
Leveraging Sparse Linear Layers for Debuggable Deep Networks

A. SAGA-based solver for generalized linear models
In this section, we describe in further detail our solver for learning regularized GLMs in relation to existing work. Note that
many of the components underlying our solver have been separately studied in prior work. However, we are the first to
effectively combine them in a way that allows for GPU-accelerated fitting of GLMs at ImageNet-scale. The key algorithmic
primitives we leverage to this end are variance reduced optimization methods and path algorithms for GLMs.

Specifically, our solver uses a mini-batch derivative of the SAGA algorithm (Gazagnadou et al., 2019), which belongs
to a class of a variance reduced proximal gradient methods. These approaches have several benefits: a) they are easily
parallelizable via GPU, b) they enjoy faster convergence rates than stochastic gradient methods, and c) they require minimal
tuning and can converge with a fixed learning rate.

Algorithm 1 provides a step-by-step description of our solver. Here, the proximal operator for elastic net regularization is

Proxλ1,λ2
(β) =


β−λ1

1+λ2
if β > λ1

β+λ1

1+λ2
if β < λ1

0 otherwise
(4)

Table for storing gradients Note that the SAGA algorithm requires saving the gradients of the model for each individual
example. For ImageNet-sized problems, this requires a prohibitive amount of memory, as both the number of examples (>1
million) and the size of the gradient (of the linear model) are large.

It turns out that for linear models with k outputs, it is actually possible to store all of the necessary gradient information
for a single example in a vector of size k—as demonstrated by Defazio et al. (2014). The key idea behind this approach is
that rather than storing the full gradient step (xTi β + β0 − yi)xi, we can instead just store the scalar ai = (xTi β + β0 − yi)
per output (i.e., a vector of length k in the case of multiple outputs). Thus, for a dataset with n examples, this reduces the
memory requirements of the gradient table to O(nk). For ImageNet, we find that the entire table easily fits within GPU
memory limits.

There is one caveat here: in order to use this memory trick, it is necessary to incorporate the `2 regularization from the
elastic net into the proximal operator. This is precisely why we use the proximal operator of the elastic net, rather than of
the `1 regularization. Unfortunately, this means that the smooth part of the objective (i.e. the part not used in the proximal
operator) is no longer guaranteed to be strongly convex, and so the theoretical analysis of Gazagnadou et al. (2019) no longer
strictly applies. Nonetheless, we find that these variance reduced methods can still provide strong practical convergence
rates in this setting without requiring much tuning of batch sizes or learning rates.

Stopping criterion We implement two simple stopping criteria, which both take in a tolerance level εtol. The first is a
gradient-based stopping criteria, which terminates when:√

‖βi+1 − βi‖22 + ‖β
i+1
0 − βi0‖22 ≤ εtol

Intuitively, this stops when the change in the estimated coefficients is small. Our second stopping criteria is more conservative
and uses a longer search horizon, and stops when the training loss has not improved by more than εtol for more than T
epochs for some T , which we call the lookbehind stopping criteria.

In practice, we find that the gradient-based stopping criteria with εtol = 10−4 is sufficient for most cases (i.e. the solver has
converged sufficiently such that the number of non-zero entries will no longer change). For significantly larger problems
such as ImageNet, where individual batch sizes can have much larger variability in progressing the training objective, we
find that the lookbehind stopping criteria is sufficient with εtol = 10−4 and T = 5.

Relation of the solver to existing work We now discuss how our solver borrows and differs from existing work. First,
note that the original SAGA algorithm (Defazio et al., 2014) analyzes the regularized form but updates its gradient estimate
with one sample at a time, which is not amenable to GPU parallelism. On the other hand, Gazagnadou et al. (2019) analyze
a minibatch variant of SAGA but without regularization. In our solver, we use a straightforward adaptation of minibatch
SAGA to its regularized equivalent by including a proximal step for the elastic net regularization after the gradient step.

To compute the regularization paths, we closely follow the framework of Friedman et al. (2010). Specifically, we compute
solutions for a decreasing sequence of regularization, using the solution of the previous regularization as a warm start for

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Algorithm 1 GPU-accelerated solver for the elastic net for a step size γ and regularization parameters λ, α

1: Initialize table of scalars a′i = 0 for i ∈ [n]
2: Initialize average gradient of table gavg = 0 and g0avg = 0
3: for minibatch B ⊂ [n] do
4: for i ∈ B do
5: ai = xTi β + β0 − yi
6: gi = ai · xi // calculate new gradient information
7: g′i = a′i · xi // calculate stored gradient information
8: end for
9: g = 1

|B|
∑
i∈B gi

10: g′ = 1
|B|
∑
i∈B g

′
i

11: g0 = 1
|B|
∑
i∈B ai

12: g′0 = 1
|B|
∑
i∈B a

′
i

13: β = β − γ(g − g′ + gavg)
14: β0 = β0 − γ(g0 − g′0 + g0avg)
15: β = Proxγλα,γλ(1−α)(β)
16: for i ∈ B do
17: a′i = ai // update table
18: gavg = gavg +

|B|
n (g − g′) // update average

19: g0avg = g0avg +
|B|
n (g0 − g′0)

20: end for
21: end for

the next. The maximum regularization value which fits only the bias term is calculated as the fixed point of the coordinate
descent iteration as

λmax = max
j

1

Nα

∣∣∣∣∣
n∑
i=1

xijyi

∣∣∣∣∣ (5)

and scheduled down to λmin = ελmax over a sequence of K values on a log scale, as done by Friedman et al. (2010).
Typical suggested values are to take K = 100 and ε = 0.001, which are what we use in all of our experiments. For
extensions to logistic and multinomial regression, we refer the reader to Friedman et al. (2010), and note that our approach
is the same but substituting our SAGA-based solver in liue of the coordinate descent-based solver.

A.1. Timing Experiments

In this section, we discuss how the runtime of our solver scales with the problem size. To be able to compare our solver with
existing approaches, the experiments performed here are at a smaller scale than those in the main body of the paper.

Problem setting & hyperparameters. The problem we examine is that of fitting a linear decision layer for the CIFAR-10
dataset using the deep feature representation of an ImageNet-trained ResNet-50 (2048-dimensional features). We then
vary the number of training examples (from 1k to 50k) and fit an elastic net regularized GLM using various methods. We
compare glmnet (state-of-the-art, coordinate descent-based solver) on a 9th generation Intel Core i7 with 6 cores clocked
at 2.6Ghz, and our approach glm-saga using a GeForce GTX 1080ti. We note that in these small-scale experiments, the
graphics card remains at around 10-20% utilization, indicating that the problem size is too small to fully utilize the GPU.

We fix α = 0.99, ε = 10−4, set aside 10% of the training data for validation, and calculate regularization paths for k = 100
different values, which are the defaults for glmnet. For our approach, we additionally use a mini-batch size of 512, a
learning rate of 0.1, and a tolerance level of 10−4 for the gradient-based stopping criteria.

Improvements in scalability As expected, on smaller problem instances with a couple thousand examples, glmnet is
faster than our solver—cf. Table 36. This is largely due to the increased base running time of our solver—a consequence of
gradient based methods requiring some time to converge. However, as the problem size grows, the runtime of glmnet
increases rapidly, and exceeds the running time of glm-saga at 3,000 datapoints. For example, it takes almost 40 minutes

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Table 36: Runtime in minutes for glmnet and glm-saga for fitting a sparse decision layer on the CIFAR-10 dataset
using deep representations (2048D) for a pre-trained ResNet-50. Here, we assess how the runtime of different solvers scales
as a function of training data points.

Number of examples
Solver 1k 2k 3k 4k 5k 50k

glmnet 2 7 25 39 58 776
glm-saga 9 13 17 19 22 33

to fit 4,000 data points with glmnet, an increase of 20x the running time for 4x the data relative to the running time for
1,000 data points. In contrast, our solver only needs 19 minutes to fit 4,000 datapoints, an increase of 2x the running time for
4x the data. Consequently, while glmnet takes a considerable amount of time to fit the full CIFAR10 problem size (50,000
datapoints)—nearly 13 hours—our solver can do the same in only 33 minutes. Notably, our solver can fit the regularization
paths of the decision layer for the full ImageNet dataset (1 million examples with 2048 features) in approximately 6 hours.

Backpropagation libraries One more alternative to fitting linear models at scale is to use a standard autodifferentiation
library such as PyTorch or Tensorflow. However, typical optimizers used in these libraries do not handle non-smooth
regularizers well (i.e., the `1 penalty of the elastic net). In practice, these types of approaches must gradually schedule
learning rates down to zero in order to converge, and take too long to compute regularization paths. For example, the
fixed-feature transfer experiments from Salman et al. (2020) takes approximately 4 hours to fit the same CIFAR10 timing
experiment for a single regularization value. In contrast, the SAGA-based optimizers enables a flexible range of learning
rates that can converge rapidly without needing to tune or decay the learning rate over time.

A.2. Elastic net, `1, and `2 regularization

The elastic net is known to combine the benefits of both `1 and `2 regularization for linear models. The `1 regularization,
often seen in the LASSO, primarily provides sparsity in the solution. The `2 regularization, often seen as ridge regression,
brings improved performance, a unique solution via strong convexity, and a grouping effect of similar neurons. Due to this
last property of `2 regularization, highly correlated features will become non-zero at the same time over the regularization
path. The elastic net combines all of these strengths, and we refer the reader to Tibshirani & Wasserman (2017) for further
discussion on the interaction between elastic net, `1, and `2.

A.3. Feature ordering

In the main body of the paper, we utilized regularization paths obtained via elastic net to obtain a sparse decision layer over
deep features. We now discuss an additional use case of regularization paths—as a means to assess relative (deep) feature
importance within the decision layer of a standard deep network. Such an ordering could, for instance, provide an alternative
criteria for feature selection in "feature-highlighting" explanations (Barocas et al., 2020).

The underlying mechanism that allows us to do this is the `1 regularization in the elastic net, which imposes sparsity
properties on the coefficients of the resulting linear model (Tibshirani, 1994). Specifically, the coefficients for each feature
become non-zero at discrete points in the regularization path, as λ tends to zero. Informally, one can view features that are
assigned non-zero coefficients earlier as being more useful from an accuracy standpoint, given the sparsity regularization.

Consequently, the order in which (deep) features are incorporated into the sparse decision layers, within the regularization
path, may shed light on their relative utility within the standard deep network. In Figures 12- 15, we illustrate regularization
paths along with the derived feature ordering for standard and robust ResNet-50 classifiers trained on ImageNet and
Places-10 datasets. For all the models, it appears that features that are incorporated earlier into the regularization path (for a
class) are actually more semantically aligned with the corresponding object category.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

0 20 40 60 80 100
Regularization index

0.2

0.0

0.2

0.4

0.6

Lin
ea

r c
oe

ffi
cie

nt
 o

f f
ea

tu
re

T=2/100
 W=2.02e-01

T=48/100
 W=5.63e-03

T=81/100
 W=-2.20e-03

T=100/100
 W=2.95e-02

T=100/100
 W=-1.24e-02

T=100/100
 W=1.29e-02

Class: "oscilloscope, scope, cathode-ray oscilloscope, CRO"

0 20 40 60 80 100
Regularization index

0.4

0.2

0.0

0.2

0.4

0.6

Lin
ea

r c
oe

ffi
cie

nt
 o

f f
ea

tu
re

T=2/100
 W=1.31e-01

T=36/100
 W=3.08e-03

T=83/100
 W=-2.07e-05

T=100/100
 W=5.00e-02

T=100/100
 W=2.30e-02

T=100/100
 W=4.02e-02

Class: "poncho"

Figure 12: Sample regularization paths (left) and feature ordering (right) for sparse decision layers trained on deep features
of a ResNet-50 classifier for two ImageNet classes. Regularization paths highlight when different deep features are
incorporated into the decision layer as the sparsity regularization is reduced. Sample features (as feature visualizations and
LIME superpixels) included into the decision layer at increasing regularization indices (T) are shown on the right.

0 20 40 60 80 100
Regularization index

0.2

0.0

0.2

0.4

0.6

0.8

Lin
ea

r c
oe

ffi
cie

nt
 o

f f
ea

tu
re

T=6/100
 W=1.47e-02

T=28/100
 W=2.80e-03

T=88/100
 W=-6.17e-04

T=100/100
 W=2.52e-03

T=100/100
 W=-2.24e-04

T=100/100
 W=6.43e-03

Class: "flamingo"

0 20 40 60 80 100
Regularization index

0.2

0.0

0.2

0.4

0.6

0.8

Lin
ea

r c
oe

ffi
cie

nt
 o

f f
ea

tu
re

T=10/100
 W=1.23e-01

T=37/100
 W=8.14e-03

T=59/100
 W=1.39e-05

T=85/100
 W=-3.88e-05

T=97/100
 W=6.07e-04

T=100/100
 W=1.25e-01

Class: "stole"

Figure 13: Sample regularization paths (left) and feature ordering (right) for sparse decision layers trained on deep features
of a robust ResNet-50 classifier for two ImageNet classes. Regularization paths highlight when different deep features are
incorporated into the decision layer as the sparsity regularization is reduced. Sample features (as feature visualizations and
LIME superpixels) included into the decision layer at increasing regularization indices (T) are shown on the right.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

0 20 40 60 80 100
Regularization index

0.0

0.2

0.4

0.6

0.8

1.0

Lin
ea

r c
oe

ffi
cie

nt
 o

f f
ea

tu
re T=0/100

 W=4.89e-02
T=34/100

 W=3.30e-03
T=64/100

 W=8.04e-05
T=83/100

 W=-2.50e-05
T=93/100

 W=-1.33e-05
T=100/100

 W=1.48e-04

Class: "laundromat"

0 20 40 60 80 100
Regularization index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lin
ea

r c
oe

ffi
cie

nt
 o

f f
ea

tu
re T=4/100

 W=6.21e-02
T=29/100

 W=1.24e-03
T=64/100

 W=1.62e-05
T=82/100

 W=2.40e-05
T=94/100

 W=-1.12e-05
T=100/100

 W=-1.39e-04

Class: "bridge"

Figure 14: Sample regularization paths (left) and feature ordering (right) for sparse decision layers trained on deep features
of a ResNet-50 classifier for two Places-10 classes. Regularization paths highlight when different deep features are
incorporated into the decision layer as the sparsity regularization is reduced. Sample features (as feature visualizations and
LIME superpixels) included into the decision layer at increasing regularization indices (T) are shown on the right.

0 20 40 60 80 100
Regularization index

0.0

0.2

0.4

0.6

0.8

1.0

Lin
ea

r c
oe

ffi
cie

nt
 o

f f
ea

tu
re T=1/100

 W=1.46e-02
T=23/100

 W=4.83e-04
T=66/100

 W=2.11e-05
T=84/100

 W=-1.48e-05
T=100/100

 W=5.67e-04
T=100/100

 W=-8.64e-04

Class: "airport_terminal"

0 20 40 60 80 100
Regularization index

0.4

0.2

0.0

0.2

0.4

0.6

Lin
ea

r c
oe

ffi
cie

nt
 o

f f
ea

tu
re

T=3/100
 W=6.19e-02

T=21/100
 W=4.84e-03

T=61/100
 W=2.86e-04

T=81/100
 W=-5.05e-05

T=93/100
 W=1.05e-05

T=100/100
 W=8.84e-05

Class: "boat_deck"

Figure 15: Sample regularization paths (left) and feature ordering (right) for sparse decision layers trained on deep features
of a robust ResNet-50 classifier for two Places-10 classes. Regularization paths highlight when different deep features are
incorporated into the decision layer as the sparsity regularization is reduced. Sample features (as feature visualizations and
LIME superpixels) included into the decision layer at increasing regularization indices (T) are shown on the right.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

B. Feature interpretations
We now discuss in depth our procedure for generating feature interpretations for deep features in the vision and language
settings.

B.1. Feature visualization

Feature visualization is a popular approach to interpret individual neurons within a deep network. Here, the objective is to
synthesize inputs (via optimization in pixel space) that highly activate the neuron of interest. Unfortunately, for standard
networks trained via empirical risk minimization, it is well-known that vanilla feature visualization—using just gradient
descent in input space—fails to produce semantically-meaningful interpretations. In fact, these visualizations frequently
suffer from artifacts and high frequency patterns (Olah et al., 2017). One cause for this could be the reliance of standard
models on input features that are imperceptible or unintuitive, as has been noted in recent studies (Ilyas et al., 2019).

To mitigate this challenge, there has been a long line of work on defining modified optimization objectives to produce more
meaningful feature visualizations (Olah et al., 2017). In this work, we use the Tensorflow-based Lucid library6 to produce
feature visualizations for standard models. Therein, the optimization objective contains additional regularizations to penalize
high-frequency changes in pixel space and to encourage transformation robustness. Further, gradient descent is performed in
the Fourier basis to further discourage high-frequency input patterns. We defer the reader to Olah et al. (2017) for a more
complete presentation.

In contrast, a different line of work (Tsipras et al., 2019; Engstrom et al., 2019) has shown that robust (adversarially-trained)
models tend to have better feature representations than their standard counterparts. Thus, for robust models, gradient descent
in pixel space is already sufficient to find semantically-meaningful feature visualizations.

B.2. LIME

Image superpixels. Traditionally, LIME is used to obtain instance-specific explanations—i.e., to identify the superpixels
in a given test image that are most responsible for the model’s prediction. However, in our setting, we would like to obtain a
global understanding of deep features, independent of specific test examples. Thus, we use the following two step-procedure
to obtain LIME-based feature interpretations:

1. Rank test set images based on how strongly they activate the feature of interest. Then select the top-k (or conversely
bottom-k) images as the most prototypical examples for positive (negative) activation of the feature.

2. Run LIME on each of these examples to identify relevant superpixels. At a high level, this involves performing linear
regression to map image superpixels to the (normalized) activation of the deep feature (rather than the probability of a
specific class as is typical).

Due to space constraints, we use k = 1 in all our figures. However, in our analysis, we found the superpixels identified with
k = 1 to be representative of those obtained with higher values.

Word clouds for language models For language models, off-the-shelf neuron interpretability tools are somewhat more
limited than their vision counterparts. Of the tools listed above, only LIME is used in the language domain to produce
sentence-specific explanations. Similar to our methodology for vision models, we apply LIME to a given deep feature
representation rather than the output neuron. However, rather than selecting prototypical images, we instead aggregate
LIME explanations over the entire validation set.

Specifically, for a given feature, we average the LIME weighting for each word over all of the sentences that the word
appears in. This allows us to identify words that strongly activate/deactivate the given feature globally over the entire
validation set, which we then visualize using word clouds. In practice, since a word cloud has limited space, we provide the
top 30 most highly weighted words to the word cloud generator. The exact procedure is shown in Algorithm 2, and we use
the word cloud generator from https://github.com/amueller/word_cloud.

6https://github.com/tensorflow/lucid

https://github.com/amueller/word_cloud
https://github.com/tensorflow/lucid

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Algorithm 2 Word cloud feature visualization for language models for a vocabulary V , a corpus wij for i, j ∈ [m]× [n] of
m sentences with n words

1: for i = 1 . . .m do
2: βi = LIME(wi) // generate LIME explanation for each sentence
3: end for
4: for w ∈ V do
5: Kw =

∑
ij:w=wij

1 // count number of occurances of word

6: β̂w = 1
Kw

∑
ij:w=wij

βij // calculate average LIME explanation of word
7: end for
8: return Wordcloud(β, V) // generate word cloud for vocabulary V weighted by β

C. Datasets and Models
C.1. Datasets

We perform our experiments on the following widely-used vision and language datasets.

• ImageNet-1k (Deng et al., 2009; Russakovsky et al., 2015).

• Places-10: A subset of Places365 (Zhou et al., 2017) containing the classes “airport terminal”, “boat deck”, “bridge”,
“butcher’s shop”, “church-outdoor”, “hotel room”, “laundromat”, “river”, “ski slope” and “volcano”.

• Stanford Sentiment Treebank (SST) (Socher et al., 2013) with labels for “positive” and “negative” sentiment.

• Toxic Comments (Wulczyn et al., 2017) with labels for “toxic”, “severe toxic”, “obscene”, “’threat”, “insult”, and
‘identity hate”.

Balancing the comment classification task. The toxic comments classification task has a highly unbalanced test set, and
is largely skewed towards non-toxic comments. Consequently, the baseline accuracy for simply predicting the non-toxic
label is often upwards of 90% on the unbalanced test set. To get a more interpretable and usable performance metric,
we instead randomly subsample the test set to be balanced with 50% each of toxic and non-toxic comments from the
corresponding toxicity category. Thus, the baseline accuracy for random chance for toxic comment classification in our
experiments is 50%.

C.2. Models

We consider ResNet-50 (He et al., 2016) classifiers and BERT (Devlin et al., 2018) models for vision and language tasks
respectively. In the vision setting, we consider both standard and robust models (Madry et al., 2018).

Vision. All the models are trained for 90 epochs, weight decay 1e-4 and momentum 0.9. We used a batch size of 512 for
ImageNet and 128 for Places-10. The initial learning rate is 0.1 and is dropped by a factor of 10 every 30 epochs. The robust
models were obtained using adversarial training with a `2 PGD adversary (Madry et al., 2018) with ε = 3, 3 attack steps
and attack step size of 2×ε

3 .

Language. The language models are all pretrained and available from the HuggingFace library, and use the standard BERT
base architecture. Specifically, the sentiment classification model is from https://huggingface.co/barissayil/
bert-sentiment-analysis-sst and the toxic comment models (both Toxic-BERT and Debiased-BERT) come
from https://huggingface.co/unitary/toxic-bert (Hanu & Unitary team, 2020).7

7The authors informed us that the models stored on HuggingFace do not properly output multi-label outputs, detailed at https:
//github.com/unitaryai/detoxify/issues/15. However, we only used these models to produce deep representations. We
then fed these representations into the sparse linear layers from our framework, and so this issue did not affect our experiments.

https://huggingface.co/barissayil/bert-sentiment-analysis-sst
https://huggingface.co/barissayil/bert-sentiment-analysis-sst
https://huggingface.co/unitary/toxic-bert
https://github.com/unitaryai/detoxify/issues/15
https://github.com/unitaryai/detoxify/issues/15

Leveraging Sparse Linear Layers for Debuggable Deep Networks

D. Evaluating sparse decision layers
D.1. Trade-offs for all datasets

In Figure 16, we present an extended version of Figure 4a—including all the tasks and models we consider in both the vision
and language setting. Each point on the curve corresponds to single linear classifier from the regularization path in Equation
(3). Note that we include the (same) SST curve in both language plots for the Toxic and Debiased BERT models.

10 5 10 4 10 3 10 2 10 1 100

1 - Sparsity

0

20

40

60

80

Te
st

 a
cc

ur
ac

y
(%

)

ImageNet-1k (std)
ImageNet-1k (robust)
ImageNet-1k (wide)
Places-10 (std)
Places-10 (robust)

(a)

10 3 10 2 10 1

1 - Sparsity

50

60

70

80

90

Te
st

 a
cc

ur
ac

y
(%

)

SST
Toxic (Toxic-BERT)
Severe toxic (Toxic-BERT)
Obscene (Toxic-BERT)
Threat (Toxic-BERT)
Insult (Toxic-BERT)
Identity hate (Toxic-BERT)

(b)

10 3 10 2 10 1

1 - Sparsity

50

60

70

80

90

Te
st

 a
cc

ur
ac

y
(%

)

SST
Toxic (Debiased-BERT)
Severe toxic (Debiased-BERT)
Obscene (Debiased-BERT)
Threat (Debiased-BERT)
Insult (Debiased-BERT)
Identity hate (Debiased-BERT)

(c)

Figure 16: Sparsity vs. accuracy trade-offs of models with sparse decision layers for (a) vision and (b,c) language tasks.

D.1.1. SELECTING A SINGLE SPARSE MODEL

As discussed in Section 2.1, the elastic net yields a sequence of linear models—with varying accuracy and sparsity—also
known as the regularization path. In practice, performance of these models on a hold-out validation set can be used to guide
model selection based on application-specific criteria. In our experiments, we set aside 10% of the train set for this purpose.

Our model selection thresholds. For both vision and NLP tasks, we use the validation set to identify the sparsest decision
layer, whose accuracy is no more than 5% lower on the validation set, compared to the best performing decision layer. As
discussed in the paper, these thresholds are meant to be illustrative and can be varied depending on the specific application.
We now visualize the per-class distribution of deep features for the sparse decision layers selected in Table 4b. (We omit the
NLP tasks as they entail only two classes.)

0 200 400 600 800 1000
Deep features/class

0

100

200

300

400

500

Di
st

rib
ut

io
n

ov
er

 c
la

ss
es

ImageNet (std)
ImageNet (robust)

0 5 10 15 20 25 30
Deep features/class

0

1

2

3

4

5

6

Di
st

rib
ut

io
n

ov
er

 c
la

ss
es

Places-10 (std)
Places-10 (robust)

Figure 17: Distribution of the number of deep features used per class by sparse decision layers of vision models. Note that a
standard (dense) decision layer uses all 2048 deep features to predict every class.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Table 37: Extended version of Table 4b: Comparison of the accuracy of dense/sparse decision layers when they are
constrained to utilize only the top-k deep features (based on weight magnitude). We also show overall model accuracy, and
the accuracy gained by using the remaining deep features.

Dataset/Model Dense Sparse

k All Top-k Rest All Top-k Rest

ImageNet (std)
10

74.03 58.46 55.22 72.24 69.78 10.84
ImageNet (wide, std) 77.07 72.42 48.75 73.48 73.45 0.91
ImageNet (robust) 61.23 28.99 34.65 59.99 45.82 19.83

Places-10 (std) 10 83.30 83.60 81.20 77.40 77.40 10.00
Places-10 (robust) 80.20 76.10 76.40 77.80 76.60 40.20

SST 5 91.51 53.21 91.17 90.71 90.48 50.92

Toxic-BERT (toxic)

5

83.33 55.35 57.87 82.47 82.33 50.00
Toxic-BERT (severe toxic) 71.53 50.00 50.14 67.57 50.00 50.00
Toxic-BERT (obscene) 80.41 50.03 50.00 77.32 72.39 50.00
Toxic-BERT (threat) 77.01 50.00 50.00 76.30 74.17 50.00
Toxic-BERT (insult) 72.72 50.00 50.00 77.14 75.80 50.00
Toxic-BERT (identity hate) 79.85 57.87 50.00 74.93 71.49 50.00

Debiased-BERT (toxic)

5

91.61 50.00 83.26 87.59 78.58 50.00
Debiased-BERT (severe toxic) 63.08 50.00 50.00 55.86 53.81 50.00
Debiased-BERT (obscene) 85.36 50.00 58.36 81.50 81.17 50.00
Debiased-BERT (threat) 77.49 50.00 50.00 68.96 50.00 50.00
Debiased-BERT (insult) 85.63 50.00 59.95 79.28 71.48 50.00
Debiased-BERT (identity hate) 76.12 50.00 50.84 71.98 50.00 50.00

D.2. Feature highlighting

In Table 37 we show an extended version of Table 4b, which now contains an additional wide ImageNet representation as
well as 3 additional toxic comment categories for each toxic comment classifier. The overall test accuracy of a subset of
these models (before sparsification) is under ‘Dense→ All’ in Figure 4b.

D.3. Additional comparisons of features

In Figure 16, we visualize additional deep features used by BERT models with sparse decision layers for the SST sentiment
analysis task. Figures 17- 22 show feature interpretations of deep features used by ResNet-50 classifiers with sparse decision
layers trained on ImageNet and Places-10. Due to space constraints, we limit the feature interpretations for vision models to
(at most) five randomly-chosen deep features used by the dense/sparse decision layer in Figure 3 and Figures 17- 22. To
allow for a fair comparison between the two decision layers, we sample these features as follows. Given a target class, we
first determine the number of deep features (k) used by the sparse decision layer to recognize objects of that class. Then, for
both decision layers, we randomly sample five deep features from the top-k highest weighted ones (for that class).

Leveraging Sparse Linear Layers for Debuggable Deep Networks

D.3.1. LANGUAGE MODELS

#6
70

W
=0

.1
50

3

Positive sentiment Negative sentiment

#3
95

W
=-

0.
12

27
#5

52
W

=-
0.

08
45

#1
2

W
=0

.0
75

6
#3

52
W

=-
0.

00
82

(a)

#7
55

W
=0

.1
91

9

Positive sentiment Negative sentiment

#7
11

W
=0

.1
65

4
#2

82
W

=0
.1

50
9

#6
21

W
=0

.1
41

6
#4

13
W

=-
0.

13
94

(b)

Po
sit

iv
e

se
nt

im
en

t

#535 #364 #5 #590

Ne
ga

tiv
e

se
nt

im
en

t

(c)

Figure 16: Additional SST word clouds visualizing the positive and negative activations for the top 5 features of the (a)
sparse decision layer, (b) dense decision layer, and (c) additional randomly-selected features (positive or negative weighting
is according to the dense decision layer). While the sparse model focuses on features that have clear positive and negative
semantic meaning in their word clouds, the dense model and the other randomly-selected features are noticeably more mixed
in sentiment.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

D.3.2. VISION MODELS

Sa
m

pl
es

Class: "hard disc, hard disk, fixed disk"

(a) Class samples

FV

W=0.17 W=0.14 W=0.13 W=0.12 W=0.11

LI
M

E

(b) Dense

FV

W=0.17 W=0.14 W=0.13 W=0.10 W=0.09

LI
M

E

(c) Sparse

Figure 17: Deep features used by a standard (ε = 0) ResNet-50 with dense (middle) and sparse decision layers (bottom) for
a randomly-chosen ImageNet class. For each (deep) feature, we show its corresponding linear coefficient in the decision
layer (W), along with feature interpretations in the form of feature visualizations (FV) and LIME superpixels.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Sa
m

pl
es

Class: "handkerchief, hankie, hanky, hankey"

(a) Class samples

FV

W=0.20 W=0.12 W=0.09 W=0.09 W=0.08

LI
M

E

(b) Dense

FV

W=0.40 W=0.26 W=0.20 W=0.14 W=0.11

LI
M

E

(c) Sparse

Figure 18: Deep features used by a standard (ε = 0) ResNet-50 with dense (middle) and sparse decision layers (bottom) for
a randomly-chosen ImageNet class. For each (deep) feature, we show its corresponding linear coefficient in the decision
layer (W), along with feature interpretations in the form of feature visualizations (FV) and LIME superpixels.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Sa
m

pl
es

Class: "football helmet"

(a) Class samples

FV

W=0.14 W=0.13 W=0.11 W=0.08 W=0.07

LI
M

E

(b) Dense

FV

W=0.30 W=0.26 W=0.10 W=0.04 W=0.03

LI
M

E

(c) Sparse

Figure 19: Deep features used by a adversarially-trained (ε = 3) ResNet-50 with dense (middle) and sparse decision layers
(bottom) for a randomly-chosen ImageNet class. For each (deep) feature, we show its corresponding linear coefficient in the
decision layer (W), along with feature interpretations in the form of feature visualizations (FV) and LIME superpixels.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Sa
m

pl
es

Class: "electric guitar"

(a) Class samples

FV

W=0.14 W=0.13 W=0.08 W=0.07 W=0.07

LI
M

E

(b) Dense

FV

W=0.26 W=0.24 W=0.19 W=0.09 W=0.07

LI
M

E

(c) Sparse

Figure 20: Deep features used by a adversarially-trained (ε = 3) ResNet-50 with dense (middle) and sparse decision layers
(bottom) for a randomly-chosen ImageNet class. For each (deep) feature, we show its corresponding linear coefficient in the
decision layer (W), along with feature interpretations in the form of feature visualizations (FV) and LIME superpixels.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Sa
m

pl
es

Class: "airport_terminal"

(a) Class samples

FV

W=0.81

LI
M

E

(b) Dense

FV

W=1.00

LI
M

E

(c) Sparse

Figure 21: Deep features used by a standard (ε = 0) ResNet-50 with dense (middle) and sparse decision layers (bottom) for
a randomly-chosen Places-10 class. For each (deep) feature, we show its corresponding linear coefficient in the decision
layer (W), along with feature interpretations in the form of feature visualizations (FV) and LIME superpixels.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Sa
m

pl
es

Class: "boat_deck"

(a) Class samples

FV

W=0.53 W=0.25 W=0.22 W=0.15 W=0.10

LI
M

E

(b) Dense

FV

W=0.53 W=0.16 W=0.08 W=0.05 W=0.00

LI
M

E

(c) Sparse

Figure 22: Deep features used by a adversarially-trained (ε = 3) ResNet-50 with dense (middle) and sparse decision layers
(bottom) for a randomly-chosen Places-10 class. For each (deep) feature, we show its corresponding linear coefficient in the
decision layer (W), along with feature interpretations in the form of feature visualizations (FV) and LIME superpixels.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

2/1/2021 deep-gpu-5.csail.mit.edu:8000/v3/2021-01-18_10%3A30%3A10.055521/htmls/hit_1002.html

deep-gpu-5.csail.mit.edu:8000/v3/2021-01-18_10%3A30%3A10.055521/htmls/hit_1002.html 1/2

This HIT is part of an MIT scientific research project conducted by MadryLab. Your decision to complete this HIT is voluntary. There is no way for us to identify you. The
only information we will have, in addition to your responses, is the time at which you completed the survey. The results of the research may be presented at scientific
meetings or published in scientific journals. Clicking on the 'SUBMIT' button on the bottom of this page indicates that you are at least 18 years of age and agree to
complete this HIT voluntarily.

Which image matches the patterns best?

We have trained an AI to recognize objects of one particular type (e.g., "car") in real world images. To detect
objects of this type, our AI looks for five patterns (shown below) in a given image. Your task is to (1) inspect
the patterns and (2) from a given set of images, choose the one that you think is most likely to match the
object that the AI is looking for.

Although all five patterns are used by the AI to detect objects of this type, their relative importance might
vary. The actual importance of each pattern to the AI (on a scale of 0-100) is displayed below the pattern
itself. Note that a higher value indicates greater importance.

Patterns

From the images below, choose the one that according to you is most
likely to match the object the AI is looking for

How confident are you about your selections?

Importance=27 Importance=23 Importance=22 Importance=18 Importance=10

Best match Best match Best match

0 (no confidence) 1 (slightly confident)
2 (moderately

confident)
3 (strongly confident)

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure 23: Sample MTurk task to assess how amenable models with dense/sparse decision layers are to human understanding.

D.4. Human evaluation

We now detail the setup of our MTurk study from Section 3.3. For our analysis, we use a ResNet-50 that has been
adversarially-trained (ε = 3) on the ImageNet dataset. To obtain a sparse decision layer, we then train a sequence of GLMs
via elastic net (cf. Section 2.1) on the deep representation of this network. Based on a validation set, we choose a single
sparse decision layer—with 57.65% test accuracy and 39.18 deep features/class on average.

Task setup Recall that our objective is to assess how effectively annotators are able to simulate the predictions of a model
when they are exposed to its (dense or sparse) decision layer. To this end, we first randomly select 100 ImageNet classes.
Then, for each such ‘target class’ and decision layer (dense/sparse) pair, we created a task by:

1. Selecting deep features: We randomly-select five deep features utilized by the decision layer to recognize objects of
the target class. To make the comparison more fair, we restrict our attention to deep features that are assigned significant
weight (>5% of the maximum) by the corresponding model. We then present these deep features to annotators via
feature visualizations. Also shown alongside are the (normalized and rescaled) linear coefficients for each deep feature.

2. Selecting test inputs: We rank all the test set ImageNet images based on the probability assigned by the corresponding

Leveraging Sparse Linear Layers for Debuggable Deep Networks

0.4 0.6 0.8 1.0
Label probability

0

5

10

15

20

Di
st

rib
ut

io
n

ov
er

 im
ag

es
Percentile range: (99.9, 100)

Dense
Sparse

0.000 0.005 0.010 0.015 0.020
Label probability

0

100

200

300

400

500

600

Percentile range: (98, 99)
Dense
Sparse

0.0000 0.0015 0.0030
Label probability

0

1000

2000

3000

4000

5000

Percentile range: (90, 95)
Dense
Sparse

(a)

1 2 3
Rank of selection

0

100

200

300

400

500

Im

ag
es

 (N
=1

00
0) Sparse

Dense

(b)

0 10 20 30 40 50 60 70 80
w/ dense decision layer

0

20

40

60

80

100

w/
 sp

ar
se

 d
ec

isi
on

 la
ye

r

Annotator accuracy/class
y=x

(c)

Figure 24: (a) Distribution of the target label probability assigned by the model (with a dense/sparse decision layer) to image
candidates used in our MTurk Study. (b) Distribution of images selected by annotators in terms of the ranking of their target
class probability. Here, a rank of k implies that the selected image has the k-th highest probability of the target class (out of
the 3 images) according to the model. (c) Per-class accuracy of annotators in simulating the predictions of models with
dense/sparse decision layer.

model (i.e., the ResNet-50 with a dense/sparse decision layer) to the target class. We then randomly select three images,
such that they lie in the following percentile ranges in terms of target class probability: (90, 95), (98, 99) and (99.99,
100). Note that since ImageNet has 1000 diverse object categories, the target class probability of a randomly sampled
image from the dataset is likely to be extremely small. Thus, fixing the percentiles as described above allows us to pick
image candidates that are: (i) somewhat relevant to the target class; and (ii) of comparable difficulty for both types of
decision layers. In Figure 24a, we present the target probability distribution as per the model for image candidates
selected in this manner.

Finally, annotators are presented with the deep features chosen above—describing them as patterns used by an AI model
to recognize objects of a certain (unspecified) type. They are then asked to pick one of the image candidates (randomly-
permuted) that best matches the patterns. Annotators are also asked to mark their confidence on a likert scale. A sample task
is shown in Figure 23.

For each target label-decision layer pair, we obtain 10 tasks by repeating the random selection process above. This results in
a total of 2000 tasks (100 classes x 2 models x 10 tasks/(class, model)). Each task is presented to 5 annotators, compensated
at $0.04 per task.

Quality control For each task, we aggregated results over all the annotators. While doing so, we eliminated individual
instances where a particular annotator made no selections. We also completely eliminated instances corresponding to
annotators who consistently (>80% of the times) left the tasks blank. Finally, while reporting our results, we only keep tasks
for which we have selections from at least two (of five) annotators. We determine the final selection based on a majority
vote over annotators, weighted by their confidence.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Results In Table 25, we report annotator accuracy—in terms of their ability to correctly identify the image with the highest
target class probability as per the model. We also present a break down of the overall accuracy depending on whether or not
the “correct image” is from the target class. We find that sparsity significantly boosts annotators’ ability to intuit (simulate)
the model—by nearly 30%. In fact, their performance on models with dense decision layers is close to chance (33%). Note
also that for models with sparse decision layers, annotators are able to correctly simulate the predictions even when the
correct image belongs to a different class.

Accuracy (%) Dense Sparse

Overall 35.61 ± 3.09 63.02 ± 3.02
From target class 44.02 ± 5.02 72.22 ± 4.74

From another class 30.64 ± 3.65 57.33 ± 4.00

Table 25: Accuracy of annotators at simulating the model given explanations from the dense and sparse classifiers.

In Figure 24b, we visualize how the image selected by annotators ranks in terms of the model’s target class probability,
over all tasks. Note that a rank of one implies that the annotators correctly selected the image which the model predicts
as having highest target class probability. This figure largely corroborates the findings in 25—in particular, highlighting
that for the standard (dense) decision layer, annotator selections are near-random. In Figure 24c, we visualize annotator
accuracy—aggregated per (the 10 tasks for a) target class—for models with dense and sparse decision layers.

E. Model biases and spurious correlations
E.1. Toxic comments

In this section, we visualize the word clouds for the toxic comment classifiers which reveal the biases that the model has
learned from the data. Note that these figures are heavily redacted due to the nature of these comments.

In Figure 26, we visualize the top five features for the sparse (Figure 26a) and dense (Figure 26b) decision layers of
Toxic-Bert. We note that more of the words in the sparse decision layer refer to identity groups, whereas this is less clear in
the dense decision layer. Even if we expand our interpretation to the top 10 neurons with the largest weight, only 7.5% of
the words refer to identity groups for the model with a dense decision layer.

In Figure 27, we perform a similar visualization as for the Toxic-BERT model, but for the Debiased-BERT model. The
word clouds for the sparse decision layer (Figure 27a) provide evidence that the Debiased-BERT model no longer uses
identity words as prevalently for identifying toxic comments. However, it is especially clear from the word clouds for the
sparse decision layer that a significant fraction of the non-toxic word clouds contain identity words. This suggests that the
model now uses these identity words as strong evidence for non-toxicity, which can be also reflected to a lesser degree in the
wordclouds for the dense decision layer (Figure 27b).

E.2. ImageNet

E.2.1. HUMAN STUDY

We now detail the setup of our MTurk study from Section 4.1. For our analysis, we use a standard ResNet-50 trained on the
ImageNet dataset—with the default (dense) decision layer, as well as its sparse counterpart from Figure 4b.

Task setup. This task is designed to semi-automatically identify learned correlations in classifiers with dense/sparse
decision layers. To this end, we randomly-select 1000 class pairs from each model, such that the classes share a common
deep feature in the decision layer. We only consider features to which the model assigns a substantial weight for both classes
(>5% maximum weight). Then, for each class (from the pair), we select the three images that maximally activate the deep
feature of interest. Doing so allows us to identify the most prototypical images from each class for the given deep feature.

We then present annotators on MTurk with the six chosen images, grouped by class along with the label. We ask them: (a)
whether the images share a common pattern; (b) how confident they are about this selection on a likert scale; (c) to provide a
short free text description of the pattern; and (d) for each class, to determine if the pattern is part of the class object or the
surrounding. A sample task is shown in Figure 28. Each task was presented to 5 annotators, compensated at $0.07 per task.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

(a) (b)

Figure 26: Word cloud visualizations of the top 5 deep features in Toxic-BERT for the (a) sparse decision layer and (b)
dense decision layer

(a) (b)

Figure 27: Word cloud visualizations of the top 5 deep features in Debiased-BERT for the (a) sparse decision layer and (b)
dense decision layer

Leveraging Sparse Linear Layers for Debuggable Deep Networks

2/1/2021 deep-gpu-5.csail.mit.edu:8000/spurious/v3/2021-01-18_12%3A18%3A03.906579/htmls/hit_1011.html

deep-gpu-5.csail.mit.edu:8000/spurious/v3/2021-01-18_12%3A18%3A03.906579/htmls/hit_1011.html 1/2

This HIT is part of an MIT scientific research project conducted by MadryLab. Your decision to complete this HIT is voluntary. There is no way for us to identify you. The
only information we will have, in addition to your responses, is the time at which you completed the survey. The results of the research may be presented at scientific
meetings or published in scientific journals. Clicking on the 'SUBMIT' button on the bottom of this page indicates that you are at least 18 years of age and agree to
complete this HIT voluntarily.

Do you see a common pattern in these images?

You will be shown images belonging to two object categories: "marimba/xylophone" and "ice lolly/lolly".
Your task is to inspect the images, judge whether you can see a prominent common pattern between all
these images, and then answer the questions below.

Inspect the following images

Question 1: In these six images, do you see a prominent common pattern?
An example of such a pattern could be "red color" or "mountains". If you do not see a distinct common pattern between the images,
answer no.

Question 2: How confident are you about your selections in Question 1?

Question 3: Describe the pattern using a word or a short phrase (less than 5 words;
skip if your answer to question 1 was No.)
An example of such a description could be "red color" or "mountains". Skip if your answer to question 1 was no.

Question 4: Is this pattern a part of "marimba/xylophone"s or is it present in the
surroundings? (Skip if your answer to question 1 was No.)
For e.g., the pattern "wheel" is a part of the object "car", whereas the pattern "road" is a part of its surroundings. Similarly, the pattern
"leg" is a part of the object "chair", whereas the pattern "pillow" is part of its surroundings.

Question 5: Is this pattern a part of "ice lolly/lolly"s or is it present in the
surroundings? (Skip if your answer to question 1 was No.)
For e.g., the pattern "wheel" is a part of the object "car", whereas the pattern "road" is a part of its surroundings. Similarly, the pattern
"leg" is a part of the object "chair", whereas the pattern "pillow" is part of its surroundings.

marimba/xylophone ice lolly/lolly

Yes No

0 (no confidence) 1 (slightly confident)
2 (moderately

confident)
3 (strongly confident)

A short sentence or a few keywords

Part of object Part of surroundings

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure 28: Sample MTurk task to diagnose (spurious) correlations in deep networks via their dense/sparse decision layers.

Quality control For each task, we aggregated results over all the annotators. While doing so, we eliminated individual
instances where a particular annotator made no selections. We also completely eliminated instances corresponding to
annotators who consistently (>80% of the time) left the task blank. Finally, while reporting our results, we only keep tasks
for which we have selections from at least three (of five) annotators. We determine the final selection based on a majority
vote over annotators, weighted by their confidence.

E.2.2. ADDITIONAL VISUALIZATIONS OF SPURIOUS CORRELATIONS

In Figure 29, we provide additional examples of correlations detected using our MTurk study. Then in Figure 30, we
summarize annotator-provided descriptions for all the patterns identified in ImageNet classifiers with sparse decision layers
via a word cloud. This visualization sheds light into the nature of correlations extracted by ImageNet classifiers from their
training data—for instance, we see that the patterns most frequently identified by annotators relate to object color and shape.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Pattern descriptions
(via MTurk)

“hummingbird”

spurious

“rose hip”

non-spurious

“lawn mower”

spurious

“zucchini/courgette”

non-spurious

Class pairs

“marmot”

spurious

“alp”

non-spurious

“seashore/coast”

spurious

“butternut squash”

non-spurious

Figure 29: Additional examples of correlations in ImageNet models detected using our MTurk study. Each row contains
protypical images from a pair of classes, along with the annotator-provided descriptions for the shared deep feature that these
images strongly activate. For each class, we also display if annotators marked the feature to be a “spurious correlation”.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Figure 30: Word cloud visualization of descriptions provided by annotators for patterns learned by “shared deep features” in
standard ImageNet-trained ResNet-50 classifiers with sparse decision layers.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Algorithm 3 Counterfactual generation for a sentence of n words x = (x1, . . . xn), a deep encoder h : Rn → Rm, and a
linear decision layer with coefficients (w, b).

1: z = h(x) // calculate deep features
2: y = argmaxy wyz + by // calculate prediction
3: Z+, Z− = ∅, ∅ // initialize candidate word substitutions
4: for i = 1 . . .m do
5: for j = 1 . . . n do
6: if xj ∈WordCloud+(zi) ∧ wyi > 0 then
7: Z+ = Z+ ∪ {(xj , zi)} // candidate word substitution with positive weight and positive activation
8: else if xj ∈WordCloud−(zi) ∧ wyi < 0 then
9: Z− = Z− ∪ {(xj , zi)} // candidate word substitution with negative weight and negative activation

10: end if
11: end for
12: end for
13: if |Z+ ∪ Z−| = 0 then
14: return-1 // No overlapping words found for counterfactual generation
15: end if
16: Randomly select (xj , zi) ∈ Z+ ∪ Z− // select a random word to substitute and its corresponding feature
17: if (xj , zi) ∈ Z+ then
18: Randomly select x̂j ∈WordCloud−(zi) // if positive, select a random negative word
19: else if (xj , zi) ∈ Z− then
20: Randomly select x̂j ∈WordCloud+(zi) // if negative, select a random positive word
21: end if
22: x̂ = (x1, . . . , xj−1, x̂j , xj+1, . . . , xn) // perform word substitution
23: return x̂ // return generated counterfactual

F. Counterfactual experiments

F.1. Language counterfactuals

We describe in detail how to generate counterfactuals from the word cloud interpretations and the linear decision layer. The
complete algorithm can be found in Algorithm 3, which we describe next.

Let x = (x1, . . . , xn) be a sentence with nwords, z = f(s) ∈ Rm be the deep encoding of x, and y = argmaxy wyz+by ∈
[k] be the model’s prediction of x for a given decision layer with coefficients (w, b). Our goal is to generate a counterfactual
that can flip the model’s prediction y to some other class. Furthermore, let WordCloud+(zi) and WordCloud−(zi) be the
LIME-based word clouds representing the positive and negative activations of ith deep feature, zi. Then, counterfactual
generation in the language setting involves the following steps:

1. Find all deep features which use words in x as evidence for the predicted label y (according to the word clouds).
Specifically, calculate Z = Z− ∪ Z+ where

Z+ ={(xj , zi) : ∃j s.t. xj ∈WordCloud+(zi) ∧ wyi > 0} (6)

Z− ={(xj , zi) : ∃j s.t. xj ∈WordCloud−(zi) ∧ wyi < 0} (7)

2. Randomly select a deep feature (and its word) (xj , zi) ∈ Z

3. If zi ∈ Z+, randomly select a word x̂ ∈ WordCloud−(zi). Otherwise, if zi ∈ Z−, randomly select a word
x̂j ∈WordCloud+(zi).

4. Perform the word substitution xj → x̂j to get the counterfactual sentence, x̂ = (x0, . . . , xj−1, x̂j , xj+1, . . . , xn).

Note that it is possible for there to be no features that use words in a given sentence as evidence for its prediction, which
results in no candidate word substitutions (i.e. ‖Z‖ = 0). Consequently, it is possible for a sentence to have a counterfactual

Leveraging Sparse Linear Layers for Debuggable Deep Networks

generated from the dense decision layer but not in the sparse decision layer (or vice versa). For our sentiment counterfactual
experiments, we restrict our analysis to sentences which have counterfactuals in both the sparse and dense decision layers.
However, we found that similar results hold if one considers all possible counterfactuals for each individual model instead.

F.2. ImageNet counterfactuals

In Figure 31, we illustrate our pipeline for counterfactual image generation. Our starting point is a particular spurious
correlation (between a data pattern and a target class) identified via the MTurk study in Section 4.1. We then select images
from other ImageNet classes to add the spurious pattern to, and annotate the relevant region where it should be added. We
obtain the spurious patterns by automatically scraping search engines. Finally, we combine the original images with the
retrieved spurious pattern, using the mask as the weighting, to obtain the desired counterfactual images. These images are
then supplied to the model, to test whether the addition of the spurious input pattern indeed fools the model into perceiving
the counterfactuals as belonging to the target class.

G. Validating ImageNet misclassifications
G.1. Human study

We now detail the setup of our MTurk study from Section 3.3. For our analysis, we use a ResNet-50 that has been
adversarially-trained (ε = 3) on the ImageNet dataset. To obtain a sparse decision layer, we then train a sequence of GLMs
via elastic net (cf. Section 2.1) on the deep representation of this network. Based on a validation set, we choose a single
sparse decision layer—with 57.65% test accuracy and 39.18 deep features/class on average.

Task setup. In this task, our goal is to understand if annotators can identify data patterns that are responsible for
misclassifications. To this end, we start by identifying deep features that are strongly activated for misclassified inputs.

For any misclassified input x with ground truth label l and predicted class p, we can compute for every deep feature fi(x):

γi =W [p, i] · fi(x)−W [l, i] · fi(x) (8)

where W is the weight matrix of the decision layer. Intuitively, this score measures the extent to which a deep feature
contributes to the predicted class, relative to its contribution to the ground truth class. Then, sorting deep features based on
decreasing/increasing values of this score, gives us a measure of how important each of them are for the predicted/ground
truth label. Let us denote fp as the deep feature with the highest score γi and fl as the one with the lowest.

combine

Figure 31: Image counterfactual generation process. We start with a correlation identified during our MTurk study in
Section 4.1—for example, the model associates “water” with the class “snorkel”. To generate the counterfactuals shown in
Figure 9, we first select images from other ImageNet classes. We then manually annotate regions in these images to replaces
with “water” bacgrounds obtained via automated image search on the Internet. Finally, we additively combine the “water”
backgrounds and the original images, weighted by the mask, to obtain the resulting counterfactual inputs.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

We find that for the robust ResNet-50 model with a sparse decision layer, the single top deep feature based on this score (fp)
alone is responsible for 26% of the misclassifications (5673 examples in all). That is, for each of these examples, simply
turning fp = 0 flips the model’s prediction from p to l. We henceforth refer to these deep features (one per misclassified
input) as “problematic” features.

For our task, we randomly subsample 1330 of the aforementioned 5673 misclassified inputs. We then construct MTurk
tasks, wherein annotators are presented with one such input (without any information about the ground truth or predicted
labels), along with the feature visualizations for two deep features. These two features are either (with equal probability):

• (fl, fp): The deep features which (relatively) contribute most to the ground truth and predicted class respectively.

• (fl, fr): The deep feature which (relatively) contributes most to the ground truth class, along with a randomly-chosen
one (out of the 2048 possible deep features). This is meant to serve as a control.

Annotators are then asked: (a) to select all the patterns (i.e., feature visualization of a deep feature) that match the image; (b)
to select the one that best matches the image (if they selected both in (a)); (c) to mark their confidence on a likert scale. A
sample task is shown in Figure 32. Each task was presented to 5 annotators, compensated at $0.03 per task.

Note that, in the case where the ground truth label for each image is actually pertinent to it and that model relies on
semantically-meaningful deep features for every class, we would expect annotators to select fl to match the image 100% of
the time. On the other hand, we would expect that annotators rarely select fr to match the image.

Quality control For each task, we aggregated results over all the annotators. While doing so, we eliminated individual
instances where a particular annotator made no selections. We also completely eliminated instances corresponding to
annotators who consistently (>80% of the times) left the task blank. Finally, while reporting our results, we only keep tasks
for which we have selections from at least two (of five) annotators. We determine the final selection based on a majority
vote over annotators, weighted by their confidence.

G.2. Additional error visualizations

In Figure 33, we present additional examples of misclassifications for which annotators the top deep feature used by the
sparse decision layer to detect the predicted class to be a better match for the image than the corresponding top feature for
the ground truth class.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

2/1/2021 deep-gpu-5.csail.mit.edu:8000/misclassification/v1/2021-01-27_09%3A55%3A05.881631/htmls/hit_101.html

deep-gpu-5.csail.mit.edu:8000/misclassification/v1/2021-01-27_09%3A55%3A05.881631/htmls/hit_101.html 1/2

This HIT is part of an MIT scientific research project conducted by MadryLab. Your decision to complete this HIT is voluntary. There is no way for us to identify you. The
only information we will have, in addition to your responses, is the time at which you completed the survey. The results of the research may be presented at scientific
meetings or published in scientific journals. Clicking on the 'SUBMIT' button on the bottom of this page indicates that you are at least 18 years of age and agree to
complete this HIT voluntarily.

Identify the patterns that match the given image

Please inspect the image and patterns below, and answer the following
questions.

Task 1: Select all the patterns that match the image shown on the left.
Please select at least one pattern. Select both patterns only in cases where you strongly believe that they
are both visually similar to the image.

Task 2: Which of the two patterns matches the given image better according to you?
(Answer only if you selected both patterns in Task 1)

Task 3: How confident are you about your selections?

Matches image

Matches image

Best match

Best match

0 (no confidence) 1 (slightly confident)
2 (moderately

confident)
3 (strongly confident)

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure 32: Sample MTurk task to identify input patterns responsible for the misclassifications in deep networks with the
help of their (sparse) decision layers.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Top activating features
ImageNet class Predicted class

“hay” predicted
as “spider web”

Misclassified
images

“website” feature “menu” feature

“hay” feature “spider web” feature

“website” predicted
as “menu”

“tobacco shop”
predicted

as “bookshop”

“volcano” feature “alp” feature

“tobacco shop”
feature

“bookshop”
feature

“volcano” predicted
as “alp”

Figure 33: Additional examples of misclassified ImageNet images for which annotators deem the top activated feature for
the predicted class (rightmost) as a better match than the top activated feature for the ground truth class (middle).

Leveraging Sparse Linear Layers for Debuggable Deep Networks

G.3. Model confusion

In Figure 34, we visualize the correlation between model confusion within a pair of classes, and the number of shared features
between them in the sparse decision layer. Model confusion within a class pair (i, j) is measured as max(C(i,j), C(j,i)),
where C is the overall confusion matrix. We find that for models with sparse decision layers, the feature overlap between
two classes, is significantly correlated with model errors within that class pair. One can thus inspect the corresponding
shared features—cf. Figure 35 for an example—to better understand the underlying causes for inter-class model confusion.

0.1 0.2 0.3 0.4 0.5
Model confusion within class pair

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sh

ar
ed

 fe
at

ur
es

ImageNet (std) (Correlation= 0.51; p= 0.00e+00)
ImageNet (robust) (Correlation= 0.40; p= 0.00e+00)

Figure 34: Correlation between the number of features shared in the sparse decision layer of a model for two classes, and
model confusion between them. Model confusion within a class pair is measured as the maximum of the corresponding
entries (C(i,j), C(j,i)) of the overall confusion matrix.

Figure 35: Sample visualization of confusing features: Five of the deep features used by a robust (ε = 3) ImageNet-trained
ResNet-50 with sparse decision layer to identify objects of classes “pier” and “suspension bridge” which are frequently
confused by the model (Ci,j and Cj,i are 16% and 24% respectively). Each of these deep features is interpreted using
feature visualizations (FV) and LIME superpixels; shown alongside their linear coefficients (W).

	Introduction
	Debuggability via Sparse Linearity
	Constructing sparse decision layers
	Interpreting deep features

	Are Sparse Decision Layers Better?
	Sparsity vs. performance
	Sparsity and feature highlighting
	Sparsity and human understanding

	Debugging deep networks
	Biases and (spurious) correlations
	Counterfactuals
	Misclassifications

	Related Work
	Conclusion
	SAGA-based solver for generalized linear models
	Timing Experiments
	Elastic net, 1, and 2 regularization
	Feature ordering

	Feature interpretations
	Feature visualization
	LIME

	Datasets and Models
	Datasets
	Models

	Evaluating sparse decision layers
	Trade-offs for all datasets
	Selecting a single sparse model

	Feature highlighting
	Additional comparisons of features
	Language models
	Vision models

	Human evaluation

	Model biases and spurious correlations
	Toxic comments
	ImageNet
	Human study
	Additional visualizations of spurious correlations

	Counterfactual experiments
	Language counterfactuals
	ImageNet counterfactuals

	Validating ImageNet misclassifications
	Human study
	Additional error visualizations
	Model confusion

