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Abstract

Most computer science conferences rely on paper
bidding to assign reviewers to papers. Although
paper bidding enables high-quality assignments
in days of unprecedented submission numbers,
it also opens the door for dishonest reviewers to
adversarially influence paper reviewing assign-
ments. Anecdotal evidence suggests that some
reviewers bid on papers by “friends” or collud-
ing authors, even though these papers are outside
their area of expertise, and recommend them for
acceptance without considering the merit of the
work. In this paper, we study the efficacy of such
bid manipulation attacks and find that, indeed,
they can jeopardize the integrity of the review
process. We develop a novel approach for paper
bidding and assignment that is much more robust
against such attacks. We show empirically that
our approach provides robustness even when dis-
honest reviewers collude, have full knowledge of
the assignment system’s internal workings, and
have access to the system’s inputs. In addition
to being more robust, the quality of our paper re-
view assignments is comparable to that of current,
non-robust assignment approaches.

1. Introduction

Peer review is a cornerstone of scientific publishing. It
also functions as a gatekeeper for publication in top-tier
computer-science conferences. To facilitate high-quality
peer reviews, it is imperative that paper submissions are re-
viewed by qualified reviewers. In addition to assessing
a reviewer’s qualifications based on their prior publica-
tions (Charlin & Zemel, 2013), many conferences imple-
ment a paper bidding phase in which reviewers express
their interest in reviewing particular papers. Facilitating
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bids is important because the review quality is higher when
reviewers are interested in a paper (Stent & Ji, 2018).

Unfortunately, paper bidding also creates the potential for
difficult-to-detect adversarial behavior by reviewers. In par-
ticular, a reviewer may place high bids on papers by “friends”
or colluding authors, even when those papers are outside of
the reviewer’s area of expertise, with the purpose of accept-
ing the papers without merit. Anecdotal evidence suggests
that such bid manipulation attacks may have, indeed, influ-
enced paper acceptance decisions in recent top-tier computer
science conferences (Vijaykumar, 2020; Littman, 2021).

This paper investigates the efficacy of bid manipulation
attacks in a realistic paper-assignment system. We find that
such systems are, indeed, very vulnerable to adversarial
bid, which is corroborated by prior work (Jecmen et al.,
2020). Furthermore, we design a paper-assignment system
that is robust against bid manipulation attacks. Specifically,
our system treats paper bids as supervision for a model
of reviewer preferences, rather than directly using bids to
assign papers. We then detect atypical patterns in the paper
bids by measuring their influence on the model, and remove
such high-influence bids as they are potentially malicious.

We evaluate the efficacy of our system on a novel, synthetic
dataset of paper bids and assignments that we developed
to facilitate the study of robustness of paper-assignment
systems. We carefully designed this dataset to match the
statistics of real bidding data from recent computer-science
conferences. We find that our system produces high-quality
paper assignments on the synthetic dataset, while also pro-
viding robustness against groups of colluding, adversarial
reviewers in a white-box setting in which the adversaries
have full knowledge of the system’s inner workings and its
inputs. We hope our findings will help computer-science
conferences in performing high-quality paper assignments
at scale, while also minimizing the surface for adversarial
behavior by a few bad actors in their community.

2. Bid Manipulation Attacks

We start by investigating the effectiveness of bid manipula-
tion attacks on a typical paper assignment system.

Paper assignment system. Most paper assignment systems
utilize a computed score s,.;, for each reviewer-paper pair
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Figure 1. Probability of assigning an adversarial reviewer to the target paper before and after the reviewer executes their black-box bid

manipulation attack. See text for details.

(r,p) that reflects the degree of relevance between the re-
viewer and the paper (Hartvigsen et al., 1999; Goldsmith &
Sloan, 2007; Tang et al., 2012; Charlin & Zemel, 2013). The
conference organizer can then maximize utility metrics such
as the total relevance score whilst maintaining appropriate
balance constraints: i.e., there are an adequate number of,
say, R reviewers per paper and every reviewer receives a
manageable load of at most P papers. This approach gives
rise to the following optimization problem:

m n
E E Ar,pSr,p

r=1p=1

max
a€{0,1}mxn

(1)

subject to ZQT*P:R Vp, Zarﬁng vr,

r=1 p=1

where m and n refer to the total number of reviewers and
papers, respectively. Eq. (1) is an assignment problem
that can be solved using standard techniques such as the
Hungarian algorithm (Kuhn, 1955).

The reviewer-paper relevance score, s,. ,,, is critical in obtain-
ing high-quality assignments. Arguably, an ideal relevance
score incorporates both the reviewer’s expertise and interest
towards the paper (Stent & Ji, 2018). Approaches for mea-
suring expertise include computing the similarity of textural
features between reviewers and papers (Dumais & Nielsen,
1992; Mimno & McCallum, 2007; Charlin & Zemel, 2013)
as well as using authorship graphs (Rodriguez & Bollen,
2008; Liu et al., 2014). In addition to these features, pa-
per assignment systems generally consider reviewer interest
obtained via self-reported paper bids. For example, the
NeurIPS-2014 assignment system (Lawrence, 2014) uses a
formula for s,. ,, that incorporates the reviewer’s and paper’s
subject area, TPMS score (Charlin & Zemel, 2013), and the
reviewer’s bid. Each reviewer may bid on a paper as none,
in a pinch, willing, or eager' to express their preference.

"For simplicity, we exclude the option not willing that expresses
negative interest.

The none option is the default bid when a reviewer did not
enter a bid.

Bid manipulation attacks. Although incorporating re-
viewer interest via self-reported bids is beneficial to the
overall assignment quality, it also allows a malicious re-
viewer to bid eager on a paper that is outside their area of
expertise, with the sole purpose of influencing the accep-
tance decision of a paper that was authored by a “friend”
or a “rival”. If a single bid has too much influence on the
overall assignment, such bid manipulation attacks may be
effective and jeopardize the integrity of the review process.

We demonstrate the feasibility of a simple black-box bid
manipulation attack against the assignment system in Eq. (1).
For a target paper p, the malicious reviewer attacks the
assignment system by bidding eager for p and none for all
other papers. We evaluate the effectiveness of the attack by
randomly picking 400 papers from our synthetic conference
dataset (see Section 5), and determine paper assignments
using Eq. (1) (with R = 3 and P = 6) using relevance
scores from the NeurIPS-2014 system (Lawrence, 2014).
Fig. 1 (left) shows the fraction of adversarial reviewers
(m = 2,483) that can secure their target paper in the final
assignment via the bid manipulation attack. As an attack is
easier if a reviewer is already ranked high for a particular
paper (e.g., because nobody else bids on this paper, or the
subject areas match), we visualize the success rate as a
function of rank of the “true” paper-reviewer relevance score.
More precisely, we rank all reviewers by their original (pre-
manipulation) relevance score s, , and group them into bins
of increasing size.

The light gray bar in each bin reports the assignment suc-
cess rate if all reviewers bid honestly. In the absence of
malicious reviewers, the majority of assignments go to re-
viewers ranked 1 to 7. However, with malicious bids, any
reviewer stands a good chance of being assigned the target
paper. For instance, the chance of getting a target paper for
a reviewer ranked between 16 and 31 increases from 0% to
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over 70% when bidding maliciously. Even reviewers with
the lowest ranks (2048 and lower) have a 40% chance of
being assigned the target paper by just changing their bids.
This possibility is especially concerning because it may be
much easier for an author to corrupt a non-expert reviewer
(i.e., areviewer with a relatively low rank), simply because
there are many more such reviewer candidates.

3. Predicting Relevance Scores

The success of the bid manipulation attack exposes an inher-
ent tension in the assignment process. Assigning papers to
a reviewer who has expressed explicit interest helps in elic-
iting high-quality feedback. However, relying too heavily
on individual bids paves the way for misuse by malicious
reviewers. To achieve a better trade-off, we propose to use
the bids from all reviewers (of which the vast majority are
honest) as labels to train a supervised model that predicts
bids as the similarity score s, ,, and all other indicators
(e.g., subject area matches, TPMS score (Charlin & Zemel,
2013), and paper title) as features. This indirect use of bids
allows the scoring function to capture reviewer preferences
but reduces the potential for abuse. Later, we will show
that this approach also allows for the development of active
defenses against bid manipulation attacks.

Scoring model. Let X € R(™™")*4 be a feature matrix
consisting of d-dimensional feature vectors for every pair of
m reviewers and n papers. Let ) denote the set of possible
bids in numerical form, e.g. Y = {0,1,2,3}. We define
y € Y™™ as the label vector containing the numerical bids
for all reviewer-paper pairs. We define a ridge regressor that
maps reviewer-paper features to corresponding bids, similar
to the linear regression model from Charlin & Zemel (2013):

w* = argming | Xw — y[ + Alwl3. @

To ensure that no single reviewer has disproportionate in-
fluence on the model, we restrict the maximum number of
positive bids from a reviewer to be at most U = 60 and
subsample bids of a reviewer whenever the number of bids
exceeds U. In a typical CS conference, most reviewers bid
on no more than 60 papers (out of thousands of submis-
sions) (Shah et al., 2018).

The trained model w* can predict reviewer interest by com-
puting a score s, ,, for a reviewer-paper pair (7, p) as follows:

Srp=Xrpw* =X, , H ' Xy, 3)

where H = X T X 4 \I is the ridge Hessian (size d x d) and
X, is the feature vector for the pair (r, p). These predicted
scores can then be used in the assignment algorithm in place
of bids. In Appendix B, we validate the prediction accu-
racy of our model using the average precision-at-k (AP@k)
metric.

There is an important advantage to our method: bidding is
a laborious and monotonous task, and as mentioned above
most reviewers only bid on very limited papers. It is likely
that only a partial set of bids is observed among all papers
that the reviewer is interested in. The scoring model could
fill in missing scores by learning the latent interest from
the features of papers and reviewers. Completing the full
bidding matrix improves the assignment quality, particularly
for papers that received few bids originally.

The choice of regression loss serves an important purpose.
Since the bid value (between 0 and 3) reflects the degree of
interest from a reviewer, the loss should reflect the severity
of error when making a wrong prediction. For example, if a
reviewer expresses eager interest (bid score 3), predicting
no bid (bid score 0) would incur a much greater loss than
predicting willing (bid score 2).

Effect against simple black-box attack. Fig. 1 (right)
shows the effect of the proposed scoring model against
the bid manipulation attack from Section 2. The assignment
probability for honest bidders (light orange) is similar to
that of the NeurIPS-2014 system across different bins of
reviewer rank. However, deviations from benign bidding
behavior are clearly corrected by the model: in fact, the
assignment probability decreases after the attack (dark or-
ange). This can be explained by the fact that our approach
does not use bids to assign reviewers to papers directly, but
instead to learn for what type of papers a reviewer may be
suitable. The reviewer is actually well-suited for high rank-
ing submissions, but by only bidding on the target paper
(instead of honest bids on similar submissions) the model
receives less signal that suggests the reviewer is a match for
the target paper.

4. Defending Against Colluding Bid
Manipulation Attackers

Although the learning-based approach appears robust
against manipulation of bids by one reviewer, attackers may
have stronger capabilities. Specifically, an adversary can
modify their bids based on knowledge of a friend/rival’s
submissions or another reviewer’s bids. Moreover, adver-
sarial reviewers may collude to secure the assignment of
a specific paper. We capture such capabilities in a threat
model that describes our assumptions about the adversary.
We design an optimal white-box attack in this threat model
that drastically improves the adversary’s success rate. Both
the threat model and the white-box attack are intentionally
designed to provide very broad capabilities to the adversary.
Next, we design a defense that detects and removes white-
box adversaries from the reviewer pool to provide security
even under the new threat model.
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Threat Model. We make the following assumptions about
adversarial reviewers: 1. The adversary may collude with
one or more reviewers to secure a target paper’s assign-
ment.? If any of the colluding reviewers are assigned the
paper in question, the attack is considered successful. Col-
lusion with any reviewer is allowed except the top-ranked
candidates (based on honest bidding) as this would not be
an abuse of the bidding process®. 2. The adversary can-
not manipulate any training features. We are interested in
preventing against the additional security risk enabled by
the bidding mechanism. An attack that succeeds by ma-
nipulating features can also be used against an automated
assignment system that does not allow bidding. 3. The ad-
versary may have full knowledge of the assignment system.
4. The adversary may have direct access to the features and
bids of all other reviewers. 5. The adversary may be able to
arbitrarily manipulate his/her bids and those of anyone in
the colluding group.

4.1. White-box Attack

To successfully attack the assignment system under these
assumptions, the adversary needs to maximize the predicted
relevance score of the target paper for him/herself and/or the
other colluding reviewers. This amounts to executing a data
poisoning attack (Biggio et al., 2012; Xiao et al., 2015; Mei
& Zhu, 2015; Jagielski et al., 2018; Koh et al., 2018) against
the regression model that is used to predict scores, aiming to
alter the score prediction for a specific paper-reviewer pair.

Non-colluding attack. We first devise an attack that max-
imizes the malicious reviewer’s score s,.,, for target paper
p in the non-colluding setting. We represent reviewers as
[m] ={1,...,m} and let

Vieas =1y € V" : {q:y, > 0} < U}

denote the feasible set of bidding vectors for a particular
reviewer for which the number of positive bids is at most U.
Adversary r can change y, to the y/. € Vi, that maximizes
the relevance score:

* L T T
St = . XepH (X0 4 Xy Yo\ )
= Juax X HOH Xy, = Xy + X y).

It is straightforward to see that sy , maximally increases the

score prediction for reviewer r:

* . *
Asnp =S

—Spp= max X, ,H~ 1XT(yT Vi)
V1€ Vreas
4)

2e.g. by posting the paper ID in a private chat channel of
college alumni or like minded members of the community.

3For this reason, our framework is not suitable for preventing
the attack in (Vijaykumar, 2020) since collusion likely occurred in
the author stage.

Note that Eq. (4) maximizes the inner product between
z:= X, ,H1X,[ andy! — y,. To achieve the maximum,
papers g corresponding to the top-U positive values in z
should be assigned y, , = max ), and the remaining bids
are set to 0. This requires the adversary to solve a top-U
selection problems, which can be done in O(d? + n(d +
log U)) (Cormen et al., 2009).

Colluding attack. Adversarial reviewers can collude to
more effectively maximize the predicted score for reviewer
r. An attack in this setting maximizes over the colluding
group, M, and over the bids of every reviewer in M. We
note that Eq. (4) is not specific to reviewer r, but that the
influence of any reviewer t’s bids on score prediction s,
has the form:

AySpp 7;2%1}: X, pH™ 1XT( —yi)-
t eas

Hence, the influence from the members of M on
S, p are independent, which implies the adversaries
can adopt a greedy approach. Specifically, M, col-
luding adversaries can alter the (M,n)-dimensional
training label vector yu to ¥y, € Vi to max-
imize the score prediction for reviewer r via:

Asl = max X, H VX (v — ,
PP (Myh)EP(rML) P M =ym)

= max max X, ,H X, (v}, — yi)
MC[m]:re M, M|=M, ¥4 €Vreas
teM
= max E Aysy Dy )
MC[m]:re M, M|=M, fem

where P(r, M,) denotes the set of possible colluding parties
of size M, and their bids:

P(r,M,) = {(M,y’) : M C [m],r € M,|M|= M,
and y'y € Vit }-

The last line in Eq. (5) can be computed by first evaluating
Ays,p, forevery t € [m] \ {r}, and then greedily selecting
the top-(M, — 1) reviewers to form the colluding party with
r. The computational complexity of the resulting attack is
O(d? + mn(d + logU) + mlog M,)).

4.2. Active Defense Against Colluding Bid
Manipulation Attacks

Both the black-box attack from Section 2 and the white-box
attack described above adversarially manipulate paper bids.
In contrast to honest reviewers whose bids are strongly cor-
related with their expertise and subject of interest, attackers
provide “surprising” bids that have a large influence on the
predictions of the scoring model. This allows us to detect
potentially malicious bids using an outlier detection algo-
rithm. Specifically, we make our paper assignment system
robust against the colluding bid manipulation attacks by
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Algorithm 1 Paper assignment system that is robust against
colluding bid manipulation attacks.
1: Predict relevance scores s,.;, for all reviewer-paper
pairs;
2: Initialize candidate set C = {(r,p)
rank(s,.,,) is at least K for paper p};
3: for reviewer-paper pair (r,p) € C do
Compute relevance score sip using Eq. (7)
5: Remove (r,p) from C'if rank(s] ) is below K for
paper p;
6: end for
7: Solve the assignment problem in Eq. (1) using s,.,, for
pairs in C'.

detecting and removing training examples that have a dis-
proportional influence on model predictions. We make the
same assumptions about the attacker as in Section 4.1, and,
in addition, that they are unaware of our active defense.

To implement this system, we note that given a set of mali-
cious reviewers M, we can re-compute the relevance scores
for a reviewer-paper pair (7, p) by removing these reviewers
from the training set:

~ -1 T
Srp = XopH jge X ppey Mo,

where Hpqe = X e X + Al is the Hessian matrix for
data points in the complement of the malicious reviewer set
M. We assume that at most M, reviewers collude to form
set M. Intuitively, 5, , reflects the relevance score for the
pair (r, p) as predicted by other reviewers. Relying on the
assumption that the vast majority of reviewers are benign,
5,.p 18 likely close to the unobserved true preferences had r
been benign.

Following work on robust regression (Jagielski et al., 2018;
Chen et al., 2013; Bhatia et al., 2015), this allows us to com-
pute relevance scores that ignore the most likely malicious
reviewers in M by evaluating:

T . 1 vT ~
sl = min XooH e X pqeYMme < Spp-
"R T pMCimlreMM=My P MeAMmeY rp

(6)
That is, sl’p overestimates the decrease in the predicted rel-

evance score for (r, p) had r been benign. The optimization
problem in Eq. (6) is intractable because it searches over
( ](4”;_11) = O(m™¢) subsets of reviewers, M, and because
it inverts a d x d Hessian for every M. To make optimiza-
tion tractable, we approximate the Hessian H . by H~!,
which is accurate for small M. This approximation facili-
tates a greedy search for M because it allows Eq. (6) to be

decomposed:
T ; -1xT
sl =~ min XrpH "X (Y Me
TP pMCmlreM M| =My P M
—1yT
=X, ,H "X y—

max

X, H ' Xy, (7
Mg[m]:teM,\M\:MdZ P e (D

teM

Eq. (7) can be computed efficiently by sorting the val-
ues of S = {X, ,H 'X;y; : t # r} and selecting r
as well as the top My — 1 corresponding reviewers in S.
The computational complexity of the resulting algorithm is
O(d? + mnd + mlog M,)) for each pair (r,p).

Assignment algorithm. Efficient approximation for the
robust relevance score slm enables our robust assignment
algorithm, which proceeds as follows. We first form the
candidate set C' of reviewer-paper pairs by selecting the
top- K reviewers for each paper according to the predicted
relevance score s, ,. For each pair (r, p) € C, the algorithm
marks 7 as potentially malicious and removes the pair (7, p)
from C' if  would not have belonged to the candidate set
using the robust relevance score Sim. Since si,p < Srp
an M,-colluding attack is always marked as malicious if
M, < My. After removing every potentially malicious pair
from C, the assignment problem in Eq. (1) is solved over
the remaining reviewer-paper pairs in the candidate set to
produce the final assignment*. The resulting assignment
algorithm is summarized in Algorithm 1. The algorithm
trades off two main goals:

1. Every paper needs to be assigned to a sufficient number
of reviewers that have the expertise and willingness to
review. Therefore, the approach that removes potentially
malicious reviewer candidates needs to have a low false
positive rate (FPR).

2. The final assignment should be robust against collusion
attacks. Therefore, the approach that filters out poten-
tially malicious reviewers needs to have a high true posi-
tive rate (TPR).

This trade-off between FPR and TPR is governed by the hy-
perparameter M. Using a higher value of M can provide
robustness against larger collusions, but it may also remove
many benign reviewers from the candidate set even when
insufficient alternative reviewers are available. We perform
a detailed study of this trade-off in Section 5.

5. Experiments

We empirically study the efficacy of our robust paper bid-
ding and assignment algorithm. Our experiments show that
our assignment algorithm removes a large fraction of mali-
cious reviewers, while still preserving the utility of bids for
honest reviewers.

“This can be achieved by setting s,.,, = —oo forall (r,p) ¢ C.
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Figure 2. Success rate after the white-box bid manipulation attack
against an undefended linear regression scoring model.

Dataset. Because real bidding data is not publicly available,
we construct a synthetic conference dataset from the Seman-
tic Scholar Open Research Corpus (Ammar et al., 2018).
This corpus contains publicly available academic papers an-
notated with attributes such as citation, venue, and field of
study. To simulate a NeurIPS-like conference environment,
we collect n = 2446 papers published in Al conferences
between 2014 and 2015 to serve as submitted papers. We
also select m = 2483 authors to serve as reviewers, and
generate bids based on paper citations. Generated bids are
selected from the set Y = {0, 1, 2, 3}, corresponding to the
bids none, in a pinch, willing, and eager.

We generated bids in such a way as to mimic bidding statis-
tics from a recent, major Al conference. Our paper and
reviewer features include paper/reviewer subject area, pa-
per title, and a TPMS-like similarity score. We refer to the
appendix for more details on our synthetic dataset. For full
reproducibility we release our code® and synthetic data®
publicly and invite program chairs across disciplines to use
our approach on their real bidding data.

5.1. Effectiveness of White-Box Attacks

We first show that the white-box attack from Section 4.1 can
succeed against our relevance scoring model if detection of
malicious reviewers is not used. We perform the white-box
attacks as follows:

1. The relevance scoring model is trained to predict scores
sy, for every reviewer-paper pair.

2. We randomly select 400 papers and rank all m = 2483
reviewers for these papers based on s;. .

3. We discard the K = 50 highest-ranked reviewers as at-
tacker candidates for paper p because high-ranked reviewers
need not act maliciously to be assigned.

‘https://github.com/facebookresearch/secu
re-paper-bidding

6https://drive.google.com/drive/folders/l
khI%aPy_8F0GtAzwR-48Jc3rsQmBhfe
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Figure 3. TPR for detecting successful white-box attacks using
Algorithm 1. For colluding parties of size M, < Mg, the detection
algorithm has a near-perfect TPR. Detection remains viable even
when M, > M, for moderately high values of M.

4. We group the remaining reviewers into bins of exponen-
tially growing size (powers of two), and sample 10 malicious
reviewers from each bin without replacement.

5. Each selected reviewer chooses its most suitable M,
colluders and modifies their bids using the attack from Sec-
tion 4.1, targeting paper p.

Result. We run our assignment algorithm on the maliciously
modified bids and evaluate the chance of assignment for
reviewer r before and after the attack. Fig. 2 shows the
fraction of malicious reviewers that successfully alter the
paper assignments and is assigned their target paper. Each
line shows the attack success rate with a certain colluding
party size of M,. When bidding honestly, all reviewers are
below rank K = 50 and have no chance of being assigned.
With a colluding party size of M, = 10, a reviewer has a
22% chance of being assigned the target paper at an original
rank of 51. At the same rank, the success rate is up to 5%
even when no collusion occurs. Increasing the collusion
size M, strictly increases the assignment probability, while
attackers starting from a lower original rank have a lower
success rate. The latter trend shows that the model provides
a limited degree of robustness even without the detection
mechanism.

5.2. Effectiveness of the Robust Assignment Algorithm

We evaluate the robust assignment algorithm against suc-
cessful attacks from Section 4.1.

What percentage of attacks is accurately detected?
Fig. 3 shows the true positive rate (TPR) of detecting ma-
licious reviewers as a function of collusion size, M, (on
the z-axis), for different values of the hyperparameter M.
First, we measure the algorithm against all attacks that suc-
ceeded against the undefended scoring model (c¢f. Fig. 2).
Fig. 3 shows that when M, < M, the detection TPR is
very close to 100%, which implies almost all malicious
reviewers are removed in this case. The TPR decreases as
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Setting FPR Assignment Quality # of under-
Top-5 Top-50 | Frac. of pos. Avg. bid score Avg. TPMS Avg. max. TPMS reviewed

NeurIPS-2014 - - 0.990 2.732 0.732 0.737 -
TPMS only - - 0.323 0.872 0.949 0.997 -
Mg;=0 | - - \ 0.442 1.200 0.848 0.943 -
Mg =1 0.022  0.259 0.443 1.201 0.849 0.943 0
Mg=2 0.046  0.428 0.442 1.199 0.850 0.944 0
Mg =3 0.069  0.528 0.439 1.191 0.852 0.945 4
Myg=4 0.100  0.600 0.435 1.181 0.855 0.947 7
Mg =5 0.139  0.657 0.433 1.172 0.859 0.950 24

Table 1. FPR and assignment quality after detection using different settings of Mg. A higher value of M, offers a better protection against
large colluding parties (see Fig. 3), but also increases the detection FPR. Nevertheless, assignment quality is minimally impacted even
with a high FPR since the majority of false positives have low rank and are unlikely to be assigned to begin with.

the size of the collusion, M, increases but still provides
some protection even when M, > M. For instance, when
M, = 5 and M, = 4 (darkest blue line), approximately
40% of the successful attacks are detected. Increasing M
will protect against larger colluding parties at the cost of
increasing the false positive rate (FPR), that is, the number
of times in which an honest reviewer is mistaken for an
adversary. A high FPR can negatively impact the quality of
the assignments.

What is the quality of the final assignments? To study
the effect of false positives from detection on the final paper
assignments, we also evaluate assignment quality in terms of
fraction of positive bids, average bid score, average TPMS,
and average maximum TPMS (i.e., maximum TPMS score
among assigned reviewers for each paper averaged over all
papers). Higher values of these metrics indicate a higher
assignment quality. The first row in Table 1 shows the as-
signment quality when using the NeurIPS-2014 (Lawrence,
2014) relevance scores. As expected, it over-emphasizes
positive bids, which constitutes its inherent vulnerability.
The second line shows the assignment quality when using
only the TPMS score, which serves as a baseline for evalu-
ating how much utility from bids is our robust assignment
framework preserving. In contrast, using TPMS scores over-
emphasizes average TPMS and average maximum TPMS.

The third line shows our assignment algorithm using the
linear regression model without malicious reviewer detec-
tion (My = 0). As it fills in the initially sparse bidding
matrix, it has significantly more papers to choose from and
yields assignments with fewer positive bids — however the
assignment quality is substantially higher in terms of TPMS
metrics compared to when using NeurIPS-2014 scores. The
regression model offers a practical trade-off between rely-
ing on bids that reflect reviewer preference and relying on
factors related to expertise (such as TPMS).

The remaining rows report results for the robust assignment

algorithm with increasing values of M. As expected, detec-
tion FPR increases as M increases, but only has a limited
effect on the assignment quality metrics. The main reason
for this is that most false positives are low-ranked reviewers,
who are unlikely to be assigned the paper even if they were
not excluded from the candidate set. Indeed, detection FPR
is significantly lower for top-5 reviewers (second column)
compared to that of top-50 reviewers (third column). Over-
all, our results show that the assignment quality is hardly
impacted by the detection mechanism.

We observed that a small number of papers were not as-
signed sufficient reviewers because the detection removed
too many reviewers from the set of candidate reviewers for
those papers. We report this number in the last column (#
of under-reviewed) of Table 1. Although this is certainly a
shortcoming of the robust assignment algorithm, the number
of papers with insufficient candidates is small enough that
it is still practical for conference organizers to assign them
manually.

Comparison with robust regression. One effective de-
fense against label-poisoning attacks for linear regression is
the TRIM algorithm (Jagielski et al., 2018), which fits the
model on a subset of the points that incur the least loss. The
algorithm assumes that L out of the mn training points are
poisoned and optimize:

min [ X7 w —y* |3 + Alwl3
w,T
st. ZCA{L,...,mn},|Z] =mn— L,

where X7,y denote the subset of mn — L training data
points selected by the index set Z. We apply TRIM to
identify the L poisoned pairs (r, p) and remove them from
the assignment candidate set. We then proceed to assign the
remaining mn — L pairs using Eq. (3).

Table 2 shows the comparison between TRIM and our robust
assignment algorithm in terms of assignment quality and
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Defense Assignment Quality Detection TPR
Frac. of pos. Avg. bid score Avg. TPMS Avg. max. TPMS | Mo =1 Ma,=2 Ma=3 M.=4 M,=5
TRIM (L = 10000) 0.439 1.19 0.848 0.943 0.201 0.081 0.037 0.035 0.054
TRIM (L = 30000) 0.219 0.439 0.816 0917 0.986 0.966 0.942 0.924 0.919
Algorithm 1 (Mg = 1) 0.443 1.201 0.849 0.943 1.000 0.077 0.000 0.000 0.000
Algorithm 1 (Mg = 5 0.433 1.172 0.859 0.950 1.000 1.000 1.000 1.000 1.000

Table 2. Comparison of assignment quality and detection TPR against white-box attack between the TRIM robust regression algorithm

and our robust assignment algorithm. See text for details.

detection TPR. The first and third rows correspond to the
TRIM algorithm and Algorithm 1 that achieve a comparable
assignment quality. Both methods fail to detect colluding
attacks with M, > 1, but Algorithm 1 is drastically more ef-
fective when M, = 1. The second and fourth rows compare
settings of TRIM and Algorithm 1 that achieve a similar de-
tection TPR. Indeed, both have close to 100% detection rate
for M, = ., 5. However, the assignment quality for
TRIM is much worse, with all quality metrics being lower
than using TPMS score alone (c¢f: row 2 in Table 1). Note
that TRIM requires a drastic overestimate of the number of
poisoned data (L = 30, 000) in order to detect most attack
instances, which means that many benign training samples
are being misidentified as malicious.

Running time. As described in Section 4.2, our detection
algorithm has a computational complexity of O(d? +mnd +
mlog My) for each reviewer-paper pair. In practice, pairs
belonging to the same paper can be processed in a batch
to re-use intermediate computation, which amounts to an
average of 26 seconds per paper. This process can be easily
parallelized across papers for efficiency.

5.3. Improved Black-box Attack

The white-box attack from Section 4.1 assumed that the
adversary has extensive knowledge about the assignment
system and all reviewers’ features and bids. In this sec-
tion, we propose a more realistic colluding black-box attack,
where the adversary only has access to the features and bids
of reviewers in the colluding party. This attack represents
a reasonable approximation of what a real world adversary
could achieve, and we show that it is potent against the scor-
ing model in Section 3 absent of any detection mechanism.
We further show the effectiveness of our detection algorithm
against this colluding black-box attack.

Colluding black-box attack. The failure of the simple
black-box attack from Section 2 is due to the malicious
reviewer r bidding positively only on a single paper, instead
of also on a group of papers that are similar to p. We
alter the attack strategy by giving the largest bid score to
U = 60 papers p’ that are most similar to p (including p
itself). In practice, this can be done by comparing the titles
and abstracts of p’ to the target paper p. We simulate this
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Figure 4. Success rate after the colluding black-box attack against
an undefended linear regression scoring model.

attack in our experiment by select papers p” whose feature
vector X, have a high inner product with X, .

We can extend this strategy to allow for colluding attacks.
The malicious reviewer first selects M, — 1 reviewers with
the most similar background to form the colluding group.
In simulation, we measure reviewer similarity by the inner
product between their respective reviewer-related features.
Mimicking r’s paper selection strategy, every reviewer 7’ in
the colluding group now gives the largest bid score to the
U = 60 papers p’ with the highest inner product between
Xrlyp/ and Xr’p.

Attack performance. Fig. 4 shows the success rate of
the colluding black-box attack against the linear regression
model. Note that this attack is much more successful than
the simple black-box attack from Section 2, which had a
success rate of 0% for all reviewers below rank 16. Here, the
success rate before attack is initially 0%, which increased to
close to 5% after attack even without collusion (M, = 1).
Increasing the colluding party size strictly improves attack
performance, while attackers with lower initial rank are
less successful. Compared to the white-box attack from
Section 4.1 (see Fig. 2), the colluding black-box attack is
substantially less potent as expected.

Detection performance. For completeness, we evaluate
the detection algorithm from Section 4.2 against successful
colluding black-box attacks. In Fig. 5, we plot detection
TPR as a function of the size of the colluding party (M)
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Figure 5. TPR for detecting successful colluding black-box attacks
using Algorithm 1.

for various choices of the detection parameter M. Results
show that detection TPR is close to 1 when M, < My,
and remains very high for M, > M,. For instance, at
M, = 10 and M, = 5, detection TPR is above 80% for
successful attacks, which is in sharp contrast with the same
setting in Fig. 3 for the white-box attack, where TPR is
reduced to 0%. The detection performance against this more
realistic colluding black-box attack further validates our
robust assignment algorithm as a practical countermeasure
against bid manipulation.

6. Related Work

Our work fits in a larger body of work on automatic paper
assignment systems, which includes studies on the design
of relevance scoring functions (Dumais & Nielsen, 1992;
Mimno & McCallum, 2007; Rodriguez & Bollen, 2008; Liu
et al., 2014) and appropriate quality metrics (Goldsmith &
Sloan, 2007; Tang et al., 2012). These studies have con-
tributed to the development of conference management plat-
forms such as EasyChair, HotCRP, and CMT that support
most major computer science conferences.

Despite advances in automatic paper assignment, (Rennie,
2016) highlights shortcomings of peer-review systems ow-
ing to issues such as prejudices, misunderstandings, and
corruption, all of which serve to make the system ineffi-
cient. For instance, the standard objective for assignment
(say, Eq. (1)) seeks to maximize the total relevance of as-
signed reviewers for the entire conference, which may be
unfair to papers from under-represented areas. This has led
to efforts that design objective functions and constraints to
promote fairness in the assignment process for all submitted
papers (Garg et al., 2010; Long et al., 2013; Stelmakh et al.,
2018; Kobren et al., 2019).

Furthermore, the assignment problem faces the additional
challenge of coping with the implicit bias of reviewers (Stel-
makh et al., 2019). This issue is particularly prevalent when
authors of competing submissions participate in the review

process, as they have an incentive to provide negative re-
views in order to increase the chance of their own paper
being accepted (Anderson et al., 2007; Thurner & Hanel,
2011). In order to alleviate this problem, recent studies have
devised assignment algorithms that promote impartiality in
reviewers (Aziz et al., 2016; Xu et al., 2018). We contribute
to this line of work by identifying and removing reviewers
who adversarially alter their bids to be assigned papers for
which they have adverse incentives.

More recently, Jecmen et al. (2020) studied the bid manip-
ulation problem and considered an orthogonal approach to
defending against it. Their method focuses on probabilistic
assignment and upper limits the assignment probability for
any paper-reviewer pair. As a result, the success rate of a
bid manipulation attack is reduced. In contrast, our work
seeks to limit the disproportional influence of malicious
bids rather than uniformly across all paper-reviewer pairs,
and further considers the influence of colluding attackers on
the assignment system.

7. Conclusion

This study demonstrates some of the risks of paper bid-
ding mechanisms that are commonly utilized in computer-
science conferences to assign reviewers to paper submis-
sions. Specifically, we show that bid manipulation attacks
may allow adversarial reviewers to review papers written
by friends or rivals, even when these papers are outside of
their area of expertise. We developed a novel paper assign-
ment system that is robust against such bid manipulation
attacks, even in settings when multiple adversaries collude
and have in-depth knowledge about the assignment system.
Our experiments on a synthetic but realistic dataset of con-
ference papers demonstrate that our assignment system is,
indeed, robust against such powerful attacks. At the same
time, our system still produces high-quality paper assign-
ments for honest reviewers. Our assignment algorithm is
computationally efficient, easy to implement, and should
be straightforward to incorporate into modern conference
management systems. We hope that our study contributes
to a growing body of work aimed at developing techniques
that can help improve the fairness, objectivity, and quality
of the scientific peer-review process at scale.

Acknowledgements

This research is supported by grants from the National
Science Foundation NSF (I1I-1618134, III- 1526012, IIS-
1149882, 1IS-1724282, and TRIPODS-1740822, OAC-
1934714), the Bill and Melinda Gates Foundation, and the
Cornell Center for Materials Research with funding from the
NSF MRSEC program (DMR-1719875), and SAP America.



Making Paper Reviewing Robust to Bid Manipulation Attacks

References

Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy,
L., Crawford, M., Downey, D., Dunkelberger, J., Elgo-
hary, A., Feldman, S., Ha, V., et al. Construction of
the literature graph in semantic scholar. arXiv preprint
arXiv:1805.02262, 2018.

Anderson, M. S., Ronning, E. A., De Vries, R., and Mar-
tinson, B. C. The perverse effects of competition on
scientists’ work and relationships. Science and engineer-
ing ethics, 13(4):437-461, 2007.

Aziz, H., Lev, O., Mattei, N., Rosenschein, J. S., and Walsh,
T. Strategyproof peer selection: Mechanisms, analyses,
and experiments. In Thirtieth AAAI Conference on Artifi-
cial Intelligence, 2016.

Bhatia, K., Jain, P, and Kar, P. Robust regression via hard
thresholding. In Advances in Neural Information Process-
ing Systems, pp. 721-729, 2015.

Biggio, B., Nelson, B., and Laskov, P. Poisoning at-
tacks against support vector machines. arXiv preprint
arXiv:1206.6389, 2012.

Charlin, L. and Zemel, R. The toronto paper matching
system: an automated paper-reviewer assignment system.
In ICML, 2013.

Chen, Y., Caramanis, C., and Mannor, S. Robust sparse
regression under adversarial corruption. In International
Conference on Machine Learning, pp. 774-782, 2013.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009. ISBN 0262033844.

Dean, J. and Henzinger, M. R. Finding related pages in
the world wide web. Computer networks, 31(11-16):
1467-1479, 1999.

Dumais, S. T. and Nielsen, J. Automating the assignment
of submitted manuscripts to reviewers. In Proceedings of
the 15th annual international ACM SIGIR conference on
Research and development in information retrieval, pp.

233-244, 1992.

Garg, N., Kavitha, T., Kumar, A., Mehlhorn, K., and Mestre,
J. Assigning papers to referees. Algorithmica, 58(1):
119-136, 2010.

Goldsmith, J. and Sloan, R. H. The ai conference paper
assignment problem. In Proc. AAAI Workshop on Prefer-
ence Handling for Artificial Intelligence, Vancouver, pp.
53-57,2007.

Hartvigsen, D., Wei, J. C., and Czuchlewski, R. The con-
ference paper-reviewer assignment problem. Decision
Sciences, 30(3):865-876, 1999.

Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru,
C., and Li, B. Manipulating machine learning: Poisoning
attacks and countermeasures for regression learning. In
2018 IEEE Symposium on Security and Privacy (SP), pp.
19-35. IEEE, 2018.

Jecmen, S., Zhang, H., Liu, R., Shah, N. B., Conitzer, V.,
and Fang, F. Mitigating manipulation in peer review
via randomized reviewer assignments. arXiv preprint
arXiv:2006.16437, 2020.

Kobren, A., Saha, B., and McCallum, A. Paper matching
with local fairness constraints. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1247-1257, 2019.

Koh, P. W,, Steinhardt, J., and Liang, P. Stronger data
poisoning attacks break data sanitization defenses. arXiv
preprint arXiv:1811.00741, 2018.

Kuhn, H. W. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83—
97, 1955.

Lawrence, N. Paper allocation for nips, 2014.
https://inverseprobability.com/201
4/06/28/paper—allocation-for-nips.

[Online; accessed on 2020-10-02].

Littman, M. L. Collusion rings threaten the integrity of
computer science research. Communications of the ACM,
64(6):43-44, 2021.

Liu, X., Suel, T., and Memon, N. A robust model for paper
reviewer assignment. In Proceedings of the 8th ACM
Conference on Recommender systems, pp. 25-32, 2014.

Long, C., Wong, R. C.-W., Peng, Y., and Ye, L. On good and
fair paper-reviewer assignment. In 2013 IEEE 13th In-
ternational Conference on Data Mining, pp. 1145-1150.
IEEE, 2013.

Mei, S. and Zhu, X. Using machine teaching to identify opti-
mal training-set attacks on machine learners. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Mimno, D. and McCallum, A. Expertise modeling for
matching papers with reviewers. In Proceedings of the
13th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 500-509, 2007.

Rennie, D. Let’s make peer review scientific. Nature, 2016.

Rodriguez, M. A. and Bollen, J. An algorithm to determine
peer-reviewers. In Proceedings of the 17th ACM con-
ference on Information and knowledge management, pp.
319-328, 2008.


https://inverseprobability.com/2014/06/28/paper-allocation-for-nips
https://inverseprobability.com/2014/06/28/paper-allocation-for-nips

Making Paper Reviewing Robust to Bid Manipulation Attacks

Shah, N. B., Tabibian, B., Muandet, K., Guyon, 1., and
Von Luxburg, U. Design and analysis of the nips 2016 re-
view process. The Journal of Machine Learning Research,
19(1):1913-1946, 2018.

Stelmakh, I., Shah, N. B., and Singh, A. Peerreview4all:
Fair and accurate reviewer assignment in peer review.
arXiv preprint arXiv:1806.06237, 2018.

Stelmakh, I., Shah, N., and Singh, A. On testing for bi-
ases in peer review. In Advances in Neural Information
Processing Systems, pp. 5287-5297, 2019.

Stent, A. and Ji, H. A review of reviewer assignment
methods, 2018. https://naacl2018.wordpres
s.com/2018/01/28/a-review-of-reviewe
r—assignment-methods. [Online; accessed on
2020-10-02].

Tang, W., Tang, J., Lei, T., Tan, C., Gao, B., and Li, T.
On optimization of expertise matching with various con-
straints. Neurocomputing, 76(1):71-83, 2012.

Thurner, S. and Hanel, R. Peer-review in a world with
rational scientists: Toward selection of the average. The
European Physical Journal B, 84(4):707-711, 2011.

Vijaykumar, T. N. Potential organized fraud in acm/ieee
computer architecture conferences, 2020. https:
//medium.com/@tnvijayk/potential-or
ganized-fraud-in-acm-ieee-computer—-a
rchitecture-conferences-ccd61169370d
[Online; accessed on 2020-10-13].

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., and
Attenberg, J. Feature hashing for large scale multitask
learning. In Proceedings of the 26th annual international
conference on machine learning, pp. 1113-1120, 2009.

Xiao, H., Biggio, B., Nelson, B., Xiao, H., Eckert, C., and
Roli, F. Support vector machines under adversarial label
contamination. Neurocomputing, 160:53-62, 2015.

Xu, Y., Zhao, H., Shi, X., and Shah, N. B. On strategyproof
conference peer review. arXiv preprint arXiv:1806.06266,
2018.


https://naacl2018.wordpress.com/2018/01/28/a-review-of-reviewer-assignment-methods
https://naacl2018.wordpress.com/2018/01/28/a-review-of-reviewer-assignment-methods
https://naacl2018.wordpress.com/2018/01/28/a-review-of-reviewer-assignment-methods
https://medium.com/@tnvijayk/potential-organized-fraud-in-acm-ieee-computer-architecture-conferences-ccd61169370d
https://medium.com/@tnvijayk/potential-organized-fraud-in-acm-ieee-computer-architecture-conferences-ccd61169370d
https://medium.com/@tnvijayk/potential-organized-fraud-in-acm-ieee-computer-architecture-conferences-ccd61169370d
https://medium.com/@tnvijayk/potential-organized-fraud-in-acm-ieee-computer-architecture-conferences-ccd61169370d

