Supplemental: Leveraging Language to Learn Program Search Heuristics and
Abstractions

This contains the supplemental appendix to the 2021 ICML paper. It is organized sequentially in reference to the main text;

S{N} refers back to section N in the main text.

A complete release of code for our implementation, including command line scripts to replicate the experiments in the paper
and links to the datasets, can be found at: https://bit.1ly/3g9361W.

S4. Base learning algorithm: DreamCoder

The LAPS framework described in the main paper (Sec. 5)
is a general one for extending Bayesian models of program
learning to incorporate information from natural language
(see (Liang et al., 2010; Lake et al., 2015; Dechter et al.,
2013; Lake et al., 2013)). Our concrete implementation and
experiments use the DreamCoder approach of (Ellis et al.,
2021; 2018) as the base synthesis algorithm, which imple-
ments the hierarchical Bayesian formulation of program
learning. It defines a modular interface with two primary
learning components: a learned conditional inference model
for search (as a neural search heuristic); and a learned ab-
straction algorithm for updating the program prior (based
on program refactoring and compression) (Ellis et al., 2021).
Each of these learning components has been additionally
implemented in other work (such as (Devlin et al., 2017;
Polosukhin & Skidanov, 2018; Nye et al., 2019; Parisotto
et al., 2016; Balog et al., 2016) for neurally guided synthesis,
and (Dechter et al., 2013; Zhang et al., 2017; Shin et al.,
2019; Artzi et al., 2014; Dumancié¢ & Cropper) for program
abstraction learning).

This supplementary section provides theoretical and im-
plementation details on the DreamCoder algorithm we use
in our experiments (summarized in Sec. 4). We match
our implementation as closely as possible to the original
work for comparison with published baselines. We provide
key details relevant to the language-guided extension, but
strongly recommend the original works which introduce the
DreamCoder algorithm (Ellis et al., 2021; 2018) for further
reference.

S4.1 Program prior and MDL equivalence

Hierarchical Bayesian program learning formulations re-
quire a prior over expressible programs. DreamCoder is
learned iteratively: it is initialized with a base library Ly
and returns a library L; containing program abstractions
learned from solving training tasks. Therefore, Dream-
Coder defines its program prior with respect to the cur-
rent library £, maintained at each iteration. This is pa-

rameterized as a simple PCFG P[p|L, 0] whose produc-
tions are of the form I; — [; € £, each with a real-valued
weight 6.;, where the probability of a program p is given
by Plp|L,0c] = [];c, PUUIL, O] (Sec. 4.1).

Minor complexity arises in order to support typing (Pierce,
2002): following (Ellis et al., 2018), the library £; is im-
plemented as a set of polymorphically typed A-calculus
expressions. The only change this produces to the original
prior definition is to restrict the set of possible productions
under the PCFG: that is, permissible productions are of the
form l; — I; € {L|l; — l;is well typed}. The prior proba-
bilities of programs are therefore calculated with respect to
the set of well-typed productions.

As discussed in the main paper, this prior definition is equiv-
alent to a minimum description-length prior over programs
under (L, 6,) when all 8, < 1.0, as the product of addi-
tional productions in an expression will strictly decrease as
the number of productions in an expression increases.

S4.2 Amortized conditional inference

O}
(CNN)

Figure 1. Architecture of the neural model Q; (p|t, £;). The model
takes as input task examples ¢. These are encoded using a domain-
specific encoder E(t). Task encodings feed to an MLP and activa-
tion layer and output a tensor ). This parameterizes a distribution
over program bigrams in the final DSL, which defines a conditional
distribution from which to enumerate programs during search.

MLP —~ TANH — Q

To identify programs that solve tasks ¢ while obtaining high
probability under P[p|L, 6], DreamCoder trains a neural
search heuristic Q;(p|t, £;) at each iteration 4 to approxi-
mate the inverse model.

The training procedure in (Ellis et al., 2021) (summarized in
Sec. 4.2) is a key contribution of the original work for learn-
ing in the distant supervision setting. The model is trained
on samples from the generative prior (providing an endless
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training stream of random synthesis tasks); and this proce-
dure should generalize immediately to any neural model for
predicting programs conditioned on the task specification
(e.g. (Devlin et al., 2017; Polosukhin & Skidanov, 2018;
Nye et al., 2019; Parisotto et al., 2016; Balog et al., 2016)).
The model is also supervised on any original training task
examples and their program solutions discovered during
learning.

In our experiments we use the baseline neural model archi-
tecture in (Ellis et al., 2021). This is parameterized by two
modular components:

1. A domain-specific task encoder E(t). This encodes the
task examples (e.g. images in the graphics program do-
main, or input-output strings in the text editing domain)
that are input to the neural model. This task encoder ar-
chitecture is defined domain-specifically based on the
form of the task examples (e.g. a CNN for the graphics
domain). It outputs a fixed dimensional embedding for
any given task as input to the model. In our experi-
ments this is a 64-dimensional embedding across all
domains (See S6.1 for domain-specific architectures;
and released code.)

2. A conditional model over programs Q(p|E(t)). This
component receives the task encoding as input and
outputs a distribution over programs. Following (Ellis
et al., 2021), this is a 2-layer fully-connected MLP
(with 64 hidden units and a final tanh activation layer)
that outputs a fixed-dimensional real-valued tensor en-
coding a distribution over programs in the library £ as
output. The real-valued tensor corresponds to weights
over program primitives conditioned on their local con-
text in the syntax tree of the program, consisting of the
parent node in the syntax tree and which argument is
being generated. This functions as a ‘bigram transition
model’ over trees that encodes the likelihood of transi-
tions from one primitive to the next. () returns this as a
(I£] +1) x (]£] +2) x A-dimensional tensor, where
A is the maximum arity of any primitive in the library.

This parameterization supports fast sampling of programs
during conditional synthesis: the neural model runs once per
task (to encode the task examples and produce the bigram
transition model) and the resulting parameterization can
then be used to sample programs during synthesis (e.g. by
enumerating programs by expanding trees (as ‘bigrams’
over parent and children primitives) ranked in order of their
likelihood starting from the program root.)

Following (Ellis et al., 2021), the neural model is trained
to optimize the following MAP inference objective on the

training tasks and the sampled tasks from the prior:

I

S4.3 Abstraction learning as program compression

L

MAP=E;~(z,0,) |:log Q (arg max, Plp|t,L,0.]

DreamCoder learns new abstractions to approximately opti-
mize for Eq. 2 (main paper), which infers an optimal library
and parameters with respect to the observed programs on
the training tasks.

The DreamCoder abstraction algorithm is a primary con-
tribution of the original work in (Ellis et al., 2021), and is
discussed extensively in (Ellis et al., 2021). We therefore
provide additional technical details here that are relevant to
its integration with LAPS in our experiments, but strongly
encourage referencing (Ellis et al., 2021) for the full imple-
mentation.

As discussed in (Ellis et al., 2021) and our main work,
DreamCoder approaches abstraction using an equivalence
between Eq. 3 and the minimum description length of the
prior (as the description length of the library) and the pro-
grams produced from the prior (under the PCFG definition
of the prior). Therefore, in practice, inferring the optimal li-
brary is equivalent to inferring the library which maximally
compresses the description length of the library and the
description length of programs which explain the training
tasks. In particular, DreamCoder optimizes the following
compression objective with respect to the training tasks 7'
and the finite beam B, of program solutions discovered for
each training task during learning:

log P[£] + arg max Z log Z P[t|p] max P[p’|L, 0]
Oc teT pEB; re

+1log PO |L] — [0c]o (2)

The key aspect of this algorithm is that it considers abstrac-
tions which compress not only the programs as they are cur-
rently written, but any semantically equivalent refactorings
of these programs. Specifically, as programs are written in a
A-calculus, refactoring refers to any program which is equiv-
alent up to S-reduction (i.e., function application/variable
substitution (Pierce, 2002)). A primary contribution of the
original work in (Ellis et al., 2021) is an efficient algorithm
for computing these refactorings that is unchanged when we
integrate language; we refer to the original text for details.

In our work, the primary important aspect of this aspect is
that refactorings are defined compositionally over the ex-
isting program primitives. Specifically, refactorings can be
efficiently calculated according to semantic equivalences
in the the A-calculus (namely, that function application and
variable substitution guarantee that the resulting refactored
programs are equivalent. Abstractions created by variable
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substitution will always be composed of subcomponents
from the initial library.) We take advantage of this composi-
tionality when defining our joint abstraction algorithm over
natural language. Defining an initial compositional transla-
tion model between language and the program components
ensures that we can approximate compression in the joint
model after the programs are refactored, without needing to
induce an entirely new translation model over language and
the refactored programs.

S5. Our Approach: Language for Abstraction
and Program Search

This section now describes technical details for the concrete
LAPS implementation in our reported experiments, which
is defined over the DreamCoder implementation. We struc-
ture this section according to the parallel implementations
in the base algorithm for clarity. However, except for the
specifics of the joint-abstraction algorithm, the technical
implementation of each component should extend directly
to most other similar learned synthesis algorithms (e.g. the
joint model implementation should be reusable in any syn-
thesis algorithm that uses an explicit symbolic library of
primitives.)

S5.1 Joint prior over programs and language

LAPS extends the prior P[p] over programs under the library
to a joint prior J(p,d;) over programs for a given task
and their natural language descriptions d; (Sec. 5.1). We
formulate this prior as

J(p.ds) = Plp|C. 6.]Pd: o, £]

the product of the original prior over programs P[p|L, 6 ]
defined on the program library, and a program to descrip-
tions “translation” model 7 (d¢|p, £) ~ P[d;|p, L] that de-
scribes how descriptions are generated for programs written
in the library.

The concrete implementation described in the main paper
uses a translation model that additionally decomposes com-
positionally over language and programs—in particular, on
the basis of token-token translation distributions Py [w]l]
between words w € d; and [ € £. Many available trans-
lation and semantic parsing models (such as synchronous
grammars over natural language and programs) preserve
this further compositional requirement (e.g. (Artzi et al.,
2014; Wong & Mooney, 2006)).

See Figure S3 (supplement) for example samples from the
generative model on the graphics domain at earlier and later
stages of training.

Our implementation uses a classical statistical machine
translation model (the Model 4 version of the IBM Statis-

tical Machine Translation models (Gal & Blunsom, 2013))
whose parameters can be tractably estimated from very few
paired programs and descriptions (in the distant supervision
setting used in the original work, there may be no more
than a couple of hundred training tasks in the full dataset,
and fewer than 10 solved tasks on which to train the trans-
lation model at any given time.) In addition to inference
in small data settings, this translation model has a fully
compositional generative definition (Gal & Blunsom, 2013)
that allows it to be easily used to train the neural amortized
inference model which conditions on language.

Despite this, however, this translation model (and the further
inductive biases used to specifically relate program trees to
sentences) make strong compositonality assumptions about
the relationship between program primitives and words as
a joint generative model of programs and language; we
find that these inductive biases are useful in the small data
setting and produce empirically successful results. However,
this is likely because of how the joint model is used during
training, which does not require a perfect generative model
of language (or language with respect to programs) for either
amortizing inference or abstraction in order to use language
as a heuristic during learning.

A full definition of the statistical translation model we use
can be found in (Gal & Blunsom, 2013). We re-summarize
important details here. The IBM family of translation
models estimates the conditional token-token probabilities
Pr[w|l] on the basis of alignment variables a; 4, which spec-
ify a direct correspondence between tokens in parallel texts
(e.g. a word in a task description and a program primitive.)
These alignments are many:many between tokens in pro-
grams and natural language sentences — a given word can
correspond to multiple primitives, and vice versa. Condi-
tioned on a set of alignments from paired programs and
descriptions, the conditional probabilities in both directions
(the probability of generating a program primitive in a pro-
gram based on the presence of a word in a sentence, and
vice versa) are defined by marginalizing over the alignment
variables. We provide one direction (P7[w|l]), as the other
is symmetrical:

m

Prlw|l] « Z ZP[w,al...am\l] x Hq(aﬂi,l,m)

Am i=1

where a; are alignment variables inferred over a paired cor-
pus and ¢(j]i,1,m) can be interpreted as the probability
of alignment variable a; (for the token with index ¢ in a
program) taking value j (where j is an index into the corre-
sponding sentence) conditioned on the lengths [ and m of
the program and natural language sentence (Gal & Blunsom,
2013).

These alignments are inferred by approximately inverting
the generative model in (Gal & Blunsom, 2013) to maxi-
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mize the likelihood of the observed paired sentences and
programs. One implementation detail: the alignment algo-
rithm operates over pairs of strings. For convenience we
infer alignments between sentences and linearized token
sequences in the program tree (which can be done with com-
plete recoverability of the original program tree (Andreas
et al., 2013)). This is another inductive assumption that we
choose after preliminary experimentation and find that our
implementation yields strong empirical results regardless.

The IBM translation model is a noisy-channel generative
model that requires an additional language model p(d) to
generate language (Gal & Blunsom, 2013; Heafield, 2011).
We use an efficient parallelized implementation for inferring
the translation model parameters from (Koehn et al., 2007),
which also contains a basic language model inference
algorithm inferred over the full corpus of training task
sentences (as a trigram model, which we again find simple
but effective for our very small data setting). Specific model
hyperparameters for all experiments are available in the
released code repo (in the experiment runtime commands.)

Mutual exclusivity: Section 5.1 of the main paper also
describes how the joint model can be modified to include
language-specific priors, such as a simple implementation
of the well-known mutual exclusivity prior documented
in the cognitive language-learning literature (Markman &
Wachtel, 1988; Gandhi & Lake, 2019) and given a Bayesian
formulation in (Frank et al., 2009). We provide an imple-
mentation to demonstrate that the joint model can be easily
extended: specifically, a simple mutual exclusivity assump-
tion can be added into the joint model by simply updating
the compositional translation model to include additional
distributions ¢ s g (dpew|l) Where dy,eq, are words that only
appear in unsolved training tasks and

tar e (dnew|l) o< aP[l|£, 0]

new words are now assumed to correspond to primitives in-
versely proportional to their current usage under the learned
program prior. As we show in the next section, incorporat-
ing this prior at the level of the joint model can be used to
approximate mutual exclusivity assumptions in the learned
search heuristic, encouraging exploration in the presence of
new words.

Practically, we calculate the mutual exclusivity prior in our
concrete implementation by leveraging the alignments upon
which our token-token translation probabilities are defined.
Specifically, we add pseudoalignments between each d,eq,
and each [ < aP[l|£,0.]!; when the token-token transla-
tion probabilities marginalize over the latent alignments and
these pseudo alignments, the resulting translation probabili-
ties encode the mutual exclusivity prior.

S5.2 Integrating the joint model into amortized
conditional search

-O4 =
(CNN)

d =amedium
eightgon —

Ep(d)

(GRU)

MLP — TANH — Q

Figure 2. Architecture of the language-conditioned neural model
Q(p|d,t). The model takes as input task examples ¢. These are
encoded using a domain-specific encoder E(t). The model ad-
ditionally takes in task descriptions d, encoded using a languag
encoder Ep(t) (implemented as a GRU). Task encodings are con-
catendated and feed to an MLP and activation layer and output a
tensor Q. This parameterizes a distribution over program bigrams
in the final DSL, which defines a conditional distribution from
which to enumerate programs during search.

The amortized conditional inference model Q(p|t) (Sec.
4.2) extends straightforwardly in LAPS to condition on lan-
guage Q(pl|d,t) (Sec. 5.2). Importantly, the training proce-
dure in Sec. 4.2 (training the neural model on samples from
the prior) also extends to the language-enriched condition
(training the neural model on samples from the joint prior,
which include generated language annotations.)

In our experiments we implement the concrete neural model
Q(pld, t) in our experiments by extending modularly on the
original model in (Ellis et al., 2021) (and in the supplemental
S4.2) for direct comparison. Our full architecture therefore
has three modular components to additionally condition on
language:

1. A natural language task descriptions encoder Ep(d).
This receives the task description d as input. We imple-
ment this as an RNN model using a bidirectional GRU
(Cho et al., 2014) with 64 hidden units; we embed
natural language symbols as 64-dimensional vectors,
and randomly initialize and backpropagate through the
embedding during training. We tokenize the sentences
in u on whitespace and concatenate each sentence, de-
limited by special start and end of sentence tokens. At
test time, we replace any OOV tokens with a special
UNK token.

2. A domain-specific task encoder E(t), following S4.2.

3. A bigram transition model over program primitives,
following S4.2. To condition jointly on Ep(d) and
E(t) we simply concatenate these two embeddings
and update the first layer of the MLP to take the 128-
dimensional concatenated embeddings as input.
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5.3 Abstraction learning as joint model compression

Finally, the abstraction learning model in (Ellis et al., 2021)
can also be generalized to condition on language, by extend-
ing the optimal library inference algorithm with respect to
the program prior to an optimal library inference algorithm
with respect to the joint model over language and programs
(Eqg. 6 and 7, main text.)

In our concrete implementation with respect to the Dream-
Coder algorithm, this means extending the description-
length compression objective — originally defined over the
program library and training task programs — to include
the translation model definition. The main paper defines a
description-length prior over the compositional translation
model (Eq. 10). Optimizing this tractably requires redefin-
ing the abstraction algorithm in (Ellis et al., 2021) — which
refactors A-calculus programs via lambda-abstraction (see
S4.3 for a summary) — to also jointly re-estimate the descrip-
tion length of the translation model 7 (d;|p, £') using the
refactored programs under the new candidate library £’.

We implement an efficient approximation that can be cal-
culated with respect to the classical statistical translation
model described in S4.1 (Gal & Blunsom, 2013). In particu-
lar, we leverage the alignment-based definition (which uses
latent correspondences inferred between program tokens
and sentence tokens in paired programs and descriptions) to
approximate — H (P[w|l]) = — log(Py[w]l]), the entropy
of the token-token translation probabilities.

Specifically, as the IBM model defines the conditional token-
token probabilities

Pr{wll] oc Y ... > Plw, ay...am|]

am

marginalized over alignments, where (slightly abusing nota-
tion) in any given paired program and sentence description
we will have estimated a set of alignments a.; 1,...1,, be-
tween the j-th token in the description corresponding to one
or more tokens lj...l,, in the paired program. We therefore
define the description-length of each token-token transla-
tion as the sum of the description lengths of the alignments
which express it under a library L:

Z ZP[d, aj...am|l, L] « Z Z lai|c

ai Am

and the description lengths under the refactored library L’
containing new abstractions compresses according to

/
W lg...ln

|a2uj,z;€...ng|£’ <la L =

3)

{l}contains only l...l,, as subcomponents|l}....I", }

and we say that a primitive | € L is a subcomponent of
a refactored abstraction [ € L if the abstraction can be

[B-reduced such that [ appears in it. That is, a refactored
alignment @’ : w; — {I’...I,} is compressed only when a
new abstraction I’ encapsulates over a strict subset of the
constituent program primitives already aligned to the word
in the original alignment. This allows us to re-approximate
the description length of the new translation model with
respect to a semantically-equivalent program refactoring
without inducing P [w|l] from scratch (which would require
retraining the full translation model over the sentences and
refactored programs.)

S6. Experiments

This section describes additional details on each of the do-
mains — string editing, compositional graphics, and scene
understanding — in Section 6 of the main paper (see Figure
2, main text for examples from all three domains, shown
along with the synthetic and human language annotations).
We also provide additional details on the model and baseline
hyperparameters available for each domain. All datasets
generated for these experiments (including human language
annotations) are released and links to static repositories are
provided in the code release. We also release a complete set
of commands to exactly replicate all model experiments.

All experiments for were conducted on a high-powered com-
puting cluster using a fixed training budget of wall-clock
search time per task for all models and baselines in a given
domain (determined via hyperparameter search using the
baseline model per domain, and reported on a per-domain
basis below). The experiments on the string editing and
graphics domains used models trained using 48 CPUs for
search (using the original parallel enumerative search imple-
mented in the released code for the DreamCoder model in
(Ellis et al., 2021)); and the experiments trained on the scene
reasoning task used 24 CPUs (as preliminary experiments
revealed that these experiments required shorter search time
for our main model, and we wished to reduce the carbon
footprint of the remaining experiments after our first two
domains.)

For all experiments we train the neural models for 1 x10%
gradient steps. For experiments with language-guided com-
pression, we use an upper bound of 5 new abstractions in-
troduced per iteration. For mutual exclusivity experiments,
we set apsp = 0.1. For all experiments, during program-
only compression (see (Ellis et al., 2021) for a discussion
of program-only compression hyperparameters) we use the
hyperparameters from (Ellis et al., 2021) for parsimony with
earlier work: a structure penalty of 1.5 and pseudocounts =
30.
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S6.1 Domains

(See Figure 2, main text for examples from all three do-
mains, shown along with the synthetic and human language
annotations.) As discussed in the main paper, each domain
consists of a dataset of tasks; a set of procedurally generated
synthetic language annotations; and a set of human lan-
guage annotations provided by Mechanical Turk workers;
we also described the base primitives Ly with which all
models (including baselines and ablations) were initialized
for each domain.

S6.1.1 STRING EDITING

Tasks: structured string transformation problems taken
from a publicly released dataset in (Andreas et al., 2017)
(n=1000 train; n=500 test). Tasks consist of input dictio-
nary strings transformed using randomly sampled regular
expression transducer (n=30 examples per task). Transduc-
ers were sampled according to abstract templates defined
in (Andreas et al., 2017) and required identifying matched
sequences of characters and adding letters before them; re-
moving sequences; replacing them with new sequences, or
doubling the sequence each time they appeared (See Figure
2A, main text).

Language data: The human language dataset for this do-
main was previously collected by (Andreas et al., 2017). We
defined a synthetic grammar of high-level templates over the
ground truth regular expression transducers (corresponding
to the original templates used to generate the tasks.) The
synthetic templates were defined based on language from
the original human annotations, and in most cases closely
matched the true human provided annotations (which were
generally quite structured), though with significantly less
variation (the original language contained multiple human
descriptions per task. We generate a single synthetic for
each one. The synthetic dataset has a vocabulary size of
n=44 for both train and test. We use the human annota-
tions in the original dataset when evaluating on human data,
which have a vocabulary of n=727 (train) and n=622 (test).)
We generate a synthetic dataset on this domain partly be-
cause of inaccuracies noted in (Andreas et al., 2017). The
released code contains the complete generation procedure
for these synthetic annotations. See Figure 2A for represen-
tative tasks with examples, synthetic language, and human
descriptions.

Initial program primitives: We initialize all models with
a set Ly of LISP-like primitives that operate over substring
sequences to both construct regular expression match se-
quences and manipulate strings, augmented with three text
manipulation-specific primitives intended for executing con-
structed regular expression sequences; t is a polymorphic
type variable using standard Hindley-Milner polymorphism
typing (Pierce, 2002). The execution engine does include

a regex-matching model; however, the synthesis model is
naive to this execution engine and simply searches for ma-
nipulations over the input strings and the regexes as data
arrays.

Ly contains 14 substring manipulation primitives, given
below with type information. We also give a semantic gloss
for primitives that are not standard LISP primitives.

e if (bool — t — t — t)

e cons (t — list(t) — list(t))

e car (list(t) — t)

e cdr list(t) — list(t
e map ((tg — t1) — list(to) — list(t1))
¢ tail

(list (t) — t)

e append (t — list (t)
Appends element to end of list.

— list (t))

¢ revedr (list(t) — list(t))
Takes all except the last element of the list.

* match (substr — substr — bool)
Returns true if the first argument, when executed as a
regular expression, matches the second argument.

* regexsplit (substr — fullstr —
list (substr))
Attempts to execute the first argument as a regular
expression, and splits the second argument into a list
of substrings, using the regular expression match as a
delimiter (and includes the matched sequences in the
returned list.)

e flatten (list (substr) — fullstr)
Flattens a list of substrings back into a string.

e rconcat (substr — substr — substr)
Concatenates two substrings.

* rnot (substr — substr)
Takes a substring argument s and returns the substring
literal [~ s]

* ror (substr — substr — substr)
Takes substring literals a and b and returns the substring
literal ((a)—(b))

We also include 26 character constants of type substr and
constants dot (regular expression wildcard character) and
empty (empty string).

Domain hyperparameters We largely follow prior work
(Ellis et al., 2021) to set algorithm training parameters; the
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earlier (Ellis et al., 2021) uses a 720s enumerative search
budget for solving both text editing and general list manip-
ulation tasks. We use the same 720s enumerative budget
here.

The encoder E(t) follows the domain-specific encoder used
for text and list editing problems in (Ellis et al., 2021), a
2-layer GRU with 64 hidden units. The model is trained
for a fixed gradient step budget (10,000 gradient steps) and
we sample equally at random between supervision on the
solved training tasks (and their solution programs in the
current DSL) and samples from the joint generative model.
As with (Ellis et al., 2021), when generating tasks from the
generative model, we use randomly sample inputs (on which
we execute generated programs to produce an output.)

S6.1.2 COMPOSITIONAL GRAPHICS

Tasks: inverse graphics problems (n=200 train; n=111 test)
where each synthesis problem is specified by an image and
solved by synthesizing a program in LOGO Turtle graph-
ics (Abelson & DiSessa, 1986). The domain is inspired by
the graphics domain in (Ellis et al., 2021) but intentionally
re-designed to be much more challenging (ground-truth pro-
grams are much longer on average in the base programming
language) and explicitly compositional: the training and
testing tasks contain simple shape tasks defined by composi-
tional parameters for a set of basic shapes (a small triangle,
a medium square; a small semicircle); complex shape tasks
that require inferring more challenging (and longer) param-
eterized shapes (a greek spiral with eight turns); and compo-
sitional tasks defined by geometric rules and relations over
the simple shapes (a seven sided snowflake with a short line
and a small triangle as arms; a small triangle connected by
a big space from a small circle) (See Figure 2C).

Simple parameterized shapes are either polygons (triangle,
square, [n] gon), curves (semicircle, circle) or lines. Simple
shapes are parameterized by one of three sizes (small or
short; medium; and big). When generating synthetic lan-
guage descriptions, pluralized objects are tokenized with
separate tokens for the noun lemma and a token for the plu-
ral suffix (e.g. square s).

Complex parameterized shapes require constructing more
complex images out of basic lines, and are intended to evalu-
ate performance on tasks that pose a greater search challenge
in the initial DSL, and whose structure is not directly cued
by compositional relationships over easier components. Fur-
ther, the complex shapes can be solved using abstractions
(e.g. for repeatedly rotating a pen at right angles) that are
not directly cued by shared lexical names — we evaluate the
algorithm’s ability to learn and use abstractions that corre-
spond to useful sublexical structures shared across multiple
lexemes. We define four template families for complex
shapes: spirals, staircases, zigzags, and stars.

Compositional graphics tasks invoke compositional rela-
tionships over the simple parameterized shapes. We define
templates for generating 6 families of compositional tasks:
nested, next to, separated by, connected by, in a row, and
snowflakes.

Language data: We gather human language annotations
by asking Mechanical Turk workers to write an image de-
scription for the rendered graphics images that specify each
task. Each worker labeled 20 training and 10 testing images
after viewing a disjoint, randomly sampled set of 15 exam-
ple images paired with their synthetic language captions.
(Workers were asked to write a short, clear description that
a person or robot could use to recreate the picture, and
told that the examples were paired with automatically gen-
erated captions as an example of the kinds of descriptions
you could write for this picture.) We control for description
quality by requiring workers to complete a reference task on
their own descriptions: after writing their initial annotations,
workers were required to correctly match each annotation to
the target image (from amidst a set of 12 distractors drawn
heuristically from similar images on the full task dataset,
and other images they themselves had described), and only
annotations correctly matched to the target image were re-
tained (workers were given a chance to redescribe pictures
they failed to match to their own captions.) We preprocess
the human dataset minimally to standardize number terms
(e.g. we use the same token type for both 3 and three) and
to split plurals into a lemma and suffix, as in the synthetic
dataset. The final dataset has a vocabulary size of n=562 for
both train and test.

As with the string editing domain, we define a synthetic
dataset using parameterized templates based on systematic
language reused in the human annotations (see Figure 2A for
a comparison between human annotations and synthetic lan-
guage); as with that domain, we choose a synthetic dataset
to ensure systematic re-use of high level terms for repeated
compositional objects (such as the “n-gon” or “snowflake”
terminology.)

We then generate graphics tasks by defining parameterized
templates over ground truth programs in Ly, and a corre-
sponding generator for synthesizing natural language de-
scriptions based on each ground truth program. It is impor-
tant to note that the templates are defined at any extremely
high level and were written with respect to low-level pro-
grams in a simple graphics language (many of which were
derived by generalizing compositionally over complex struc-
tures in (Ellis et al., 2021), such as the ‘snowflake’ images).

Initial program primitives: For comparison with prior
work, our initial library on this domain (and the base lan-
guage used to generate the ground truth graphics programs)
is an implementation of the LOGO Graphics DSL used in
(Ellis et al., 2021), which consists of four typed, impera-



Supplemental: Leveraging Language to Learn Program Search Heuristics and Abstractions

tive primitives modeled within the A—calculus with a state
monad S

move: distance — angle — S — S
pen—-up: (S —+S) - S — S

for: int - (S - S) - S — S
get/set: (S — S) - S — S

as well as four arithmetic operators (+, -, *. /), integer
constants (1-9), unit distances and angles (1 meter and 27
radians), and special values co and e.

Figure 3 (main text) shows examples of the graphics tasks,
synthetic descriptions, human descriptions, and sample pro-
grams in the ground truth initial DSL.

Domain hyperparameters We largely follow prior work
(Ellis et al., 2021) to set algorithm training parameters. Con-
sistent with the graphics program experiments in (Ellis et al.,
2021), we train all models, including baselines and abla-
tions, using an enumerative search budget of 1800s per task
(both when using pure enumerative search from the DSL
prior, and neurally-guided search conditioned on the task
examples and language descriptions); the results in Table
1 compare the relative advantage of our model given this
fixed search time. We train all models on 48 CPUs dur-
ing parallel enumerative search, and run the algorithm for
a maximum of 27 iterations (see learning curves. As we
run multiple random seed replications of models in this do-
main, we tuned the iteration limit based on performance on
the first replication, allowing models models to train while
performance continued to increase. To conserve computa-
tional resources, we later stopped several of our own model
replications before 27 iterations, as they had reached near
ceiling performance. As we report the best held-out test
score across all 27 iterations for any one model, the early
stopping would only serve to give a conservative estimate
on performance for these models.) We randomly reorder the
training set of tasks once before the first loop, then iterate
through batches of n=40 tasks at each iteration; learning
curves show results from evaluating on held-out tasks every
n=3 iterations.

The encoder E(t) follows the domain-specific encoder used
for the original graphics domain in (Ellis et al., 2021) for
a more direct comparison: we use a 6-layer CNN, where
each layer consists of a 64x64 2D convolutional sublayer
with kernel size = 3, a RELU activation sublayer, and a max-
pooling sublayer with kernel size = 2. The model is trained
for a fixed gradient step budget (10,000 gradient steps) and
we sample equally at random between supervision on the
solved training tasks (and their solution programs in the
current DSL) and samples from the joint generative model.

S6.1.3 SCENE REASONING

Tasks: inductive scene reasoning tasks (n=212 train; n=115
test) where each synthesis problem is specified by a struc-
tured input scene, and outputs can be a number (how many
red rubber things are there?), a boolean value (are there
more blue things than green things?), or another scene (what
if all of the red things turned blue?). This domain is modeled
on CLEVR (Johnson et al., 2017) but designed to support
non-linguistic, inductive synthesis in the programming-by-
example paradigm: each task is specified with n=7 paired
input output examples. See Figure 2B, main text for exam-
ple tasks showcasing the original and extended templates,
synthetic language annotations, and human language anno-
tations.

The dataset includes questions randomly generated from the
following subset of the original CLEVR question templates
(see (Johnson et al., 2017) for additional details on the task
generation process and question templates; we also release
our own augmented question generation code and the full
dataset):

 zero_hop: questions that require counting or answer-
ing an attribute query about a subset of objects in the
scene. (e.g. How many small cylinders are there?;
What material is the purple thing?).

* one_hop: questions similar to the zero_hop tasks, but
that require reasoning over an additional relational
query (e.g What number of things are right the small
gray thing?).

L]

single_or: questions that additionally introduce a dis-
Jjunction between sets of objects. (e.g. How many
objects are either large metal spheres or large rubber
things?)).

* (compare_integer: questions that additionally intro-
duce a > or < operator between counts of sets of ob-
jects. (e.g. Is the number of large rubber cubes less
than the number of large green rubber things?)

L]

same_relate: questions that additionally require rea-
soning about other objects with the same attribute as
a specified object. (e.g. How many other things are
there of the same size as the cyan thing?).

We choose these templates as a representative subset of
the style of the full CLEVR dataset, that requires the full
language of high-level primitives in (Johnson et al., 2017)
to solve. We omit some longer questions in the same format
(e.g. two_hop) as our intention is to compare synthesis
baselines, rather than to achieve SOTA performance on
CLEVR: this would likely only increase the computing
resources needed to compare the various methods and we
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already found a significant differential between our model
and the baselines on the shorter questions.)

We also add new question templates generated in the style
of the original CLEVR tasks, but designed to model other
common Al tasks (such as generating new scenes based on
existing ones) and to require new abstractions (that were
not expressible in the original restricted symbolic language
used to generate scenes in (Johnson et al., 2017)):

* localization: questions for object localization. These
return an output scene consisting of a localized set of
objects based on a set of query attributes (e.g. Find the
gray rubber thing.).

* remove: questions that either return an output scene
with a subset of the objects removed, or that query
about latent scenes where a subset of objects has bee
removed. (e.g What if you removed all of the gray
metal things?; If you removed the green cubes, how
many cubes would be left?).

* transform: questions that either return an output scene
where a subset of the objects has been transformed to
set new attributes, or that query about latent scenes
where a subset of objects has been modified this way.
(e.g What if all the blue metal things became rubber
things?; If all of the large yellow rubber things became
gray spheres, how many gray spheres would there be?).

We treat these as program synthesis tasks: the input scenes
are specified as symbolic scene graphs consisting of an ar-
ray of structured, objects defined as a dictionary of their
attributes, and programs are designed to manipulate these
structured arrays (this data structure is the original format
in which scenes themselves are generated in (Johnson et al.,
2017); the images displayed in Figure 3, main text are ren-
dered using the original image rendering pipeline). Our in-
tention is not to build a visual reasoning architecture: rather,
we are interested in learning structured manipulations of
scenes. We see work in inverse graphics (such as (Yi et al.,
2018)) which outputs a structured scene graph based on
pixel images as the first step in a symbolic processing and
reasoning pipeline as analogous; we are interested in the
structured manipulation of these scene representations.

Language data: Synthetic language annotations are gener-
ated based on the original high-level templates in (Johnson
et al., 2017), as well as additional templates we define for
the extended questions in the same style. We gather human
language annotations by asking Mechanical Turk workers
to write an instruction or question describing the set of in-
ductive examples. However, due to the difficulty of solving
certain tasks in a limited time frame based on the inductive
examples alone (such as the questions about disjunctions

over scenes), we show Mechanical Turk workers the syn-
thetic descriptions for this domain and ask them to write a
semantically similar description that changes more than one
word in the original caption, and that would be “more natu-
ral for a human to understand”. This paraphrasing paradigm
is similar to that used in (Wang et al., 2015), though we find
that in comparison to other domains it generates less diverse
language data.) We remove all punctuation, tokenize on
spaces, and use an additional domain heuristic to stem all
plurals (e.g. cubes).

Initial program primitives: We initialize all models with
a set Ly of LISP-like primitives. These are similar to the
initial list manipulation primitives used in the string editing
domain: as both domains can be treated as manipulating
structured arrays, we are interested in learning differenti-
ated, domain-specific abstractions based on a very similar
base language. L also includes primitives for querying
attributes of objects on the domain (these are typed getters
that simply query the object dictionary of attributes) and sev-
eral domain-specific functions necessary for manipulating
these attribute. We deliberately use a much more base level
programming language than the high-level, domain-specific
language hand-designed in (Johnson et al., 2017); our goal
is to learn the necessary abstractions.

We give a semantic gloss for primitives that are not standard
LISP primitives.
e if (bool — t = t — t)
* cons (object — list (object) —
list (object))

e car (list (object) — object)

* map ((to — tl) — liSt(to) — list(tl))

o fold ((list(t) — list(t)) — (¢t — list(t) —
list(t)) — list(t))
¢ len

(list (t) — int)

e > (list(t) — Dbool)
e < (list(t) — bool)

* set_union
list(t))

(list (t) — list(t) —

e set_intersect (list(t) — list(t) —

list (t))

e set_difference — list (t)

— list (t))

(list (t)

* relate (object — relation —
list (t)) Returns an array of objects that sat-
isfy a spatial relation with respect to an input
object.
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We also include equality comparators for each of the
attribute types (e.g. eg.color?; getters for each at-
tribute, and setters for each attribute. We also include
integer constants 0-9 for counting and constants for
the attributes (lblue, red, big, small, rubber,
metal) based on the original object and spatial relation
constants (Johnson et al., 2017).

Domain hyperparameters: We run a coarse hyperparam-
eter search based on the baseline model to set the domain
hyperparameters. We train all models, including baselines
and ablations, using an enumerative search budget of 1000s
per task and run the models for a maximum of 5 iterations.
we run multiple random seed replications reordering the
training set, in the same way as the compositional graphics
domain. The results in Table 1 also compare a curriculum
ordering of the training set based on the number of tokens
in the synthetic language captions (split on spaces.)

The encoder E(t) is a variant of the RNN-based domain-
specific encoder used for text and list editing problems in
(Ellis et al., 2021) (as well as the string editing domain). The
model is trained for a fixed gradient step budget (10,000
gradient steps) and we sample equally at random between
supervision on the solved training tasks (and their solution
programs in the current DSL) and samples from the joint
generative model. As with (Ellis et al., 2021), when gen-
erating tasks from the generative model, we use randomly
sample inputs (on which we execute generated programs
to produce an output.) We encode the symbolic scene data
structures with the RNN by encoding a flattened version of
the scene graph. The scene graph is originally stored as a
dictionary of attributes; when flattened, we indicate the dic-
tionary structure using special tokens to denote the keys and
the start and end of any array delimiters (the original scene
graph is fully reconstructable from the flattened version.)

S 6.2 Results and Additional Qualitative Results

In this section, we discuss additional qualitative results from
an in depth exploration of the graphics domain that were
omitted from the main paper for space, but provide addi-
tional insight on the behavior of the learned model in the
hardest learning domain (based on the differential between
baseline and LAPS-augmented performance.)

Learned abstractions and synthesized programs. Fig-
ure S4 (supplement) show sample abstractions in the final
libraries £ for the best performing models in the graph-
ics domain as a concrete exemplar of abstractions that are
learned and how they are used, along with sample tasks
solved with these abstractions. The figures are shown as
dependency graphs to indicate how progressively more com-
plex abstractions build on abstractions at prior iterations
of learning; we also show selected probabilities from the
translation model (depicted are examples from the top-3

primitive translations for a given word; some primitives are
not high probability translations for any word.)

Joint generative model samples. Figure S3 (supplement)
shows samples from the joint generative model on the graph-
ics domain (programs from the library which are executed to
produce the task example image, and translated to produce
language annotations) at early and later stages of training,
indicating that the joint model itself improves as learning
improves, which itself allows better training for the condi-
tional inference model and better abstraction guiding based
on language.
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