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A. Mathematical definitions
A.1. Latency metrics definitions

Given the input sentence x and the output sentence y, let Lx and Ly denote the length of x and y respectively. Define a
function g(t) of decoding step t, which denotes the number of source tokens processed by the encoder when deciding the
target token yt. For wait-k strategy, g(t) = min{t+ k − 1, Lx}. The definitions of Average Proportion (AP) and Average
Lagging (AL) are in Eqn.(1) and Eqn.(2) respectively.

APg(x, y) =
1

|x||y|

|y|∑
t=1

g(t); (1)

ALg(x, y) =
1

τg(|x|)

τg(|x|)∑
t=1

(
g(t)− t− 1

|y|/|x|

)
, (2)

where τg(|x|) = min{t|g(t) = |x|}.

We use the scripts provided by Ma et al. (2019) to calculate AP and AL scores.

A.2. Mathematical formulation of curriculum transfer learning

For a group of temporally correlated tasks T = {T1, T2, · · · , TM}, suppose T is ordered by task difficulty. That is, TM
is the easiest task, followed by TM−1, TM−2, etc, and T1 is the hardest task. In the curriculum transfer learning (briefly,
CL) baseline, we gradually change the training task Tm from the easiest task TM to the main task, supposedly, Tk. The
mathematical formulations are shown as follows:

m =M − b t− 1

tmax
(M − k + 1)c (3)

where t denotes the current update number (t = 1, 2, ..., tmax), and tmax denotes the total update number.

B. Model architecture
Following Ma et al. (2019), our model for simultaneous NMT is based on Transformer model (Vaswani et al., 2017). The
model includes an encoder and a decoder, which are used for incrementally processing the source and target sentences
respectively. Both the encoder and decoder are stacked of L blocks.

In Ma et al. (2019), every time a new token is read, the encoder needs to re-encode the entire sentence, which is computa-
tionally expensive. To improve the efficiency, we adopt incremental encoding, so that after reading a new token, we only
encode the new token rather than updating the representations of the whole sentence. The details are as follows:

(1) Incremental encoding: Let hlt denote the output of the t-th position from block l. For ease of reference, let H l
≤t denote

{hl1, hl2, · · · , hlt}, and let h0t denote the embeddings of the t-th token. An attention model attn(q,K, V ), takes a query
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q ∈ Rd, a set of keys K and values V as inputs. K and V are of equal size, q ∈ Rd where d ∈ Z+ is the dimension, ki ∈ Rd
and vi ∈ Rd are the i-th key and value. attn is defined as follows:

attn(q,K, V ) =

|K|∑
i=1

αiWvvi, αi =
exp((Wqq)

>(Wkki))

Z
, Z =

|K|∑
i=1

exp((Wqq)
>(Wkki)), (4)

where W ’s are the parameters to be optimized. In the encoder side, hlt is obtained in a unidirectional way: hlt =
attn(hl−1t , H l−1

≤t , H
l−1
≤t ). That is, the model can only attend to the previously generated hidden representations, and

the computation complexity is O(L2
x). In comparison, (Ma et al., 2019) still leverages bidirectional attention, whose

computation complexity is O(L3
x). We find that unidirectional attention is much more efficient than bidirectional attention

without much accuracy drop (see Appendix B for details).

(2) Incremental decoding: Since we use wait-k strategy, the decoding starts before reading all inputs. At the t-th decoding
step, the decoder can only read x≤t+k−1. When t ≤ Lx − k, the decoder greedily generates one token at each step, i.e., the
token is yt = argmaxw∈V P (w|y≤t−1;HL

≤t+k−1), where V is the vocabulary of the target language. When t > Lx − k,
the model has read the full input sentence and can generate words using beam search (Ma et al., 2019).

We compare the performance of original Ma et al. (2019) and our modified model on IWSLT’14 En→De dataset, and the
results are in Figure 1, On IWSLT’14, we observe that the performance of our model slightly drops compared to Ma et al.
(2019). However, the computational cost of Ma et al. (2019) is much larger than our modified model. For example, the
inference speed of our wait-9 model is 57.39 sentences / second, while the inference speed of Ma et al. (2019) is 6.48
sentences / second.
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Figure 1: Ablation study of different model architectures on IWSLT’14 En→De dataset and WMT’15 En→De dataset.

C. More detailed settings about experiments
C.1. Detailed introduction of the datasets

For IWSLT’14 En→De, following (Edunov et al., 2018), we lowercase all words, tokenize them and apply BPE with 10k
merge operations jointly to the source and target sequences. We split 7k sentences from the training corpus for validation
and the remaining 160k sequences are left as the training set. The test set is the concatenation of tst2010, tst2011, tst2012,
dev2010 and dev2012, which consists of 6750 sentences.

For IWSLT’15 En→Vi, following (Ma et al., 2020), we tokenize the data and replace words with frequency less than 5 by
<unk>1. We use tst2012 as the validation set and tst2013 as the test set. The training, validation and test sets contains 133k,
1268 and 1553 sentences respectively.

For IWSLT’17 En→Zh, we tokenize the data and apply BPE with 10k merge operations independently to the source and

1The data is downloaded from https://nlp.stanford.edu/projects/nmt/, which has been tokenized already.
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target sequences2. We use the concatenation of tst2013, tst2014 and tst2015 as the validation set and use tst2017 as the
test set. The training, validation and test sets contains 235k, 3874 and 1459 sentences respectively. For WMT’15 En↔De,
we follow the setting in (Ma et al., 2019; Arivazhagan et al., 2019). We tokenize the data, apply BPE with 32k merge
operations jointly to the source and target sentences, and get a training corpus with 4.5M sentences. We use newstest2013
as the validation set and use newstest2015 as the test set.

C.2. Detailed training strategy

For the translation model, we use Adam (Kingma & Ba, 2015) optimizer with initial learning rate 5 × 10−4 and
inverse sqrt scheduler (see Section 5.3 of (Vaswani et al., 2017) for details). The batch size and the number of
GPUs of IWSLT En→De, En→Vi, En→Zh and WMT’15 En→De are 4096× 1GPU, 16000× 1GPU, 4000× 1GPU and
3584 × 8 × 16GPU respectively. For IWSLT tasks, the learning rate η is grid searched from {5 × 10−4, 5 × 10−5, 5 ×
10−6, 5 × 10−7} with vanilla SGD optimizer, and the internal update iteration S is grid searched from { 12Se, Se, 2Se},
where Se is the number of updates in an epoch of the translation model training. For WMT’15 En→De, due to resource
limitation, we do not train the translation model from scratch. The translation model is warm started from pretrained wait-k
model, the learning rate is set as 5× 10−5, and the internal update iteration S is 16.

C.3. Detailed baseline implementation

In this section, we introduce how we reproduce baseline models and get the results on En→Vi task.

For MILk (Arivazhagan et al., 2019) and MMA (Ma et al., 2020), we do not reproduce the results, but directly use the
results reported in Ma et al. (2020). Note that the results for MILk is reproduced by Ma et al. (2020).

For WIW and WID (Cho & Esipova, 2016), we pre-train a standard translation model, using the exact same architecture and
training hyperparameters as our method and in (Ma et al., 2020). For fair comparison, we adopt bi-directional attention.

For Zheng et al. (2020), we use the pre-trained wait-k model and the model obtained through our results (k = 1, 2, 3, ..., 10).
We use only single model rather than ensemble. As in Zheng et al. (2020), the thresholds of different k values are obtained
in this way: ρi = ρ1 − (i − 1) ∗ (ρ1 − ρ10)/9, where we test with ρ1 ∈ {0.2, 0.4, 0.6, 0.8}, ρ10 = 0; and ρ1 = 1,
ρ10 ∈ {0, 0.2, 0.4, 0.6, 0.8}.

D. Supplemental results
In this section, we report the specific BLEU scores and some additional results. The BLEU scores for IWSLT tasks and
WMT’15 En→De task are reported in Table 1 and Table 2 respectively. We further evaluate the baselines and our methods
on WMT’14 and WMT’18 test sets, and report the BLEU-latency curves in Figure 3. The BLEU-AL curves of our methods
and baselines on IWSLT’15 En→Vi are reported in Figure 2(a), the BLEU-AL curves of our method and Zheng et al. (2020)
are in Figure 2(b).

For significance tests, we compare our method with MTL on all 20 translation tasks (En→{Vi, Zh} tasks and two En→De
tasks, where each task is associated with 5 settings, i.e. wait-1,3,5,7,9), and find that our method significantly outperforms
MTL on 16 tasks with p < 0.05, where 11 out of them are with p < 0.01.

E. Additional ablations and analysis on simultaneous translation
E.1. Feature selection

To emphasize the importance of the selected features in Section 3.3 in the main content, we provide four groups of ablation
study, where in each group some specific features are excluded: (i) source and target sentence lengths; (ii) current training
loss and average historical training loss; (iii) current validation loss and average historical validation loss; (iv) training step.
We work on IWSLT’14 En→De task and study the effect to wait-3, 5, 7.

The results are shown in Table 3. We report the BLEU scores only, since the latency metrics (AP and AL) are not significantly
influenced. Removing any feature causes performance drop, indicating that they all contribute to the decision making.
Specifically, network status information including validation performance (feature iii) and training stage (feature iv) is more

2The Chinese sentences are tokenized using Jieba ( https://github.com/fxsjy/jieba ).

https://github.com/fxsjy/jieba
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Task wait-k wait-k∗/ best k∗ CL MTL Ours

En→De (k = 1) 16.75 19.11 / 9 18.23 18.53 19.10
En→De (k = 3) 22.79 23.36 / 13 23.41 23.50 24.12
En→De (k = 5) 25.34 25.76 / 11 25.88 25.84 26.54
En→De (k = 7) 26.74 26.87 / 9 26.85 26.88 27.37
En→De (k = 9) 27.25 27.54 / 11 27.48 27.07 27.87

En→Vi (k = 1) 25.14 26.14 / 5 26.01 26.12 27.03
En→Vi (k = 3) 27.17 28.25 / 5 26.37 28.54 29.01
En→Vi (k = 5) 28.29 28.44 / 9 27.97 28.61 28.91
En→Vi (k = 7) 28.31 28.38 / 13 28.31 28.77 29.17
En→Vi (k = 9) 28.39 28.39 / 9 28.31 28.70 29.06

En→Zh (k = 1) 14.24 19.34 / 9 17.26 18.02 19.21
En→Zh (k = 3) 19.90 21.66 / 11 21.64 21.36 22.18
En→Zh (k = 5) 21.45 23.57 / 11 23.62 22.59 23.70
En→Zh (k = 7) 23.23 24.95 / 11 24.32 23.15 24.35
En→Zh (k = 9) 23.93 24.83 / 11 24.55 23.55 24.78

Table 1: BLEU scores on IWSLT simultaneous NMT tasks.

k wait-k wait-k∗/ best k∗ CL MTL Ours

1 17.07 19.83 / 9 19.41 17.59 18.63
3 22.86 23.14 / 7 22.51 22.76 23.98
5 25.52 26.09 / 7 25.51 25.66 26.77
7 27.32 27.50 / 9 26.80 26.91 27.92
9 28.05 28.05 / 9 28.20 27.82 28.67

Table 2: BLEU scores on WMT’15 En→De dataset.
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Figure 2: BLEU-AP comparison between our method and baselines on En→Vi.
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Figure 3: Translation quality against latency metrics (AP and AL) on WMT’14 and 16 English→German test sets.
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important than input data information including sequence length (feature i) and data difficulty (feature ii).

k = 3 k = 5 k = 7

Ours 24.12 26.54 27.37
- (i) 23.67 (-1.87%, rank 3) 26.03 (-1.92%, rank 3) 26.92 (-1.64%, rank 4)
- (ii) 23.70 (-1.74%, rank 4) 26.04 (-1.88%, rank 4) 26.91 (-1.68%, rank 3)
- (iii) 23.57 (-2.28%, rank 1) 25.92 (-2.34%, rank 2) 26.72 (-2.37%, rank 1)
- (iv) 23.65 (-1.95%, rank 2) 25.63 (-3.43%, rank 1) 26.86 (-1.86%, rank 2)

Table 3: Ablation study for feature selection on IWSLT’14 En→De dataset.

E.2. More heuristic baselines

In this section, we conduct ablation studies on two more heuristic baselines to demonstrate the effectiveness of our method.

(1) Randomly selecting k in a window around k∗: We implement another baseline which is a combination of wait-k∗ and
MTL. After obtaining k∗, instead of sampling wait-m on all possible {1, 2, · · · ,M}, we sample on a smaller region around
k∗. We conduct experiments on IWSLT En→De and the results are in Figure 4. We can see that this variant achieves similar
results with wait-k∗, but is not as good as our method. This shows the importance of using an adaptive controller to guide
the training.
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Figure 4: Randomly selecting k in a window around k∗.

(2) A variant of CL: Considering that the curriculum transfer learning is related to curriculum learning, we implement
self-paced learning (SPL) for wait-k, a CL method based on loss function: within each minibatch, we remove the τ%
sentences with the largest loss, where τ is gradually decreased from 40 to 0. On IWSLT En→De, when k = 3, the
BLEU/AL/AP for SPL are 22.87/0.66/3.47, which are worse than conventional CL (23.41/0.66/3.48).

(3) An annealing strategy: Inspired by the fact that wait-k∗ outperforms wait-k, we design a baseline where we randomly
sample the waiting threshold m from a distribution pt(m) at each training step t. The distribution pt(m) linearly anneals
from a uniform distribution to a distribution which prefers larger m. We expect a single annealing strategy can train
reasonably good models for different inference-time k values. Suppose the minimal m value is mmin, the maximal m value
is mmax. mmin and mmax are two integers and m ∈ {mmin,mmin + 1, · · · ,mmax}. The total training step is denote as tmax.
pt(m) is mathematically defined as follows:

pt(m) = (1− t

tmax
) · pinit(m) +

t

tmax
· pfinal(m),

pinit(m) =
1

mmax −mmin + 1
, pfinal(m) =

m∑mmax
i=mmin

i
.

(5)
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The results on IWSLT’15 En→Vi are shown in Figure 5, which shows this baseline brings limited improvement compared
to wait-k. A possible reason is that this baseline cannot guarantee the best “annealing” strategy for each separate k, while
our method can adaptively find the optimal strategy. Besides, as shown in Figure 5 in the main content, the learned strategies
for different wait-k inference are pretty different.
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Figure 5: The annealing strategy.

F. More details about stock trend forecasting
F.1. Detailed introduction of the datasets

For the Chinese A-share market dataset used in stock trend forecasting tasks, all the price and volume data are loaded from
Qlib (Yang et al., 2020). In this paper, only the stocks in CSI300 are included in the experiments. CSI300 consists of the
300 largest and most liquid A-share stocks, that can reflect the overall performance of China A-share market.

F.2. Training details

For the stock trend forecasting models, we select the optimal hyper-parameters including learning rate, dropout rate, batch
size and optimizer of scheduler and the sequence length L on the validation set. We repeat each experiment by using 5
random seed and report the average scores (RankIC, ICIR and MSE) to get the final result.

F.3. Supplemental results

We report the specific ICIR scores for stock trend forecasting task in Table 4. Comparing with RankIC and MSE, similar
phenomenon can be observed: 1) with temporally correlated tasks, our method significantly outperforms MTL and CL on
most settings; 2) using a larger temporally correlated task set does not always bring improvements; 3) our method performs
better than some strong models like GAT and lightGBM (briefly, LGB).
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