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Abstract 
Recent observations have advanced our under-
standing of the neural network optimization land-
scape, revealing the existence of (1) paths of 
high accuracy containing diverse solutions and 
(2) wider minima offering improved performance. 
Previous methods observing diverse paths require 
multiple training runs. In contrast we aim to lever-
age both property (1) and (2) with a single method 
and in a single training run. With a similar compu-
tational cost as training one model, we learn lines, 
curves, and simplexes of high-accuracy neural net-
works. These neural network subspaces contain 
diverse solutions that can be ensembled, approach-
ing the ensemble performance of independently 
trained networks without the training cost. More-
over, using the subspace midpoint boosts accu-
racy, calibration, and robustness to label noise, 
outperforming Stochastic Weight Averaging. 

1. Introduction 
Optimizing a neural network is often conceptualized as 
finding a minimum in an objective landscape. Therefore, 
understanding the geometric properties of this landscape 
has emerged as an important goal. Recent work has illumi-
nated many intriguing phenomena. Garipov et al. (2018); 
Draxler et al. (2018) determine that independently trained 
models are connected by a curve in weight space along 
which loss remains low. Additionally, Frankle et al. (2020) 
demonstrate that networks which share only a few epochs 
of their optimization trajectory are connected by a linear 
path of high accuracy. However, the connected regions in 
weight space found by Garipov et al. (2018); Draxler et al. 
(2018); Frankle et al. (2020) require approximately twice 
the training time compared with standard training, as two 
separate minima are first identified then connected. 

This work is motivated by the existence of connected, func-
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Figure 1. Schematic for learning a line of neural networks com-
pared with standard training. The midpoint outperforms standard 
training in terms of accuracy, calibration, and robustness. Models 
near the endpoints enable high-accuracy ensembles in a single 
training run. 

tionally diverse regions in solution space. In contrast to prior 
work, our aim is to directly parameterize and learn these 
neural network subspaces from scratch in a single training 
run. For instance, when training a line (Figure 1) we begin 
with two randomly initialized endpoints and consider the 
neural networks on the linear path which connects them. At 
each iteration we use a randomly sampled network from the 
line, backpropagating the training loss to update the end-
points. Central to our method is a regularization term which 
encourages orthogonality between the endpoints, just as two 
independently trained networks are orthogonal (Fort et al., 
2019). When the line settles into a low loss region we find 
that models from opposing ends are functionally diverse. 

In addition to lines, we learn curves and simplexes of high-
accuracy neural networks (Figure 2). We also uncover bene-
fits beyond functional diversity. Lines and simplexes iden-
tify and traverse large flat minima, with endpoints near the 
periphery. The midpoint corresponds to a less sharp solution, 
which is associated with better generalization (Dziugaite & 
Roy, 2018). Using this midpoint corresponds to ensembling 
in weight space, producing a single model which requires 
no additional compute during inference. We find that taking 
the midpoint of a simplex can boost accuracy, calibration, 
and robustness to label noise. 

Proceedings of the 38 th International Conference on Machine The rest of the paper is organized via the following contri-
Learning, PMLR 139, 2021. Copyright 2021 by the author(s). butions: 

mailto:mitchnw@cs.washington.edu


Learning Neural Network Subspaces 

Figure 2. Test error on a two dimensional plane for three learned subspaces for cResNet20 (CIFAR10)—a quadratic Bezier curve (left), a 
simplex with three endpoints (middle), and a line (right). The subspace parameters ω1, ω2 and ω3 are plotted and used to construct the 
plane, except for the line for which ω3 was taken to be a solution obtained via standard training. Note that although ω3 is used to define 
the Bezier curve (left), it never passes through it. Visualization as in Garipov et al. (2018) with ω1 at the origin. 

1. We contextualize our work via 5 observations regarding 
the objective landscape (section 2). 

2. We introduce a method for learning diverse and high-
accuracy lines, curves, and simplexes of neural net-
works (section 3). 

3. We show that lines and curves found in a single train-
ing run contain models that approach or match the 
ensemble accuracy of independently trained networks 
(subsection 4.2). 

4. We find that taking the midpoint of a simplex provides 
a boost in accuracy, calibration, and robustness (sub-
section 4.3; subsection 4.4). 

2. Preliminaries and Related Methods 
We highlight a few recent observations which have advanced 
understanding of the neural network optimization landscape 
(Dauphin et al., 2014; Li et al., 2018a;b; Fort & Jastrzebski, 
2019; Evci et al., 2019; Frankle, 2020; Oswald et al., 2021). 
We remain in the setting of image classification with setup 
and notation drawn from Frankle et al. (2020). 

Consider a neural network f(x, θ) with input x and pa-
rameters θ ∈ Rn . For initial random weights θ0 and 
SGD randomness ξ, the weights at epoch t are given by 
θt = Train0→t(θ0, ξ). Additionally let Acc(θ) denote 
the test accuracy of network f with parameters θ. The 
first three observations pertain to the setting where two 
networks are trained with different SGD noise—consider 
θ1 = Train0→T (θ0, ξ1) and θ2 = Train0→T (θ0, ξ2). TheT T 
observations are unchanged when θT 

1 and θ2 have differing T 
initializations. 

Observation 1. (Lakshminarayanan et al., 2017) Ens-
membling θT 

1 and θ2 in output space—making predictions � � � T � �� 
1 ŷ = f x, θ1 + f x, θ2 —boosts accuracy, calibra-2 T T 

tion, and robustness. This is attributed to functional diversity� � � � 
meaning f ·, θ1 and f ·, θ2 make different errors.T T 

Observation 2. (Frankle et al., 2020; Fort et al., 2020) Ens-
membling θT 

1 and θ2 in weight space—making predictions T 

� � �� 
1with the network f x, θT 

1 + θ2 —fails, achieving no2 T 
better accuracy than an untrained network. 

Definition 1. A connector between neural network weights 
ψ1, ψ2 ∈ Rn is a continuous function P : [0, 1] → Rn 

such that P(0) = ψ1, P(1) = ψ2, and the average accuracy 
along the connector is at least the average accuracy given by 
the weights at the endpoints. Equivalently, if U denotes 
the uniform distribution then Eα∼U([0,1])[Acc(P(α))] ' 
1 (Acc(ψ1) + Acc(ψ2)). In the language of connectors, Ob-2 
servation 2 states that there does not exist a linear connector 
between θT 

1 and θT 
2 . 

Observation 3. (Garipov et al., 2018; Draxler et al., 2018) 
There exists a nonlinear connector P between θT and θT 

1 2 , 
for instance a quadratic Bezier curve. 

Observation 4. (Frankle et al., 2020) There exists a linear 
connector when part of the optimization trajectory is shared. 
Instead of branching off at θ0, let θk = Train0→k(θ0, ξ) 
and consider θi = Traink→T (θk, ξi) for i ∈ {1, 2}.k→T 
For k � T , P(α) = (1 − α)θk 

1 
→T + αθ2 is a lineark→T 

connector. 

Observation 4 generalizes to the higher dimensional case 
(Appendix H) for which a convex hull of neural net-
works attains high accuracy. To consider higher dimen-
sional connectors we discuss one additional definition. Let � � 
Δm−1U refer to the uniform distribution on Δm−1 = P {α ∈ Rm : = 1, αi ≥ 0} and let ei refer to the stan-i αi 

dard basis vector (all zeros except for position i which is 1). 
Note that Δm−1 is often referred to as the m−1 dimensional 
probability simplex. 

Definition 2. An m-connector on ψ1, ..., ψm ∈ Rn is a 
continuous function P : Δm−1 → Rn 

Psuch that P(ei) = ψi 
m1and Eα∼U(Δm−1)[Acc(P(α))] ' Acc(ψi). This m i=1 

definition formalizes that in Fort & Jastrzebski (2019). In 
this work we will primarily focus on linear m-connectorsP 
which have the form P(α) = αiψi.i 

Linear m-connectors are implicitly used by Izmailov et al. 
(2018) in Stochastic Weight Averaging (SWA). SWA uses a 
high constant (or cyclic) learning rate towards the end of 
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training to bounce around a minimum while occasionally 
saving checkpoints. SWA returns the weight space ensem-
ble (average) of these models, motivated by the observation 
that SGD solutions often lie at the edge of a minimum and 
averaging moves towards the center. The averaged solu-
tion is less sharp, which may lead to better generalization 
(Chaudhari et al., 2019; Dziugaite & Roy, 2018; Foret et al., 
2020). 

Observation 5. (Izmailov et al., 2018) If weights ψ1,...ψm 

lie at the periphery of wide and flat low loss region, then � P � Pm m1 1Acc ψi > Acc(ψi). m i=1 m i=1 

SWA is extended by SWA-Gaussian (Maddox et al., 2019) 
(which fits a Gaussian to the saved checkpoints) and Iz-
mailov et al. (2020) (who considers the subspace which they 
span). These techniques advance Bayesian deep learning— 
methods which aim to learn a distribution over the parame-
ters. Other Bayesian apporaches include variational meth-
ods (Blundell et al., 2015), MC-dropout (Gal & Ghahramani, 
2016), and MCMC methods (Welling & Teh, 2011; Zhang 
et al., 2020). However, variational methods tend not to scale 
to larger networks such as residual networks (Maddox et al., 
2019). Moreover, a detailed empirical study by Fort et al. 
(2019) recently observed that many Bayesian models tend to 
capture the local uncertainty of a single mode but are much 
less functionally diverse than independently trained net-
works which identify multiple modes. Ensembling models 
sampled from the learned distribution is therefore inferior 
in terms of accuracy and robustness. 

Other related techniques include Snapshot Ensembles (SSE) 
(Huang et al., 2017) which use a cyclical learning rate with 
multiple restarts, saving checkpoints prior to each restart. 
Fast Geometric Ensembles (Garipov et al., 2018) employs 
a similar strategy but does not begin saving checkpoints 
until later in training. Other methods to efficiently train and 
evaluate ensembles include BatchE (Wen et al., 2020). Al-
though their method is compelling, BatchE requires longer 
training for ensemble members to match standard training 
accuracy. 

To summarize, connectors—high-accuracy subspaces of 
neural networks—have two useful properties: 

• Property 1: They contain models which are function-
ally diverse and may be ensembled in output space 
(Observations 1 & 3). 

• Property 2: Taking the midpoint of the subspace (en-
sembling in weight space) can improve accuracy and 
generalization (Observation 5). 

Prior work satisfying Property 1 requires multiple training 
runs. Subspaces satisfying Property 2 yield solutions that 
are less functionally diverse (Fort et al., 2019). Our aim is 
to leverage both Property 1 and 2 in a single training run. 

Algorithm 1 TrainSubspace 

Input: P with domain Λ and parameters {ωi}mi=1, net-
work f , train set S, loss `, and scalar β (e.g. a line has 
Λ = [0, 1] and P(α; ω1, ω2) = (1 − α)ω1 + αω2). 
Initialize each ωi independently. 
for batch (x, y) ⊆ S do 

Sample α uniformly from Λ. 
θ ← P(α; {ωi}m 

)i=1 
ŷ ← f(x, θ) 
Sample j, k from {1, ..., m} without replacement. 
L ← `(ŷ, y) + β cos2(ωj , ωk) 
Backprop L to each ωi and update with SGD & mo-

∂` ∂P ∂ cos (ωj ,ωk )mentum using estimate ∂L = + β 
2 

.∂ωi ∂θ ∂ωi ∂ωi 

end for 

3. Method 
In a single training run, we find a connected region in solu-
tion space comprised of high-accuracy and diverse neural 
networks. To do so we directly parameterize and learn the 
parameters of a subspace. 

First consider learning a line. Recall that the line between 
ω1 ∈ Rn and ω2 ∈ Rn in weight space is P(α; ω1, ω2) = 
(1 − α)ω1 + αω2 for α in the domain Λ = [0, 1]. Our goal 
is to learn parameters ω1, ω2 such that Acc(P(α; ω1, ω2)) is 
high for all values of α ∈ Λ (Acc(θ) denotes the test accu-
racy of the neural network f with weights θ). Equivalently, 
our aim is to learn a high-accuracy connector between ω1 

and ω2 (Definition 1). 

More generally we consider subspaces defined by 
P(·, {ωi}m ) : Λ → Rn . We experiment with two shapesi=1 
in addition to lines: 

1. One-dimensional Bezier curves with a single bend 
P(α; ω1, ω2, ω3) = (1−α)2ω1 +2α(1−α)ω3 +α

2ω2 

for α ∈ Λ = [0, 1]. 

2. Simplexes with m endpoints {ωi}mi=1. A simplex is thePm convex hull defined by P(α; {ωi}m αiωi.i=1) = i=1 
The domainPΛ for α is the probability simplex 
{α ∈ Rm : αi = 1, αi ≥ 0}.i 

Our training objective is to minimize the loss ` for all net-
work weights θ such that θ = P(α, {ωi}m ) for somei=1 
α ∈ Λ. Recall that for input x and weights θ a neural 
network produces output ŷ = f(x, θ). Given the predicted 
label ŷ and true label y the training loss is a scalar `(ŷ, y). 

If we let D denote the data distribution and U(Λ) denote the 
uniform distribution over Λ, our training objective without 
regularization is to minimize 

� � 
E(x,y)∼D Eα∼U(Λ)[`(f(x, P(α, {ωi}mi=1)), y)] . (1) 
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In practice we find that achieving significant functional 
diversity along the subspace requires adding a regularization 
term with strength β which we describe shortly. For now 
we proceed in the scenario where β = 0. Algorithm 1 is a 
stochastic approximation for the objective in Equation 1— 
we approximate the outer expectation with a batch of data 
and the inner expectation with a single sample from U(Λ). 
Specifically, for each batch (x, y) we randomly sample 
α ∼ U(Λ) and consider the loss 

`(f(x, P(α, {ωi}mi=1)), y). (2) 

If we let θ = P(α, {ωi}mi=1) denote the single set of weights 
sampled from the subspace, we can calculate the gradient 
of each parameter ωi as 

∂` ∂` ∂P(α, {ωi}mi=1) = . (3)
∂ωi ∂θ ∂ωi 

The right hand side consists of two terms, the first of which 
appears in standard neural network training. The second 
term is computed using P. For instance, in the case of a line, 
the gradient for an endpoint ω1 is 

∂` ∂` 
= (1 − α) . (4)

∂ω1 ∂θ 

Note that the gradient estimate for each ωi is aligned but 
scaled differently. As is standard for training neural net-
works we use SGD with momentum. In Appendix A we 
examine Equation 1 in the simplified setting where the land-
scape is convex. In Appendix B we approximate the inner 
expectation of Equation 1 with multiple samples. 

The method as described so far resembles Garipov et al. 
(2018), though we highlight some important differences. 
Garipov et al. (2018) begin by independently training two 
neural networks and subsequently learning a connector be-
tween them, considering curves and piecewise linear func-
tions with fixed endpoints. Our method begins by initializ-
ing the subspace parameters randomly, using the same ini-
tialization as standard training (Kaiming normal (He et al., 
2015)). The subspace is then fit in a single training run. 

This contrasts significantly with standard training. For in-
stance, when learning a simplex with m endpoints we begin 
with m random weight initializations and consider the sub-
space which they span. During training we move this entire 
subspace through the objective landscape. 

Regularization. We have outlined a method to train high-
accuracy subspaces of neural networks. However, as illus-
trated in subsection 4.2 (Figure 6), subspaces found without 
regularization do not contain models which achieve high 
accuracy when ensembled, suggesting limited functional 
diversity. To promote functional diversity, we want to en-
courage distance between the parameters {ωi}mi=1. 

Fort et al. (2019) show that independently trained models 
have weight vectors with a cosine similarity of approxi-
mately 0, unlike models with a shared trajectory. Therefore, 
we encourage all pairs ωj , ωk to have a cosine similarity 
of 0 by adding the following regularization term to the the 
training objective (Equation 1): 

" # 
� � hωj , ωki2 

β · Ej=6 k cos 
2(ωj , ωk) = β · Ej 6=k . (5)kωj k2kωkk2 

2 2 

In Algorithm 1 we approximate this expectation by sam-
pling a random pair ωj , ωk for each training batch. Unless 
otherwise mentioned, β is set to a default value of 1. We 
do not consider L2 distance since networks with batch nor-
malization can often have weights arbitrarily scaled without 
changing their outputs. 

Layerwise. Until now our investigation has been layer 
agnostic—we have treated neural networks as weight vec-
tors in Rn . However, networks have structure and connec-
tivity which are integral to their success. Accordingly, we 
experiment with an additional stochastic approximation to 
Equation 1. Instead of approximating the inner expectation 
with a single sample α ∼ U(Λ) we independently sample 
different values of α for weights corresponding to different 
layers. In Appendix H we extend the analysis of Frankle 
et al. (2020) to this layerwise setting. 

4. Results 
In this section we present experimental results across 
benchmark datasets for image classification (CIFAR-10 
(Krizhevsky et al., 2009), Tiny-ImageNet (Le & Yang, 
2015), and ImageNet (Deng et al., 2009)) for various resid-
ual networks (He et al., 2016; Zagoruyko & Komodakis, 
2016). Unless otherwise mentioned, β (Equation 5) is set 
to a default value of 1. The CIFAR-10 (Krizhevsky et al., 
2009) and Tiny-ImageNet (Le & Yang, 2015) experiments 
follow Frankle et al. (2020) in training for 160 epochs us-
ing SGD with learning rate 0.1, momentum 0.9, weight 
decay 1e-4, and batch size 128. For ImageNet we fol-
low Xie et al. (2019) in changing batch size to 256 and 
weight decay to 5e-5. All experiments are conducted with 
a cosine annealing learning rate scheduler (Loshchilov & 
Hutter, 2016) with 5 epochs of warmup and without fur-
ther regularization (unless explicitly mentioned). When 
error bars are present the experiment is run with 3 random 
seeds and mean±std is shown. Additional details found 
in Appendix D, including SWA hyperparameters and the 
treatment of batch norm layers (which mirror SWA (Iz-
mailov et al., 2018)). As discussed in subsection D.2, mem-
ory/FLOPs overhead is not significant as feature maps (in-
puts/outputs) are much larger than the number of parame-
ters for convolutional networks. Code available at https: 
//github.com/apple/learning-subspaces. 

https://github.com/apple/learning-subspaces
https://github.com/apple/learning-subspaces
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Figure 4. Visualizing model accuracy along one-dimensional subspaces. The accuracy of the model at point α ∈ [0, 1] along the subspace 
matches or exceeds standard training for a large section of the subspace (especially towards the subspace center). 
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Figure 5. Accuracy when two models from the subspace are ensembled—at point α we plot the accuracy when models P(α) and P(1 − α) 
are ensembled. Performance approaches the ensemble of two independently trained networks, denoted “Standard Ensemble of Two”. 
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Figure 6. Visualizing both model and ensemble accuracy along one-dimensional subspaces for different regularization strengths β. 
Regularization (Equation 5) tends to produce a subspace with more accurate and diverse models. Note that the visualization format of 
Figure 4 and Figure 5 are combined, a technique we will use throughout the remainder of this work. For each subspace type, (1) accuracy 
of a model with weights P(α) is shown with a dashed line and (2) accuracy when the output of models P(α) and P(1 − α) are ensembled 
is shown with a solid line and denoted (Ensemble). 
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4.1. Subspace Dynamics 

We begin with the following question: when training a line, 
how does the shape vary throughout training and how is 
this affected by β, the regularization coefficient? Figure 3 
illustrates L2 distance kω1 − ω2k2 and cosine similarity 
squared cos2(ω1, ω2) throughout training. Recall that ω1 

and ω2 denote the endpoints of the line which are initialized 
independently. Since a line is constructed using only two 
endpoints, the regularization term (Equation 5) simplifies to 
β cos2(ω1, ω2). 

When β = 1 the endpoints of a line become nearly orthogo-
nal towards the end of training (in CIFAR10 they remain or-
thogonal throughout). Although L2 distance isn’t explicitly 
encouraged, it remains significant. Notably, for CIFAR10 
the endpoints remain approximately as far apart through-
out training as randomly initialized weights. For ResNet50 
on ImageNet the L2 distance between endpoints remains 
substantial (≈ 127), compared to ≈ 173 for independently 
trained solutions. Note that in both cases weight decay 
pushes trained weights towards the origin. When β = 0 
there is no term encouraging separation between ω1 and 
ω2. However, they still remain a distance apart (13 for CI-
FAR10 and 40 for ImageNet). Further analysis is conducted 
in Appendix E, revealing that initializing ω1 and ω2 with 
the same shared weights has surprisingly little effect on the 
final cosine and L2 distance. 

4.2. Accuracy Along Lines and Curves 

Next we investigate how accuracy varies along a one-
dimensional subspace. For brevity let P(α) denote the 
weights at position α along the subspace, for α ∈ [0, 1]. 
We are interested in two quantities: (1) the accuracy of 
the neural network f(·, P(α)) and (2) the accuracy when 
the outputs f(·, P(α)) and f(·, P(1 − α)) are ensembled. 
Quantity (1) will determine if the subspace contains accu-
rate solutions. Quantity (2) will demonstrate if the subspace 
contains diverse solutions which produce high-accuracy en-
sembles. 

Quantities (1) and (2) are illustrated respectively by Figure 4 
and Figure 5 In both Figure 4 and Figure 5 the regularization 
strength β remains at the default value of 1, while Figure 6 
provides analogous results for β ∈ {0, 1, 2}. Note that 
Layerwise indicates that the layerwise training variant is 
employed (as described in section 3). 

The baselines included are standard training and a standard 
ensemble of two independently trained networks (requiring 
twice as many training iterations). In Appendix F we exper-
iment with additional baselines. There are many interesting 
takeaways from Figure 4, Figure 5, and Figure 6: 

1. Not only does our method find a subspace of accu-

rate solutions, but for β > 0 accuracy can improve 
over standard training. We believe this is because stan-
dard training solutions lie towards the periphery of a 
minimum (Izmailov et al., 2018) whereas our method 
traverses the the minimum. Solutions at the center 
tend to be less sharp than at the periphery, which is 
associated with better generalization (Dziugaite & Roy, 
2018). These effects may be compounded by the reg-
ularization term, which leads the subspaces towards 
wider minima. 

2. The ensemble of two models towards the endpoints of 
the subspace approaches, matches, or exceeds the en-
semble accuracy of two independently trained models. 
This is notable as the subspaces are found in only one 
training run. 

3. Subspaces found through the layerwise training vari-
ant have more accurate midpoints (α = 0.5) but less 
accurate ensembles. 

4.3. Performance of a Simplex Midpoint 

The previous section provided empirical evidence that the 
midpoint of a line (simplex with two endpoints) can outper-
form standard training in the same number of epochs, and 
hypothesized two explanations for this observation. In this 
section we demonstrate that this trend is amplified when 
considering a simplex with m endpoints for m > 2. 

Accuracy. The accuracy of a single model at center of a sim-
plex is presented by Figure 7. The boost over standard train-
ing is significant, especially for TinyImageNet and higher 
dimensional simplexes. Recall that when training a simplex 
with m endpoints we initialize m separate networks and, 
for each batch, randomly sample a network in their convex 
hull. We then use the gradient to move this m − 1 dimen-
sional subspace through the objective landscape. It is not 
obvious that this method should converge to a high-accuracy 
subspace or contain high-accuracy solutions. 

We compare a simplex with m endpoints with SWA (Iz-
mailov et al., 2018) when m checkpoints are saved and 
averaged, to maintain parity in the number of stored model 
parameters. For layerwise training our method outperforms 
or matches SWA in every case. We speculate that this may 
be true either because our midpoint lies closer to the min-
imum center than the stochastic average, or because our 
method finds a wider minimum then SWA. We are training 
a whole subspace, whereas SWA constructs a subspace after 
training. SWA can only travel to the widest point of the 
current minimum, while our method searches for a large flat 
minimum. 

Robustness to Label Noise; Calibration. Figure 8 demon-
strates that taking the midpoint of a simplex boosts robust-
ness to label noise and improves expected calibration error 
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Figure 7. The model at the center of a learned simplex with m endpoints improves accuracy over standard training and SWA (Izmailov 
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(ECE) for cResNet20 on CIFAR10. Note that CIFAR10 
with label noise c indicates that before training, a fraction c 
of training data are assigned random labels (which are fixed 
for all methods). In addition to a SWA baseline we include 
optimal early stopping (the best training accuracy for stan-
dard training, before over-fitting), label smoothing (Müller 
et al., 2019), and dropout (Srivastava et al., 2014). Label 
smoothing and dropout have a hyperparameter for which we 
try values {0.05, 0.1, 0.2, 0.4, 0.8} and report the best result 
for each plot. Expected calibration error (ECE) (Guo et al., 
2017) measures if prediction confidence and accuracy are 
aligned. A low ECE is preferred, since models with a high 
ECE are overconfident when incorrect or underconfident 
when correct. 

4.4. ImageNet Experiments 

In this section we experiment with a larger dataset— 
ImageNet (Deng et al., 2009)—for which networks are less 
overparameterized. In Figure 9 we visualize accuracy over 
a line, showing both (1) the accuracy of the neural network 
f(·, P(α)) and (2) the accuracy when the outputs of the 
networks f(·, P(α)) and f(·, P(1 − α)) are ensembled. In 
addition to testing the network on the clean dataset (left 
column), we show accuracy under the snow and contrast 
dataset corruptions found in ImageNet-C (Hendrycks & Di-
etterich, 2019). Finally, in the right column we show the 

relative difference in accuracy between two models on the 
line. There are two interesting findings from this experi-
ment: (1) it is possible to find a subspace of models, even 
on ImageNet, that matches or exceeds the accuracy of stan-
dard training. (2) Models along the line can exhibit varied 
robustness when faced with corrupted data. 

Finding (2) can be examined through the lens of underspec-
ification in deep learning. D’Amour et al. (2020) observe 
that independently trained models which perform identically 
on the clean test set behave very differently on downstream 
tasks. Here we observe this behavior for models in the same 
linearly connected region found in a single training run. 
This is a promising observation in the case that a valida-
tion set exists for downstream domains. In Appendix G we 
experiment with all corruptions types in ImageNet-C and 
demonstrate that the models we find tend to exhibit more 
robustness than standard training. 

The WideResNet50 and ResNet50 in Figure 9 are respec-
tively trained for 100 and 200 epochs (for both our method 
and the baseline). The smaller ResNet50 is trained for 
longer as, when trained for 100 epochs, the accuracy of 
the ResNet50 subspace falls slightly below that of stan-
dard training. However, when trained for even longer, the 
accuracy exceeds that of standard training. This trend is 
illustrated by Figure 10 which shows how accuracy and 
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Figure 9. Accuracy along one-dimensional subspaces (with the same visualization format as Figure 6) tested on (left column) ImageNet 
(Deng et al., 2009) and (middle columns) ImageNet-C (Hendrycks & Dietterich, 2019) for corruption types snow and contrast with 
severity levels 1, 3, and 5. Relative difference in accuracy for two models on a line is shown in the rightmost column—models on the line 
with the similar performance on the clean test set exhibit varied performance on corrupted images (D’Amour et al., 2020). 
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2017), an ensemble of 6 SWA checkpoints (Izmailov et al., 2018), and 6 samples from a gaussian fit to the SWA checkpoints. 

expected calibration error (ECE) (Guo et al., 2017) change 
as a function of training epochs. The subspace midpoint 
is consistently more calibrated than models found through 
standard training. 

Finally, Figure 12 (left) demonstrates that the midpoint of a 
line outperforms standard training and optimal early stop-
ping for various levels of label noise. 

4.5. Randomly Ensembling from the Subspace 

In Figure 11 we experiment with drawing multiple mod-
els from the simplex and ensembling their predictions. We 
consider a simplex with 6 endpoints and draw 6 models 

randomly (with the same sampling strategy employed dur-
ing training) and refer to the resulting ensemble as Simplex 
(Random Ensemble). We also experiment with a 6 model 
Snapshot Ensemble (Huang et al., 2017), ensembling 6 
SWA checkpoints using a cyclic learning rate (this differs 
slightly, but resembles FGE (Garipov et al., 2018)), and 
SWA-Gaussian (Maddox et al., 2019). Additional details 
for the baselines are provided in subsection D.4. Surpris-
ingly, ensembling 2 models from opposing ends of a linear 
subspace is still more accurate. Finally, in Appendix C we 
investigate the possibility of efficiently ensembling from a 
subspace without the cost. 
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4.6. Is Nonlinearity Required? 

Garipov et al. (2018); Draxler et al. (2018) demonstrate that 
there exists a nonlinear path of high accuracy between two 
independently trained models. Independently trained mod-
els are functionally diverse, resulting in high-performing 
ensembles. However, the linear path between independently 
trained models encounters a high loss barrier (Frankle et al., 
2020; Fort et al., 2020). In this section we aim to provide 
empirical evidence which answers the following question: 
is this energy barrier inevitable? Is it possible for linearly 
connected models to individually attain an accuracy that is 
at or below that of standard training, while their ensemble 
performance is at or above that of standard ensembles? In 
Figure 12 (right) we demonstrate that, for WideResNet50 
on ImageNet trained for 100 epochs, this high loss barrier 
is not necessary. In this one case we are concerned with 
existence and not training efficiency, so we find the requi-
site linearly connected models by training a line for 300 
epochs and interpolating slightly off the line (considering 
α = −0.05, 1.05). 

5. Conclusion 
We have identified and traversed large, diverse regions of the 
objective landscape. Instead of constructing a subspace post 
training, we have trained lines, curves, and simplexes of 
high-accuracy neural networks from scratch. However, our 
understanding of neural network optimization has evolved 
significantly in recent years and we expect this trend to 
continue. We anticipate that future work will continue to 
leverage the geometry of the objective landscape for more 
accurate and reliable neural networks. 
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