Leveraging Language to Learn Program Abstractions and Search Heuristics

Catherine Wong' Kevin Ellis> Joshua B. Tenenbaum '® Jacob Andreas '

Abstract

Inductive program synthesis, or inferring pro-
grams from examples of desired behavior, offers
a general paradigm for building interpretable, ro-
bust, and generalizable machine learning systems.
Effective program synthesis depends on two key
ingredients: a strong library of functions from
which to build programs, and an efficient search
strategy for finding programs that solve a given
task. We introduce LAPS (Language for Abstrac-
tion and Program Search), a technique for using
natural language annotations to guide joint learn-
ing of libraries and neurally-guided search models
for synthesis. When integrated into a state-of-the-
art library learning system (DreamCoder), LAPS
produces higher-quality libraries and improves
search efficiency and generalization on three do-
mains — string editing, image composition, and
abstract reasoning about scenes — even when no
natural language hints are available at test time.

1. Introduction

Machine learning approaches based on program synthesis—
the automatic inference of symbolic programs—can offer
robustness, interpretability, verifiability, and strong gener-
alization in few-shot learning settings (Appel et al., 2017;
Lake et al., 2017). Many machine learning tasks can be
formulated as program synthesis problems, including data
manipulation (Delaware et al., 2015; Gulwani et al., 2017),
semantic parsing (Artzi & Zettlemoyer, 2013; Liang, 2016),
structured visual understanding (Johnson et al., 2017b; Yi
et al., 2018), image generation (Ellis et al., 2017; Ganin
et al., 2018), and policy learning (Fikes & Nilsson, 1971;
Cropper & Muggleton, 2015; Silver et al., 2020).

This paper introduces Language for Abstraction and Pro-
gram Search (LAPS), a framework for improving the ef-
ficiency and generalizability of learned program synthesis

'MIT 2Cornell University *Center for Brains, Minds and
Machines (CBMM) - MIT. Correspondence to: Catherine Wong
<catwong @mit.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

models using natural language supervision. In LAPS, lan-
guage guides learning of both libraries of reusable program
abstractions and heuristics for searching in the space of
programs. High-quality program libraries and search meth-
ods are the main ingredients of effective program synthesis
approaches (Gulwani et al., 2017). Recent approaches to
program synthesis have attempted to learn search models
(Gulwani et al., 2015; Polozov & Gulwani, 2015; Balog
et al., 2016; Devlin et al., 2017), program libraries, or both
jointly from data (Shin et al., 2019; Dumancié¢ & Cropper;
Ellis et al., 2021; 2020; Lazaro-Gredilla et al., 2019), but
even the current best learning approaches can be computa-
tionally inefficient (often requiring upwards of thousands of
CPU hours to bootstrap learning) and do not always discover
generalizable libraries or search strategies.

LAPS builds on the intuition that natural language offers a
powerful source of information for tackling both learning
problems. Language simultaneously provides an efficient
channel for communicating the structure of the search space
(an instruction like draw a large hexagon next to a small
pentagon decomposes a complex graphics task into high-
level parts) and a lexicon that names important reusable
concepts in a given domain (for instance, suggesting that
a function to draw variable-sized polygons might be use-
ful for future graphics tasks). In this work we show how
inducing jointly compositional generative models over natu-
ral language and programs provides a strong scaffold for
library and search model learning in a hierarchical program
induction model. When integrated into a state-of-the-art
learning algorithm, DreamCoder (Ellis et al., 2021; 2018),
our approach dramatically improves performance on three
different synthesis domains: string editing, structured image
generation and scene understanding. Compared to the base
synthesis approach, LAPS solves and learns more quickly
from synthesis tasks, and produces higher-quality libraries
that improve generalization to downstream tasks without
natural language hints.

LAPS builds on several recent developments in (non-
language-based) program synthesis, so we begin with a
review of related work (Sec. 2), then formalize the search
and library learning problems (Sec. 3) and base synthesis
algorithm (Sec. 4). We then describe how LAPS extends the
base algorithm to include language in learning (Sec. 5) and
conclude with empirical results (Sec. 6).

Leveraging Language to Learn Program Abstractions and Search Heuristics

A. Base learned synthesis
algorithm (DreamCoder)

N
Training tasks with no + Iteratively learned library as a (i) Conditional neural search learned from (ii) Abstractions learned from
. ground truth programs generative prior over programs program samples can struggle to training programs may be
Library generalize to hard training tasks overfit to training tasks
A move_pen > | (for = (move_pen (for « (move_pen
Program g for forward sample | (* unit_line 3)<. " D abstract over| (* unit_line 3) (/ 21 6)))
Q. unit_line programs (/ 2m6))) discovered |
3 v
o §%% * % programs learned_fn_0 = (for «
(move_pen (* unit_line 3)
O Executed al learned_fn_o leamed execution- (/ 2n x)))
example N conditioned inverse
: add back to learned library
(for w (move (* (for « (move _pen
Joint library- O large six gon nove_pen - (ror s nove O O\' (* unit_line 3) (/ 2m 6)))
language model _I four nested squares for “gon” forward sample | 2" ©))) - o~ abstract jointly large six gon
al unit_line <+ “ine” programs and | “large sixgon” %, ¢ over programs ;
) = warge® language d language M
P— guag an guag
(Program, & smal i gon . e 5 Large_fn = (* unit_line 3)
- language) square large_fn learned execution gon_fn = (for = (move_pen
afive sided snowflake gon_fn and /gﬁguagel x (/ 2my)))
with a short line and a R conditioned inverse
O Executed small seven gon as i add back to learned library
example and arms
large six gon annotation Language-annotated + lteratively learned jointly (i) Neural search learns from generated (ii) Abstraction is structured
training tasks compositional generative models over language-annotated programs to condition over language toleamn
9 program library and language on language as a high-level training signal functions that compose like
L language)

...leverages compositional generativity of programs to learn

B. Language for abstraction and
program search (LAPS)

...leverages compositional generativity of language to learn programs

Figure 1. Our model, Language for Abstraction and Program Search (LAPS) integrates natural language into base learned synthesis
algorithms formulated as hierarchical Bayesian inference (A, left) for jointly learning a library of program abstractions and a neural
search heuristic for synthesis. We give an extended formulation (B, left) defined jointly over the program library and natural language
descriptions of synthesis tasks, that can be used to incorporate natural language into both abstraction and search heuristic learning. When
incorporated into a concrete learning algorithm, DreamCoder (A, right) we show that LAPS allows the model to leverage language richly
during training to improve the generalization of both the learned neural search model and the learned library of program abstractions.

2. Related Work

Our work draws on recent program synthesis approaches
that learn to synthesize programs from examples using neu-
ral models to guide search (Gulwani et al., 2015; Balog
et al., 2016; Parisotto et al., 2016; Devlin et al., 2017; Polo-
sukhin & Skidanov, 2018; Abolafia et al., 2018; Nye et al.,
2019; Ellis et al., 2019; Si et al., 2019; Ye et al., 2020a); and
learn libraries of symbolic abstractions from a collection
of related programs or tasks (Dechter et al., 2013; Zhang
et al., 2017; Shin et al., 2019; Dumanci¢ & Cropper; Ellis
et al., 2018; 2021). Our formulation builds on hierarchi-
cal Bayesian formulations of program learning that frame
both synthesis and library learning as probabilistic inference
(Liang et al., 2010; Lake et al., 2015; Ellis et al., 2021).

Natural language has also been used to scaffold latent repre-
sentation learning (Frome et al., 2013; Jia & Liang, 2016;
Andreas et al., 2017; Ye et al., 2020b; Goyal et al., 2020;
Liang et al., 2020; Mu et al., 2019; Luketina et al., 2019),
and as a high-level specification for program synthesis tasks
(Ye et al., 2020a; Nye et al., 2019; Polosukhin & Skidanov,
2018; Ye et al., 2020b; Desai et al., 2016; Srivastava et al.,
2017). Here we present an approach that integrates language
annotations in fraining for learning a more generalizable
library and program search model that can be used after
training with no additional annotations for new tasks.

3. Inductive synthesis and library learning

Consider the problem of writing a graphics program to draw
the large hexagon image in the left column of Fig. 1. This
is an inductive program synthesis problem: a task ¢ (like
draw a large hexagon) is specified with examples of what
a program should do, where each example is given as an
input x (in this case, the blank image canvas) and the desired
output y (the large hexagon image). A program p solves
the task if it produces outputs that are consistent with the
specification when executed — that is, if evaluating p under
an execution model E yields [p] g(z) = y.

Program synthesis begins with a library £ = {ly,..l,,}
containing the set of primitives that can be combined to pro-
duce solution programs, such as the (pseudo-code) primitive
functions in a simple graphics language:

,C:move,penlunit,linelforl*lTr\oo|O|l|2|...

which draw lines on a canvas parameterized by their length
and angle. Given a library, there is also the problem of
search: effective program synthesis requires a search strat-
egy S that can be given a task specification (such as the
image of a hexagon) and automatically discover a solution
program like the one shown in Fig. 1:

(for oco(move_pen (x unit_line 3) (/ 27 6))

by searching over programs built from functions in L.

Leveraging Language to Learn Program Abstractions and Search Heuristics

Both of these ingredients — the library £, and the search
strategy S — can be made much more efficient if the syn-
thesis engine will be expected to solve multiple related
problems. In the graphics domain, for example, synthesis of
the various images depicted in Fig. 1 is much more easily
accomplished using a library like

L =polygon|large_line|small_line...

in which the original hexagon task can be expressed as

polygon (6, large_line)

A good library already provides a foundation for efficient
search by making solutions easier to express. Even with
such a library, search can be further guided by information
about the prior structure of programs (for example, the fact
that polygon is typically called with a large_line or
small_line function as a second argument) and by infor-
mation about the target task itself (for example, the fact that
the target image contains six line segments). Thus, one way
to describe an effective search strategy S is via a prior over
programs P[p|L] in the library and a conditional inference
model for inferring P[p|¢, £], the distribution over programs
likely intended by the observed task examples ¢.

The foregoing discussion lays out the basic ingredients of
a hierarchical Bayesian formulation of program synthesis
(used in learning algorithms like (Ellis et al., 2021; Lake
et al., 2015; Dechter et al., 2013); see the graphical model
in Fig. 1A, left) for jointly learning a library and conditional
search model from a dataset 7" of synthesis tasks. We denote
a prior over programs as P[p|L,0,], on a library £ with
parameters 6. Given the observed tasks, we define the
likelihood of the latent library and parameters as:

®(L,00) =PL,0c) [[D PPl L, 6] (1)

teT p

where P[L, 0] is a prior over all possible libraries and pa-
rameterizations, and P[¢|p] is the likelihood that each induc-
tive task ¢ is consistent with a program p (for our purposes,
P[t|p] = 1 if the program produces the desired output ex-
amples and O otherwise.) Learning in this model means
estimating the optimal library and its parameters

L* = arg max/@(ﬁ,ﬂg) do, 07 = argmax ®(L*,0,)
Oc

c
2)
along with a conditional model P[p|t, £*] that can infer
programs for new tasks.

This formulation also foreshadows a straightforward way
in which linguistic descriptions of tasks (like those in the
first column of Fig. 1) could be integrated into learning: we
could simply extend the conditional model as P[p|t, d;, £*]
to include a task’s description d;. We come back to this (and

describe a more complete integration) in our approach, but
first describe a concrete implementation of Eq. 2 on which
we can realize the language-enriched model.

4. Base learning algorithm: DreamCoder

The LAPS framework we describe in this paper is a general
one for extending Bayesian models of program learning
like the one in Eq. 2 to incorporate information from lan-
guage. For concreteness, however, our presentation and
experiments build on the specific DreamCoder algorithm of
Ellis et al. (2021), which we briefly review here. We choose
DreamCoder because it exposes a modular implementation
of the library and search learning problems in Eq. 2 and has
previously demonstrated state-of-the-art performance across
a variety of synthesis domains (Ellis et al., 2021; 2020).

DreamCoder is initialized with a base library Ly of starting
primitives and a dataset of training tasks 7'. It returns a
learned final library £ ¢ augmented with program abstrac-
tions and a learned neural search model Q(p|t, £) that pre-
dicts high probability programs conditioned on the task
examples. Learning is iterative: DreamCoder alternately
searches for solution programs to the training tasks (given
a current library £; and search model @;) and updates the
library and search model based on new solved tasks. We
give details on each component below.

4.1. Program prior

DreamCoder defines the prior over programs as a proba-
bilistic context free grammar (PFCG; Johnson 1998) for
programs generated as productions from a library £ of func-
tions [€ £ '. Formally, DreamCoder assigns a real-valued
weight 6., to each library function, which when normal-
ized yields a production probability P[l|L,0]. The prior
probability of a program p is given by

lep

the weighted product of probabilities of all of its constituent
library functions. As all P[I|£, 0] < 1, this is equivalent
to a description length prior over programs: longer pro-
grams (with more constitutent elements) will have lower
prior probability under Eq. 3 since P[I|£, § -] monotonically
decreases as |p| = |{l € p}| increases.

4.2. Amortized conditional inference

To identify programs that solve tasks ¢ while obtaining high
probability under P[p|L, 6], DreamCoder trains a neural

'In addition to initial and learned functions, Ellis et al. (2021)
define L to also include any initial literals and a rule for generating
variables, such that programs can be completely generated as
productions from the PCFG. We use the same formulation.

Leveraging Language to Learn Program Abstractions and Search Heuristics

search heuristic Q;(pl|t, £;) at each iteration 4 to approx-
imate the inverse conditional model. The heuristic uses
a neural model trained to predict programs written in the
current library £; according to the posterior:

Qi(plt, Li) = Plp|t, (Ls,0r;)] o< P[t|p]P[p|(Li, 0c;)]
“4)
conditioned on an encoding of the training examples (e.g.
an embedding of the image in the task specification). This
model is trained in the distant supervision setting (which
begins with no supervised program data) by leveraging the
forward generative model: sampling programs from the
prior, executing them to produce observed tasks, and then
minimizing Q(p|t, L) in Eq. 4 on the sampled programs,
conditioned on their executions. This generative training
procedure is generally applicable to any neural implemen-
tation of Q(p|t,L). (But see Ellis et al. (2021) and our
supplementary material for additional details on the model

architecture, which we reimplement in our experiments).

4.3. Abstraction learning as program compression
(maximizing the likelihood of programs)

The DreamCoder algorithm also iteratively updates the li-
brary (£;,0.,) to approximately optimize Eq. 2 (finding
L*, 07 which maximize the likelihood of the inferred latent
programs). Ellis et al. (2021) leverage equivalence to a com-
pression problem defined over programs and the library. As
discussed in 4.1, the PCFG program prior is equivalent to a
description length prior over programs. Ellis et al. (2021)
place an additional Dirichlet prior over the library descrip-
tion length:

P[L] xexp [—A Z size(p) %)

peEL

Estimating the optimal library then becomes the problem
of inferring new library abstractions which can jointly com-
press the latent training programs (rewritten under the new
library £;11) and the description length |£;41]| of the up-
dated library (to optimize for shared abstractions across
programs). This objective would still require inference over
all possible ways of refactoring the latent programs under
the updated library. Ellis et al. (2021) approximate this by
only considering candidate abstractions and program refac-
torings that can be found via an efficient lambda-abstraction
algorithm. As an example, this could refactor the large
hexagon program

(for oo (move_pen (x unit_line 3) (/ 27w 6))
to expose a candidate abstraction like
Ax. (for oo (move_pen (x unit_line 3) (/ 27 X))

while also rewriting the original program using this abstrac-
tion. Notably, this fragment — which draws polygons with

lines of length 3 for sides — is not the most intuitively gener-
alizable for the graphics domain. A programmer with more
domain-specific prior knowledge would probably prefer an
abstraction like

Axy. (for oo(move_pen (x unit_line y) (/ 27 X))

which additionally parameterizes the polygon by the length
of its sides, and is semantically equivalent to the high-level
polygon_fn described in the problem setup in Sec. 3.
However, learning abstractions by compressing the library
and current solved training tasks may actually disfavor this
more intuitively generalizable (but less compressive) candi-
date. Our second key goal in introducing language will be
to leverage it as an additional source of prior knowledge to
improve abstraction generalization.

5. Our Approach: Language for Abstraction
and Program Search

Our work considers how the general learning problem —
jointly learning the library £ which defines the prior over
programs and the conditional search strategy S which in-
verts from tasks to programs — can be enriched in the
language-annotated setting. Here, at least a subset of the
training tasks are additionally annotated with a natural lan-
guage description d; (such as the natural language descrip-
tion large six gon for the large hexagon drawing task in Fig.
1B). Language offers a more direct source of information
for discovering a library like the one in our setup,

L =polygon|large_line|small_line...

if we leverage the expectation that generalizable abstractions
(like a candidate polygon function) should correspond
systematically to named fragments in natural language (like
the token gon).

Language can also be leveraged by the conditional search
model: learning systematic correspondences between lan-
guage and programs from descriptions like large six gon
should inform search on new tasks (like the one described
as a small nine gon next to a small square in Fig. 1B)) on
the basis of shared language (like gon).

Our approach, LAPS (Language for Abstraction and Pro-
gram Search) formalizes these intuitions by extending the
hierarchical Bayesian problem formulation over programs
given in Sec. 3 to additionally generate natural language
task descriptions (see graphical model in Fig 1B, left). In
particular, we assume the existence of a jointly generative
model J(p, d;) over latent programs that solve tasks, and
corresponding natural language descriptions. We rewrite the
original prior over programs P[p|L, 6] defined on a library
L to a joint prior P[p, d¢|.J, 0], and extend the distribution
in Eq. 1 over the latent joint model J with parameters 6 ;,

Leveraging Language to Learn Program Abstractions and Search Heuristics

written as

®(J,0,) = P[J,05] [T D_PltlolPlo, el 1.0] (6)

teT p

Learning in the language-augmented setting now involves
estimating the optimal joint model and its parameters

Jr = argmax/q)(J, 0y)do; 05 =argmax®(J*, 0y)
0

J J
)
along with a language-conditioned model P[p|t, d, J*] that
can infer programs for new tasks based on both specification
examples and task descriptions.

In the remainder of this section we first describe a general
joint model formulation that can be learned from language-
annotated training tasks. We then show how the joint frame-
work allows natural language to inform learning at both the
abstraction and search level in a concrete example, using
DreamCoder as the base hierarchical algorithm.

5.1. Joint prior over programs and language

Base prior We formulate our joint prior over language
and programs as

decomposed as the product of the original program
prior defined on a program library P[p|L,0,], and a
learned program-to-natural-language “translation” model
T (d¢|p, L) = P[d:|p, L] which describes how natural lan-
guage descriptions are generated for latent programs (in
our running example, this model would describe how the
large six gon description was generated conditioned on the
program solution for that task.) This decomposition builds
modularly on the original program prior defined only on the
library £. Learning 7T (d;|p, £) formalizes the intuition that
there should be a learnable relationship between language
that describes tasks and latent programs that solve them.

T (d¢|p, L) can be implemented in many ways (e.g. (Wong
& Mooney, 2007; Joshi & Schabes, 1997; Bahdanau et al.,
2014; Chen et al., 2018)), compatible with the vast literature
on structured translation between languages, including natu-
ral languages and programming languages. Our experiments
use the translation model popularly known as IBM Model 4
(Brown et al., 1993), one of a class of well-studied Bayesian
machine translation models (Gal & Blunsom, 2013) which
decompose T (d|p, £) into

T(dilp, L) [Prlwl] ©)

weEdy,lE€p

a product of learned token-level translation probabilities
Pr[w|l] between individual functions [in a task’s latent

program p and words w in the task description d;. (See sup-
plementary materials for model implementation and train-
ing details.) This token-level decomposition more directly
captures the intuition in our setup: that abstractions in a
programming library generally correspond systematically
to individual names in natural language descriptions, and
that the inverse conditional search can be guided based on
a generally compositional relationship between program
primitives and words. This formulation also allows these
compositional relationships to be inferred from fewer ob-
served examples than would be possible with other transla-
tion models with weaker inductive biases. However, Eq. 8
should extend to include any similar translation model and
need not include this stronger decomposition.

Adding richer priors In LAPS, the joint model can also
provide a controllable interface for incorporating additional
prior knowledge about language into learning. Learned
translation models are often fit to only maximize the likeli-
hood of the observed language (here, with respect to inferred
latent training programs). However, our formulation also
supports 7 (d¢|p, £) enriched to include additional priors
over language (such as speaker-specific language usage, or
pragmatics models that capture a speakers’ other commu-
nicative goals (Grice, 1989; Goodman & Frank, 2016).)

In our experiments (Sec. 6.1) we showcase this with results
from an extended model incorporating an additional mutual
exclusivity prior. Mutual exclusivity models the expectation
that newly encountered words should correspond to different
meanings than known ones. This prior has been shown to
play an important role in language learning in cognitive
science (Frank et al., 2009; Markman & Wachtel, 1988),
and in machine learning models (Gandhi & Lake, 2019).

In the synthesis setting, mutual exclusivity can capture the
expectation that “new”” words (which appear in descriptions
of currently unsolved tasks) are more likely to correspond
to different program components than those used in solved
training tasks (and for which there would otherwise be no
signal to learn a translation model in the distant setting).
Our extended model incorporates this prior by updating
Eq. 9 to distinguish between Wi, 0wn (Words that appear
in solved training tasks with latent programs) and W,
(newly encountered words) as

TME(dt|p7 [,) X H (1[11} S Wknown]PT[wm)
wed,lep

(1[w € WhewPIIL, 02)71)

(10)

where new words are modeled as inversely related to primi-
tives under the program prior (fit to previously solved tasks)
—modeling the expectation that new words more likely relate
to less-used program components than those used so far.

Leveraging Language to Learn Program Abstractions and Search Heuristics

5.2. Integrating the joint model into amortized
conditional search

The joint model allows LAPS to incorporate natural lan-
guage into the learned conditional search model over pro-
grams. In place of the original neural amortized model in the
base algorithm (Sec. 4.2), we train an extended, language-
conditioned model Q;(p|t, d:, J;) at each iteration to predict
programs according to:

Q(p‘tvdtaJZ) p|t7dt7J70J]

~ P

o P[t|p|P[p, di|J, 0.1] (11)
o< P[t] p]P[dy| p]P[p| L, O]

~ P|

tlpl T (dilp, L)P[p| L, O]

which amortizes program inference under our joint model
formulation. Importantly, we can train this neural model
using samples from the joint generative model, consisting of
sampled programs and corresponding generated language.
As with the original learning setting, this sample-based
training allows LAPS to learn a generalizable, language-
conditioned neural search heuristic, capable of leveraging
compositional patterns in natural language, from very few
examples in the distant supervision setting. We can also
now see the benefits of richer language-specific priors (such
as mutual exclusivity): the neural model trained to amortize
inference from the joint generative model can also approxi-
mate the mutual exclusivity bias, enabling better exploration
and generalization in the presence of new words.

5.3. Abstraction learning as joint model compression

The extended joint model objective in Eq. 2 and 7 also al-
lows LAPS to incorporate natural language into abstraction
learning. Extending the compression-based abstraction ob-
jective in the base algorithm — which optimized for libraries
that maximally compress the latent training programs and li-
brary — requires defining a prior over the language-program
translation model T in terms of the optimal program library.

We place a prior over 7 defined on a program library £ and
a natural language token vocabulary W as

P[TIL) oc Y —I(Prlwll]) (12)
leL,weW
where —I(Pr[wl|l]) = —log(P7[w|l]). This models the

intuition that a good library contains program abstractions
which correspond well to individual language tokens, and re-
duce entropy in the compositional translation model. Defin-
ing the prior compositionally also allows the algorithm to
maintain the desirably property from (Ellis et al., 2021), in
which the joint likelihood can be efficiently re-approximated
with respect to individual candidate program abstractions
based on their constituent subcomponents [and correspond-
ing translation distributions P7[w]|!] under the current trans-
lation model. As in the base synthesis algorithm, we

Algorithm 1

Input: Initial library Lo, annotated training tasks (T, D)
Initialize 6, <+ uniform; training task solutions p « {}
fori < fdo

Ji < Fit 0, and T (d¢|p) to (p, dy)

Qi(p|t,d;) < Train on (p, T, d;) and samples ~ .J

p < programs from search amortized with Q;

L; < abstractions optimized over (p, J)
end for
Return Q7, Ly

fully re-estimate a new translation model at each iteration
Tit1(de|pit1, Lit1) to fit the updated library and refactored
programs. See the supplement for extended details.

Taken together, Alg. 1 summarizes the concrete algorithm
using LAPS to incorporate language into (Ellis et al., 2021).

6. Experiments

We demonstrate LAPS on three different domains: string
editing, compositional graphics drawing, and scene rea-
soning, which we choose to represent a diverse range of
tasks and accompanying language (Fig. 2). In all three do-
mains, we find that compared to the base synthesizer, LAPS
learns and solves heldout synthesis problems faster (Table
1, Sec. 1-2), and produces higher-quality libraries that im-
prove generalization even when natural language hints are
not available after training (Table 1, Sec. 3).

Below we summarize each domain. We then discuss results
showing that LAPS is effective because of how the hier-
archical model incorporates language during learning: we
find that (1) LAPS searches more effectively during training,
enabling it to solve and learn from more diverse training
tasks than the baseline model; (2) LAPS abstracts more
effectively during training, adding in more generalizable
library routines as it learns; and (3) LAPS can use language
during testing if it is available, as an important additional
source of high-level information during synthesis.

6.1. Domains

All three domains consist of a dataset of inductive synthe-
sis tasks t specified as input/output examples; procedurally
generated synthetic language annotations; and human lan-
guage annotations sourced from Mechanical Turk. We use
synthetic language as our primary evaluation benchmark:
we are interested in a controlled probe of learning when
words are systematically reused and composed, but refer to
more abstract concepts than in the initial base programming
language. However, we also use human language to evalu-
ate the practicality of our approach in real-world settings.
Additional information for all domains is in the supplement.

Leveraging Language to Learn Program Abstractions and Search Heuristics

A. String Editing (shown with sample 1/0 examples of n=30 and random human description of n=3)

cools - gcools
cultivator - gcultivator
bloomed - bloomed

(Synth) if the word starts with
consonant vowel add g before that

(Human) if word begins with
consonant followed by vowel , add
an g to the beginning

pavings - pavinb
forgiveness - forgiveneb
enterprises - enterprises

if the word ends with consonant s

replace that with b

if the word ends with a consonant
and s then change them both to b

topazes —> topaz
suburbs -> suburbs
reckless —> reckls

if there is e s remove that

removethe e s from the word

shouldering —> shoululdering
hath —> hath
outrun —> oututrunun

if there is u any letter double that

the next letter with the letter u should be
repeated as a pair for this transformation

B. Scene Reasoning (shown with sample I/0O examples of n=7 and random human description of n=2)

Original CLEVR (sample templates from full set)

What number of gray rubber cubes are there?

how many grey rubber cubes do you see

made of?

what material is the other object that is
the same color as the large rubber object

There is another thing that is the same
color as the large rubber thing; what is it

green metal sphere?

green ball

What if the gray sphere became a small

what if the grey ball morphed into a small

If you removed the red things, how many
spheres would be left?

count the spheres would be left after
removing the red things

C. Compositional Graphics (shown with random human description of n=3)

Simple shapes

a

O

a small triangle
smalltriangle

a medium square
one medium square

a medium eight gon
octogon

a big circle
just a circle

O
O

=

Complex objects

¥

a seven pointed star
a seven sided snowflake wi
long triangles as arms

a four stepped zigzag
four step ladder going from
top to bottom

a greek spiral with eight tu
a long line that curls in on
itself at right angles

Cc andr

0O

ith small seven gon

a five sided gon beside a

seven sided gon

O o

circle

a small five gon next to a

a small nine gon separated
by a big space from a small

four nested squares
four stacked squares

al

six small five gons in a row
six overlapped pentagons
going left to right

GRRARD

nine gon on left with small

circle on right not connected

s

and a medium triangle

a small triangle connected by a
big line to a medium triangle
a small triangle with a long line

> 4‘ /‘7 seven sided snowflake with a
> - & short space and a shortline
Q! \v and a short space and a

small triangle as arms
a seven sided snowflake with
seven triangles and line

D. Example initial
graphics primitives

fo=(A
(u v)

(

(x y z) (for x (A
(move z y v))))

fa=(N (x y z) (fo x (/ 2n
y) 1 2))

)

move pen in
parameterized loop

v

rotates and draws a
unitline

0.09 | small

A

(

f9=(f0 « ¢)

) (f5=(N (x y) (f&4 x x y)))

....and example program abstractions learned with language shown with learned high probability p(word | primitive)

H

f17=(N (x) (pen-up (A (y)
(f16 x vy))))

0.67 | separated
0.06 | space

lift pen between
consecutive shapes

)

f24=(N (x y) (f23 (A (z u)
(f21 y @ x u))))

bl

O
O D

a medium semicircle
(f3 (f9 @ x))

a big semicircle
(f9 (x (/ € 1) 5) x)

a small nine gon
(f5 9 x)

O
O

a medium seven gon
(f5 2 (f20 7 x))

0.07 | semicircle smooth curve 0.27 | gon rotational symmetry by 0.09 | snowflake rotate shapes
0.22 | small number of sides 0.09 | arms around axis
y asmallsemicircle QO asmallfivegon eight sided snowflake with a
(f19 (f9 @ x)) (f5 5 x) small seven gon as arms

(f24 7 8 x)

@
&

five sided snowflake with a short line
and a medium five gon as arms
(f24 5 (M (x) (get/set (A (y)
(f2 1 (f41 5 y)))x)) z)

Figure 2. (A, B, C) Example tasks from all three synthesis domains shown with synthetic and sample human language annotations.
Inductive synthesis domains are shown with a random subset (n=3) of the paired input/output examples. Human language annotations
are also randomly sampled (all domains were annotated by multiple people for a broader range of language.) (D) Representative
initial program primitives and library abstractions learned with LAPS for the graphics domain. Shown with example tasks solved with

synthesized programs containing the learned abstractions and high probability natural language learned from the joint model.

Leveraging Language to Learn Program Abstractions and Search Heuristics

String editing: structured string transformation problems
taken from (Andreas et al., 2017) (n=1000 train; n=500 test).
Tasks consist of input dictionary strings transformed using
randomly sampled regular expression transducer (30 I/O
examples per task). We choose this domain to demonstrate
LAPS on an important classic synthesis domain (Lau &
Weld, 1998). The dataset of Andreas et al. (2017) contains
human annotations; synthetic language annotations are gen-
erated over the ground-truth regexes using templates based
on the original human annotations. We initialize synthesiz-
ers with functional programming primitives (map, fold, cons,
car, cdr, length, index) and character constants (following
the simpler text editing domain in the baseline paper (Ellis
et al., 2021)). The neural search model encodes the I/O task
examples as character arrays with a bidirectional GRU.

Compositional graphics: inverse graphics problems
(n=200 train; n=111 test) where each task is specified by
an image and solved by synthesizing a program in LOGO
Turtle graphics (Abelson & DiSessa, 1986). This is inspired
by the graphics domain in (Ellis et al., 2021) but re-designed
to be more challenging (ground-truth programs are much
longer on average in the base programming language) and
explicitly compositional. Synthetic language annotations
are generated with high-level templates over the objects and
relations in each task; human annotations are sourced as
image descriptions from MTurk. We initialize synthesiz-
ers with the graphics primitives in (Ellis et al., 2021). The
neural model encodes image examples with a CNN.

Structured scene reasoning: inductive scene reasoning
tasks (n= 212 train; n=115 test) where each synthesis prob-
lem is specified by a structured input scene, and outputs can
be a number (how many red rubber things are there?), a
boolean value (are there more blue things than green?), or
another scene (what if all of the red things turned blue?).
This domain is modeled on CLEVR (Johnson et al., 2017a)
but designed to support inductive synthesis tasks specified
over the symbolic scene representations (an array of objects
represented as dictionaries of attributes) from the original
CLEVR task generator in Johnson et al. (2017a). We also
add new tasks that require generating or imagining latent
scenes (how many metal things would be left if all the blue
cylinders were removed?), which are not solvable in the
original high-level DSL hand-designed for Johnson et al.
(2017b) (and used in synthesis-based approaches like Yi
et al. (2018)). We include these to demonstrate a key fea-
ture of our approach: the ability to learn generalizable li-
braries from a basic but expressive set of primitives, rather
than restricting the program space pre-emptively with a
hand-designed language. We use synthetic language an-
notations from the original templates in (Johnson et al.,
2017a) (and templates written in the same style for the
extended tasks); human annotations are sourced from an-
notators shown the same tasks. We initialize synthesizers

with functional programming primitives similar to the string-
editing domain, with domain-specific query functions and
constants (get_color(x); get_shape(x); blue; cube). The neu-
ral model encodes the task examples as flattened arrays of
object attributes using a bidirectional GRU.

6.2. Results

On all three domains, we compare our model against the
baseline synthesizer (Table 1, DreamCoder, no language);
a multimodal baseline (Table 1, multimodal, no genera-
tive model) that trains a neural model directly on solved
training tasks (similar to neural synthesis models like Deep-
Coder (Devlin et al., 2017) but augmented to condition on
language); and ablated LAPS variants (Table 1; LAPS rows)
to evaluate the additive contributions of the individual learn-
ing components. We compare all models using a matched
search budget per task and number of training iterations
overall, determined using a hyperparameter search with the
baseline. The supplement contains full details (and code) to
replicate all experiments; and additional qualitative results.

We find that:

(1) LAPS searches more effectively during training, enabling
it to solve and learn from more training tasks than the base-
line synthesizer. Under the hierarchical model formulation,
search and abstraction are closely related: successfully solv-
ing tasks is the basis for abstraction learning.

Comparing the model learning trajectories (Fig. 3) on train-
ing tasks shows that the LAPS models consistently search
more effectively during training: at each iteration they solve
more tasks within a given time budget. Fig. 3 also highlights
that LAPS models improve training robustness in the distant
learning setting: as in the baseline paper (Ellis et al., 2021),
we find the baseline model learning to be highly variable
without a training curriculum (compare training curves from
Fig. 3 with different random seed replications; and the best
vs. mean performance, Table 1.) Comparing the LAPS
ablations also suggests that linguistic priors (like mutual
exclusivity) can indeed be practically useful here during
learning (Table 1, compare LAPS with ME and without).

What if we do use a curriculum? In the scene reasoning
domain (where previous approaches (e.g. Mao et al. 2019)
have argued for a curriculum), we also test a simple cur-
riculum by ordering tasks according to their natural lan-
guage token length (which can be evaluated without ground
truth programs). Table 1 shows that our model is still more
effective, and that non-curriculum performance is in fact
comparable to curriculum performance.

(2) LAPS abstracts more effectively during training, adding
in more generalizable library routines as it learns. The
variability across training replications in the baselines also
highlights a challenge for abstraction learning: not all shared

Leveraging Language to Learn Program Abstractions and Search Heuristics

Table 1. % held-out test-tasks solved. To compare robustness, we run random seed replications in the graphics domain for the synthetic
language dataset. Best reports the best model across replications; Mean averages across replications.

Language Model Strings (ngest = 500) Graphics (ngese = 111) Scenes (Nges = 115)

% Solved % Solved (Best) % Solved (Mean) % Solved (Curric.) % Solved (Mean.)
Synth train/test DreamCoder (no language) 334 49.55 42. 64 67.80 73.9
Synth train/test Multimodal (no generative translation model) 46.00 26.12 23.20 76.50 49.5
Synth train/test LAPS in neural search 52.20 92.79 52.93 95.6 88.1
Synth train/test LAPS + mutual exclusivity 57.00 86.49 80.18 96.5 82.3
Synth train/test LAPS + ME + language-program compression 54.60 98.19 81.98 95.6 95.9
Synth train/human test LAPS + ME + language-program compression 54.60 89.20 - 97.4 -
Human train/human test LAPS + ME + language-program compression 48.60 58.55 - 95.6 -
No language at test
No language on train/test Original DSL; Enumerative 0.06 0.00 27.8
No language on train/test DreamCoder (best library): Enumerative 27.2 41.44 53.6
No lang at test LAPS (best library): Enumerative 332 62.16 - 93.04 -
No lang at test LAPS (best library): example-only neural synthesis 524 91.0 - 95.6

DreamCoder (no language)

Multimodal (no generative)

LAPS in neural search

LAPS + mutual exclusivity

LAPS + ME + lang. compression

% Solved (0 — 100%)

—
————

Learning Iterations (0 —27)

Figure 3. Learning curves comparing baselines and LAPS models in Table 1, showing % heldout tasks solved on the graphics domain
over random training task orderings. (Mean results in Table 1 shows average test-time performance from the trained model replications.)

subroutines encountered in training generalize well to new
tasks. Adding poor abstractions can actually be detrimen-
tal: they increase the combinatorial search space. We find
that our approach produces higher-quality libraries after
training: Table 1 (no language at test time section) shows
that we consistently improve performance in a head-to-head
comparison using enumerative search from the library pri-
ors alone — in some domains, enumerative search with our
model’s library outperforms neurally guided search from
the baseline model. We also find the learned library is
effective for neurally-guided synthesis when no language
hints are available after training (Table 1, no language at
test, example-guided synthesis), showing that LAPS in-
corporates language to learn a more effective library overall,
which generalizes to the non-language setting. See supple-
ment for example learned abstractions from L.

(3) LAPS can use language during testing if it is avail-
able, though it doesn’t need to for competitive performance.
Clearly, language can provide a useful source of high-level
information if it is available for new tasks. Our approach
produces a neural synthesizer pre-trained to condition on
language where available. Results on all three domains show
that the model can use it to achieve additional performance
gains (Table 1, see language at test rows). We also find that
the models trained on synthetic annotations generalize effec-
tively to natural human language at test (Table 1, synth train,
human test), suggesting that even if human annotation is too
costly, in many cases hand-writing natural language tem-
plates to accompany a few ground-truth programs is likely
sufficient (and easier than hand designing a full DSL).

7. Conclusion

We presented Language for Abstraction and Program
Search (LAPS). LAPS builds on hierarchical Bayesian mod-
els of program learning: we offer a general framework for
introducing jointly generative models over programs and
language into learned synthesis. Going forwards, an impor-
tant avenue for future work will be exploring different con-
crete implementations of the base algorithm and translation
model which relates programs to language. A promising fu-
ture direction could leverage recent structured, neural joint
models that can learn the compositional units of language,
and incorporate pre-trained language representations (Joshi
& Schabes, 1997; Wiseman et al., 2018; Kim et al., 2019).

The hierarchical Bayesian framing also draws connections
to computational cognitive models which model human con-
ceptual representations and learning (Goodman et al., 2014;
Fodor, 1975; Rule, 2020) as inference over program-like
representations. Future hiuman experiments could explore
LAPS as a cognitive model, combining paradigms for study-
ing language learning with those for studying non-linguistic
abstraction and search (e.g. Smith et al. 2003; Hawkins et al.
2019; Lake et al. 2015; 2019; Tian et al. 2020).

Acknowledgements: Many thanks to M. Nye, J. Mu, A. Mar-
zoev, J. Fan, R. Hawkins, R. Levy, L. Schulz and our anonymous
reviewers for invaluable feedback. Supported by grants from the
Air Force Office of Scientific Research, the NSF under Grant No.
1918839 and NSF-funded Center for Brains, Minds, and Machines,
the MIT-IBM Watson Al Lab, Google, Microsoft and Amazon.

Leveraging Language to Learn Program Abstractions and Search Heuristics

References

Abelson, H. and DiSessa, A. A. Turtle geometry: The
computer as a medium for exploring mathematics. MIT
press, 1986.

Abolafia, D. A., Norouzi, M., Shen, J., Zhao, R., and Le,
Q. V. Neural program synthesis with priority queue train-
ing. arXiv preprint arXiv:1801.03526, 2018.

Andreas, J., Klein, D., and Levine, S. Learning with latent
language. arXiv preprint arXiv:1711.00482, 2017.

Appel, A. W, Beringer, L., Chlipala, A., Pierce, B. C., Shao,
Z., Weirich, S., and Zdancewic, S. Position paper: the
science of deep specification. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 375(2104):20160331, 2017.

Artzi, Y. and Zettlemoyer, L. Weakly supervised learning
of semantic parsers for mapping instructions to actions.

Transactions of the Association for Computational Lin-
guistics, 1:49-62, 2013.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. Deepcoder: Learning to write programs.
arXiv preprint arXiv:1611.01989, 2016.

Brown, P. F.,, Della Pietra, S. A., Della Pietra, V. J., and
Mercer, R. L. The mathematics of statistical machine

translation: Parameter estimation. Computational linguis-
tics, 19(2):263-311, 1993.

Chen, X., Liu, C., and Song, D. Tree-to-tree neural networks
for program translation. arXiv preprint arXiv:1802.03691,
2018.

Cropper, A. and Muggleton, S. H. Learning efficient logical
robot strategies involving composable objects. AAAI
Press/International Joint Conferences on Artificial Intelli-
gence, 2015.

Dechter, E., Malmaud, J., Adams, R. P., and Tenenbaum,
J. B. Bootstrap learning via modular concept discovery. In
Twenty-Third International Joint Conference on Artificial
Intelligence, 2013.

Delaware, B., Pit-Claudel, C., Gross, J., and Chlipala, A.
Fiat: Deductive synthesis of abstract data types in a proof
assistant. Acm Sigplan Notices, 50(1):689-700, 2015.

Desai, A., Gulwani, S., Hingorani, V., Jain, N., Karkare,
A., Marron, M., and Roy, S. Program synthesis using
natural language. In Proceedings of the 38th International
Conference on Software Engineering, pp. 345-356, 2016.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. Robustfill: Neural program learning
under noisy i/0. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 990—
998. JMLR. org, 2017.

Dumanci¢, S. and Cropper, A. Inventing abstractions by
refactoring knowledge.

Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum,
J. B. Learning to infer graphics programs from hand-
drawn images. arXiv preprint arXiv:1707.09627, 2017.

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama, A.,
and Tenenbaum, J. Learning libraries of subroutines
for neurally—guided bayesian program induction. In Ad-
vances in Neural Information Processing Systems, pp.
7805-7815, 2018.

Ellis, K., Nye, M., Pu, Y., Sosa, F., Tenenbaum, J., and Solar-
Lezama, A. Write, execute, assess: Program synthesis
with a repl. arXiv preprint arXiv:1906.04604, 2019.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake-sleep bayesian program
learning. ArXiv preprint, 2020.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. Dreamcoder: Bootstrapping inductive program-
synthesis with wake-sleep library learning. PLDI 2021,
2021.

Fikes, R. E. and Nilsson, N. J. Strips: A new approach to
the application of theorem proving to problem solving.
Artificial intelligence, 2(3-4):189-208, 1971.

Fodor, J. A. The language of thought, volume 5. Harvard
university press, 1975.

Frank, M. C., Goodman, N. D., and Tenenbaum, J. B. Us-
ing speakers’ referential intentions to model early cross-
situational word learning. Psychological science, 20(5):
578-585, 2009.

Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J.,
Ranzato, M., and Mikolov, T. Devise: A deep visual-
semantic embedding model. In Advances in neural infor-
mation processing systems, pp. 2121-2129, 2013.

Gal, Y. and Blunsom, P. A systematic bayesian treatment
of the ibm alignment models. In Proceedings of the 2013
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pp. 969-977, 2013.

Leveraging Language to Learn Program Abstractions and Search Heuristics

Gandhi, K. and Lake, B. M. Mutual exclusivity as a
challenge for deep neural networks. arXiv preprint
arXiv:1906.10197, 2019.

Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S. A., and
Vinyals, O. Synthesizing programs for images using rein-
forced adversarial learning. In International Conference
on Machine Learning, pp. 1666—-1675. PMLR, 2018.

Goodman, N. D. and Frank, M. C. Pragmatic language inter-
pretation as probabilistic inference. Trends in cognitive
sciences, 20(11):818-829, 2016.

Goodman, N. D., Tenenbaum, J. B., and Gerstenberg, T.
Concepts in a probabilistic language of thought. Tech-
nical report, Center for Brains, Minds and Machines
(CBMM), 2014.

Goyal, P, Niekum, S., and Mooney, R. J. PixI2r: Guiding
reinforcement learning using natural language by map-
ping pixels to rewards. arXiv preprint arXiv:2007.15543,
2020.

Grice, P. Studies in the Way of Words. Harvard University
Press, 1989.

Gulwani, S., Herndndez-Orallo, J., Kitzelmann, E., Muggle-
ton, S. H., Schmid, U., and Zorn, B. Inductive program-
ming meets the real world. Communications of the ACM,
58(11):90-99, 2015.

Gulwani, S., Polozov, O., Singh, R., et al. Program synthesis.
Foundations and Trends® in Programming Languages, 4
(1-2):1-119, 2017.

Hawkins, R. X., Goodman, N. D., and Goldstone, R. L. The
emergence of social norms and conventions. Trends in
cognitive sciences, 23(2):158-169, 2019.

Jia, R. and Liang, P. Data recombination for neural semantic
parsing. arXiv preprint arXiv:1606.03622, 2016.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L.,
Lawrence Zitnick, C., and Girshick, R. Clevr: A diag-
nostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
2901-2910, 2017a.

Johnson, J., Hariharan, B., Van Der Maaten, L., Hoffman,
J., Fei-Fei, L., Lawrence Zitnick, C., and Girshick, R.
Inferring and executing programs for visual reasoning.
In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2989-2998, 2017b.

Johnson, M. Pcfg models of linguistic tree representations.
Computational Linguistics, 24(4):613-632, 1998.

Joshi, A. K. and Schabes, Y. Tree-adjoining grammars. In
Handbook of formal languages, pp. 69—123. Springer,
1997.

Kim, Y., Dyer, C., and Rush, A. M. Compound probabilistic
context-free grammars for grammar induction. arXiv
preprint arXiv:1906.10225, 2019.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332-1338, 2015.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and brain sciences, 40, 2017.

Lake, B. M., Linzen, T., and Baroni, M. Human few-shot
learning of compositional instructions. arXiv preprint
arXiv:1901.04587, 2019.

Lau, T. A. and Weld, D. S. Programming by demonstration:
An inductive learning formulation. In Proceedings of the
4th international conference on Intelligent user interfaces,

pp. 145-152, 1998.

Lazaro-Gredilla, M., Lin, D., Guntupalli, J. S., and George,
D. Beyond imitation: Zero-shot task transfer on robots
by learning concepts as cognitive programs. Science
Robotics, 4(26), 2019.

Liang, P. Learning executable semantic parsers for natural
language understanding. Communications of the ACM,
59(9):68-76, 2016.

Liang, P, Jordan, M. I., and Klein, D. Learning programs:
A hierarchical bayesian approach. In Proceedings of
the 27th International Conference on Machine Learning
(ICML-10), pp. 639-646, 2010.

Liang, W., Zou, J., and Yu, Z. Alice: Active learning with
contrastive natural language explanations. arXiv preprint
arXiv:2009.10259, 2020.

Luketina, J., Nardelli, N., Farquhar, G., Foerster, J., Andreas,
J., Grefenstette, E., Whiteson, S., and Rocktischel, T. A
survey of reinforcement learning informed by natural
language. arXiv preprint arXiv:1906.03926, 2019.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J.
The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. arXiv
preprint arXiv:1904.12584, 2019.

Markman, E. M. and Wachtel, G. F. Children’s use of mutual
exclusivity to constrain the meanings of words. Cognitive
psychology, 20(2):121-157, 1988.

Leveraging Language to Learn Program Abstractions and Search Heuristics

Mu, J., Liang, P, and Goodman, N. Shaping visual represen-
tations with language for few-shot classification. arXiv
preprint arXiv:1911.02683, 2019.

Nye, M., Hewitt, L., Tenenbaum, J., and Solar-Lezama,
A. Learning to infer program sketches. arXiv preprint
arXiv:1902.06349, 2019.

Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D.,
and Kohli, P. Neuro-symbolic program synthesis. arXiv
preprint arXiv:1611.01855, 2016.

Polosukhin, I. and Skidanov, A. Neural program search:
Solving data processing tasks from description and exam-
ples. 2018.

Polozov, O. and Gulwani, S. Flashmeta: a framework
for inductive program synthesis. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations, pp. 107-126, 2015.

Rule, J. S. The child as hacker: building more human-like
models of learning. PhD thesis, Massachusetts Institute
of Technology, 2020.

Shin, E. C., Allamanis, M., Brockschmidt, M., and Polo-
zov, A. Program synthesis and semantic parsing with
learned code idioms. In Advances in Neural Information
Processing Systems, pp. 10824-10834, 2019.

Si, X., Yang, Y., Dai, H., Naik, M., and Song, L. Learning
a meta-solver for syntax-guided program synthesis. In
International Conference on Learning Representations,
2019.

Silver, T., Allen, K. R., Lew, A. K., Kaelbling, L. P., and
Tenenbaum, J. Few-shot bayesian imitation learning with
logical program policies. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pp. 10251—
10258, 2020.

Smith, K., Brighton, H., and Kirby, S. Complex systems
in language evolution: the cultural emergence of compo-
sitional structure. Advances in Complex Systems, 6(04):
537-558, 2003.

Srivastava, S., Labutov, 1., and Mitchell, T. Joint concept
learning and semantic parsing from natural language ex-
planations. In Proceedings of the 2017 conference on
empirical methods in natural language processing, pp.
1527-1536, 2017.

Tian, L. Y., Ellis, K., Kryven, M., and Tenenbaum, J. B.
Learning abstract structure for drawing by efficient motor
program induction. arXiv preprint arXiv:2008.03519,
2020.

Wiseman, S., Shieber, S. M., and Rush, A. M. Learn-
ing neural templates for text generation. arXiv preprint
arXiv:1808.10122, 2018.

Wong, Y. W. and Mooney, R. Learning synchronous gram-
mars for semantic parsing with lambda calculus. In Pro-
ceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pp. 960-967, 2007.

Ye, X., Chen, Q., Dillig, I., and Durrett, G. Benchmark-
ing multimodal regex synthesis with complex structures.
arXiv preprint arXiv:2005.00663, 2020a.

Ye, X., Chen, Q., Dillig, I., and Durrett, G. Optimal neural
program synthesis from multimodal specifications. arXiv
preprint arXiv:2010.01678, 2020b.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenen-
baum, J. Neural-symbolic vqa: Disentangling reasoning
from vision and language understanding. In Advances in
Neural Information Processing Systems, pp. 1031-1042,
2018.

Zhang, Y., Pasupat, P., and Liang, P. Macro grammars and
holistic triggering for efficient semantic parsing. arXiv
preprint arXiv:1707.07806, 2017.

