joint generative model.

S6.1.3 SCENE REASONING

Tasks: inductive scene reasoning tasks (n= 212 train; n=115

test) where each synthesis problem is specified by a struc-

tured input scene, and outputs can be a number (how many

red rubber things are there?), a boolean value (are there

more blue things than green things?), or another scene (what

if all of the red things turned blue?). This domain is modeled

on CLEVR (Johnson et al., 2017) but designed to support

non-linguistic, inductive synthesis in the programming-by-

example paradigm: each task is specified with n=7 paired

input output examples. See Figure 2B, main text for exam-

ple tasks showcasing the original and extended templates,

synthetic language annotations, and human language anno-

tations.

The dataset includes questions randomly generated from the

following subset of the original CLEVR question templates

(see (Johnson et al., 2017) for additional details on the task

generation process and question templates; we also release

our own augmented question generation code and the full

dataset):

• zero hop: questions that require counting or answer-

ing an attribute query about a subset of objects in the

scene. (e.g. How many small cylinders are there?;

What material is the purple thing?).

• one hop: questions similar to the zero hop tasks, but

that require reasoning over an additional relational

query (e.g What number of things are right the small

gray thing?).

• single or: questions that additionally introduce a dis-

junction between sets of objects. (e.g. How many

objects are either large metal spheres or large rubber

things?)).

• (compare integer: questions that additionally intro-

duce a ≥ or ≤ operator between counts of sets of ob-

jects. (e.g. Is the number of large rubber cubes less

than the number of large green rubber things?)

• same relate: questions that additionally require rea-

soning about other objects with the same attribute as

a specified object. (e.g. How many other things are

there of the same size as the cyan thing?).

We choose these templates as a representative subset of

the style of the full CLEVR dataset, that requires the full

language of high-level primitives in (Johnson et al., 2017)

to solve. We omit some longer questions in the same format

(e.g. two hop) as our intention is to compare synthesis

baselines, rather than to achieve SOTA performance on

CLEVR: this would likely only increase the computing

resources needed to compare the various methods and we
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already found a significant differential between our model

and the baselines on the shorter questions.)

We also add new question templates generated in the style

of the original CLEVR tasks, but designed to model other

common AI tasks (such as generating new scenes based on

existing ones) and to require new abstractions (that were

not expressible in the original restricted symbolic language

used to generate scenes in (Johnson et al., 2017)):

• localization: questions for object localization. These

return an output scene consisting of a localized set of

objects based on a set of query attributes (e.g. Find the

gray rubber thing.).

• remove: questions that either return an output scene

with a subset of the objects removed, or that query

about latent scenes where a subset of objects has bee

removed. (e.g What if you removed all of the gray

metal things?; If you removed the green cubes, how

many cubes would be left?).

• transform: questions that either return an output scene

where a subset of the objects has been transformed to

set new attributes, or that query about latent scenes

where a subset of objects has been modified this way.

(e.g What if all the blue metal things became rubber

things?; If all of the large yellow rubber things became

gray spheres, how many gray spheres would there be?).

We treat these as program synthesis tasks: the input scenes

are specified as symbolic scene graphs consisting of an ar-

ray of structured, objects defined as a dictionary of their

attributes, and programs are designed to manipulate these

structured arrays (this data structure is the original format

in which scenes themselves are generated in (Johnson et al.,

2017); the images displayed in Figure 3, main text are ren-

dered using the original image rendering pipeline). Our in-

tention is not to build a visual reasoning architecture: rather,

we are interested in learning structured manipulations of

scenes. We see work in inverse graphics (such as (Yi et al.,

2018)) which outputs a structured scene graph based on

pixel images as the first step in a symbolic processing and

reasoning pipeline as analogous; we are interested in the

structured manipulation of these scene representations.

Language data: Synthetic language annotations are gener-

ated based on the original high-level templates in (Johnson

et al., 2017), as well as additional templates we define for

the extended questions in the same style. We gather human

language annotations by asking Mechanical Turk workers

to write an instruction or question describing the set of in-

ductive examples. However, due to the difficulty of solving

certain tasks in a limited time frame based on the inductive

examples alone (such as the questions about disjunctions

over scenes), we show Mechanical Turk workers the syn-

thetic descriptions for this domain and ask them to write a

semantically similar description that changes more than one

word in the original caption, and that would be ”more natu-

ral for a human to understand”. This paraphrasing paradigm

is similar to that used in (Wang et al., 2015), though we find

that in comparison to other domains it generates less diverse

language data.) We remove all punctuation, tokenize on

spaces, and use an additional domain heuristic to stem all

plurals (e.g. cubes).

Initial program primitives: We initialize all models with

a set L0 of LISP-like primitives. These are similar to the

initial list manipulation primitives used in the string editing

domain: as both domains can be treated as manipulating

structured arrays, we are interested in learning differenti-

ated, domain-specific abstractions based on a very similar

base language. L0 also includes primitives for querying

attributes of objects on the domain (these are typed getters

that simply query the object dictionary of attributes) and sev-

eral domain-specific functions necessary for manipulating

these attribute. We deliberately use a much more base level

programming language than the high-level, domain-specific

language hand-designed in (Johnson et al., 2017); our goal

is to learn the necessary abstractions.

We give a semantic gloss for primitives that are not standard

LISP primitives.

• if (bool → t → t → t)

• cons (object → list(object) →
list(object))

• car (list(object) → object)

• map ((t0 → t1) → list(t0) → list(t1))

• fold ((list(t) → list(t)) → (t → list(t) →
list(t)) → list(t))

• len (list(t) → int)

• > (list(t) → bool)

• < (list(t) → bool)

• set union (list(t) → list(t) →
list(t))

• set intersect (list(t) → list(t) →
list(t))

• set difference (list(t) → list(t)

→ list(t))

• relate (object → relation →
list(t)) Returns an array of objects that sat-

isfy a spatial relation with respect to an input

object.
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We also include equality comparators for each of the

attribute types (e.g. eq color?; getters for each at-

tribute, and setters for each attribute. We also include

integer constants 0-9 for counting and constants for

the attributes (blue, red, big, small, rubber,

metal) based on the original object and spatial relation

constants (Johnson et al., 2017).

Domain hyperparameters: We run a coarse hyperparam-

eter search based on the baseline model to set the domain

hyperparameters. We train all models, including baselines

and ablations, using an enumerative search budget of 1000s

per task and run the models for a maximum of 5 iterations.

we run multiple random seed replications reordering the

training set, in the same way as the compositional graphics

domain. The results in Table 1 also compare a curriculum

ordering of the training set based on the number of tokens

in the synthetic language captions (split on spaces.)

The encoder E(t) is a variant of the RNN-based domain-

specific encoder used for text and list editing problems in

(Ellis et al., 2021) (as well as the string editing domain). The

model is trained for a fixed gradient step budget (10,000

gradient steps) and we sample equally at random between

supervision on the solved training tasks (and their solution

programs in the current DSL) and samples from the joint

generative model. As with (Ellis et al., 2021), when gen-

erating tasks from the generative model, we use randomly

sample inputs (on which we execute generated programs

to produce an output.) We encode the symbolic scene data

structures with the RNN by encoding a flattened version of

the scene graph. The scene graph is originally stored as a

dictionary of attributes; when flattened, we indicate the dic-

tionary structure using special tokens to denote the keys and

the start and end of any array delimiters (the original scene

graph is fully reconstructable from the flattened version.)

S 6.2 Results and Additional Qualitative Results

In this section, we discuss additional qualitative results from

an in depth exploration of the graphics domain that were

omitted from the main paper for space, but provide addi-

tional insight on the behavior of the learned model in the

hardest learning domain (based on the differential between

baseline and LAPS-augmented performance.)

Learned abstractions and synthesized programs. Fig-

ure S4 (supplement) show sample abstractions in the final

libraries Lf for the best performing models in the graph-

ics domain as a concrete exemplar of abstractions that are

learned and how they are used, along with sample tasks

solved with these abstractions. The figures are shown as

dependency graphs to indicate how progressively more com-

plex abstractions build on abstractions at prior iterations

of learning; we also show selected probabilities from the

translation model (depicted are examples from the top-3

primitive translations for a given word; some primitives are

not high probability translations for any word.)

Joint generative model samples. Figure S3 (supplement)

shows samples from the joint generative model on the graph-

ics domain (programs from the library which are executed to

produce the task example image, and translated to produce

language annotations) at early and later stages of training,

indicating that the joint model itself improves as learning

improves, which itself allows better training for the condi-

tional inference model and better abstraction guiding based

on language.

References

Abelson, H. and DiSessa, A. A. Turtle geometry: The

computer as a medium for exploring mathematics. MIT

press, 1986.

Andreas, J., Vlachos, A., and Clark, S. Semantic parsing as

machine translation. In Proceedings of the 51st Annual

Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), pp. 47–52, 2013.

Andreas, J., Klein, D., and Levine, S. Learning with latent

language. arXiv preprint arXiv:1711.00482, 2017.

Artzi, Y., Das, D., and Petrov, S. Learning compact lexicons

for ccg semantic parsing. 2014.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,

and Tarlow, D. Deepcoder: Learning to write programs.

arXiv preprint arXiv:1611.01989, 2016.
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Figure 3. (left) Joint generative model J over programs sampled from the DSL prior and natural language produced by the translation

model T (D|L), inferred from solved training tasks. Samples from the model are used to train a neural synthesizer to guide search on

more challenging, unsolved tasks. (right) Samples from the J generative model in the graphics domain shows how program complexity

increases and generated language improves across iterations, as the system both adds richer abstractions to the DSL and learns better

alignments over the solution set, enabling the trained neural model to solve more complex tasks
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0.22 | small

rotational 
symmetry by 
number of sides

a small five gon
(f5 5 x)

a small nine gon
(f5 9 x)

a medium seven gon
(f5 2 (f20 7 x))

f6=(λ (x y z u) (for y (λ 

(v w) (f5 z (f5 x w))) u))

four small squares in a row
(f5 2 (f6 1 4 4 x))

six small five gons in a row
(f6 1 6 5 x)

... f24=(λ (x y) (f23 (λ (z 

u) (f21  y 0 x u))))

0.09 | snowflake
0.09 | arms

eight sided snowflake with a 
small seven gon as arms
(f24 7 8 x)

five sided snowflake with a 

short line and a medium five 
gon as arms
(f24 5 (λ (x) (get/set 
(λ (y) (f2 1 (f41 5 y))) 

x)) z)

f32=(λ (x) (for x (λ (y 

z) (move 1 (/ 2π 4) (move 1 
(- 2π (/ 2π 4)) z)))))

1.0 | stepped
0.64 | staircase
0.36 | zigzag

a seven stepped staircase
(f32 7 (get/set (λ (x) x) y))

a four stepped staircase 
(f32 4 (get/set (λ (x) x) y))

a five stepped zigzag
(f25 (λ (x) x) 3 8 (f32 5 y)

...

...f17=(λ (x) (pen-up (λ (y) 

(f16  x y))))

0.67 | separated
0.15 | next
0.06 | space

a small circle next to a small 
six gon
(f14 ε (f14 ε (f17 2 
(f5 6 x))))

a small nine gon next to a 
medium square
(f5 9 (f5 1 (f17 1 (f20 
4 x))))

Figure 4. Abstractions and programs learned for the graphics domain. Sample abstractions (right) learned from a minimal starting DSL

(left) for solving progressively more complex graphics program synthesis tasks with language annotations. Also shown with translation

probabilities. Our iterative algorithm learns alignment-based translation probabilities between natural language words and program

primitives to guide program search and abstraction (depicted are examples from the top-3 primitive translations for a given word; some

primitives are not high probability translations for any word.
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