Temporally Correlated Task Scheduling for Sequence Learning

Xueqing Wu' Lewen Wang? Yingce Xia? Weiqing Liu?> Lijun Wu? Shufang Xie? Tao Qin’? Tie-Yan Liu?

Abstract

Sequence learning has attracted much research
attention from the machine learning community
in recent years. In many applications, a sequence
learning task is usually associated with multiple
temporally correlated auxiliary tasks, which are
different in terms of how much input information
to use or which future step to predict. For exam-
ple, (i) in simultaneous machine translation, one
can conduct translation under different latency
(i.e., how many input words to read/wait before
translation); (ii) in stock trend forecasting, one
can predict the price of a stock in different future
days (e.g., tomorrow, the day after tomorrow).
While it is clear that those temporally correlated
tasks can help each other, there is a very limited
exploration on how to better leverage multiple
auxiliary tasks to boost the performance of the
main task. In this work, we introduce a learnable
scheduler to sequence learning, which can adap-
tively select auxiliary tasks for training depending
on the model status and the current training data.
The scheduler and the model for the main task
are jointly trained through bi-level optimization.
Experiments show that our method significantly
improves the performance of simultaneous ma-
chine translation and stock trend forecasting.

1. Introduction

Sequence learning (Sutskever et al., 2014; Bahdanau et al.,
2014) is an important problem in deep learning, which cov-
ers many applications including machine translation (Wu
et al., 2016; Vaswani et al., 2017), time series predic-
tion (Qin et al., 2017a; Zhang et al., 2017a), weather fore-
casting (Shi et al., 2015; Kim et al., 2017), etc. In real-world
applications, a sequence learning task is often associated
with multiple temporally correlated tasks: (1) In simulta-

"University of Science and Technology of China, Hefei, Anhui,
China *Microsoft Research, Beijing, China. Correspondence to:
Yingce Xia <yingce.xia@microsoft.com>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

neous machine translation, we need to begin translation
before reading the complete source sequence. In this appli-
cation, the generation of output sentence is k£ word behind
the source input, which is called wait-k strategy/task (Ma
et al., 2019). Wait-k tasks with different k£ values are tem-
porally correlated. (2) Stock forecasting aims to predict the
trend of stocks at some future day (Dai & Zhang, 2013).
Tasks of predicting stock prices at different future days con-
stitute a set of temporally correlated tasks. Different from
general multi-task learning, the input and output data of
these temporally correlated tasks are highly overlapped, and
only differ in how much future input to use when processing
the current input (e.g., how many future source words to read
to translate the current word in simultaneous translation) or
which future data to predict (e.g., the price movement of
which future day to predict in stock trend forecasting).

Clearly, a given sequence learning task (denoted as the main
or target task) can be boosted by its temporally correlated
tasks. Taking English-to-Vietnamese simultaneous trans-
lation as an example, assume the main task is wait-3, and
the temporally correlated tasks are wait-1,2,3,--- ,13. By
training a model on all those correlated tasks and evaluating
the model on wait-3, we observe that the BLEU score is im-
proved from 27.17 to 28.54. (BLEU (Papineni et al., 2002)
is a widely used accuracy metric in machine translation,
the larger the better.) A similar phenomenon is observed
in stock price forecasting. Improvements across various
applications motivate us to explore how to leverage those
temporally correlated tasks more effectively to improve per-
formance on the main task.

Given that there are usually multiple temporally correlated
tasks, the key challenge lies in which tasks to use and when
to use them in the training process. In this work, we in-
troduce a learnable task scheduler for sequence learning,
which adaptively selects temporally correlated tasks during
the training process. The scheduler accesses the model sta-
tus and the current training data (e.g., in current minibatch),
and selects the best auxiliary task to help the training of the
main task. The scheduler and the model for the main task
are jointly trained through bi-level optimization: the sched-
uler is trained to maximize the validation performance of the
model, and the model is trained to minimize the training loss
guided by the scheduler. Experimental results on simulta-
neous machine translation and stock trend forecasting show

Temporally Correlated Task Scheduling for Sequence Learning

that such a task scheduler brings significant improvements.
Our main contributions are three-fold:

(1) To the best of our knowledge, we are the first to formulate
and study the problem of leveraging temporally correlated
tasks for sequence learning.

(2) We propose a new learning algorithm with a scheduler
to adaptively select the temporally correlated tasks to boost
the main task. The scheduler and the model of the main task
are jointly trained without additional supervision signals.

(3) We empirically verify the effectiveness of our method.
Experiments on four simultaneous translation tasks show
that our method improves waiz-k baseline by 1 to 3 BLEU
scores. Experiments on a stock price forecasting dataset
show that our method can improve the baselines in terms of
Spearman’s rank correlation coefficient and prediction loss.

Our code for simultaneous translation task is at https:
//github.com/shirley-wu/simul-mt_
temporally-correlated-task—-scheduling,
and the code for stock price forecasting is at
https://github.com/microsoft/qglib/tree/
main/examples/benchmarks/TCTS.

2. Problem Setup and Our Algorithm

In this section, we first set up the problem of temporally
correlated task scheduling for sequence learning, and then
present our algorithm. Finally, we discuss the connection
between our method and existing methods, and also provide
an intuition why our method works.

2.1. Problem Setup

Let X and Y denote the input space and output space, and
let 7 = {T1,--- , 1|7} denote a set of temporally corre-
lated tasks. Depending on applications, those tasks can be
temporally correlated in different ways. We categorize them
into two main classes and formalize them as follows.

(1) Sequence processing with latency constraints: Tasks
in this category aim to process each token in an input
sequence, one by one sequentially, under certain latency
constraints. Representative examples include simultaneous
translation (Ma et al., 2019), which targets at translating
each source word without waiting for the end of the input
sentence, and streaming speech recognition (He et al., 2019),
which requires recognizing each word said by a speaker in
real-time, etc.

Let = denote an input sequence and z; denotes its ¢-th to-
ken. We focus on the setting where each token in x will be
sequentially processed. Each task 7" € T is associated with
a non-negative integer dr, indicating that when processing
the token x;, how many additional tokens can be used. Note

that in conventional sequence learning where the complete
source sequence is available, 7 = oo. In the extreme case
where no latency is allowed, 67 = 0. Let fr denote the
model for task 7', which generates the output sequentially.
y denotes the output sequence of fr based on z, and is
initialized as an empty list. After processing x; conditioned
on T<its, = (X1,T2, -+ , Tets,), based on the processed
representations of &, <45,, and the already generated ¥,
fr needs to make a decision § = fr(z¢, t<¢ys5,,9). The
decision could be to generate a single token, multiple tokens,
or no token. After that, we append ¢ to the end of . We
repeat the above steps to process all tokens in x.

(2) Predicting the future: Tasks in this category aim to
predict some future values for a given time series. Repre-
sentative examples include stock trend forecasting (Dai &
Zhang, 2013), where we want to predict the price trend of
an individual stock on some future days (e.g., tomorrow,
the day after tomorrow, etc.) based on its historical prices,
and weather forecasting (Shi et al., 2015; Kim et al., 2017),
where we want to predict the weather of a city on a future
day based on its historical weather.

Let = denote the input time series, and y = (y1,y2,)
denote the output sequence, where y; is the value of the ¢-th
future day/step. For a task T' € T, the goal is to predict
the value of the or-th future day, i.e., ¥, Where o7 is a
positive integer and varies across different tasks 7.

Each task has a different loss function ¢(z,y,T'), which is
used to measure the distance between the predicted y and
the groundtruth y (in the first class of tasks) or ¢, and Yy,
(in the second class of tasks). Any task in 7 can be the main
task, and the others are regarded as auxiliary tasks. In this
work, our goal is to better leverage those auxiliary tasks to
help the main task.

2.2. Our Algorithm

As aforementioned, our basic idea is to introduce a task
scheduler, which adaptively selects an auxiliary training
task to improve the performance of the main task. A basic
assumption of our algorithm is that the models for all tasks
in T can share parameters (except for a few individual parts
like task embeddings), which is easy to satisfy in machine
translation, stock trend forecasting, etc. Let f(x;#) denote
the model with parameter 6. Let p(z,y,0;w) denote the
task scheduler parameterized by w, which outputs an auxil-
iary task in 7 conditioned on an input-output pair (x, y) and
the model f(--- ;) of the main task. More specifically, we
extract a low-dimensional feature I, ,, ¢ to describe (z,y,)
and use it as the actual input of the scheduler network ¢.
For ease of reference, we will alternatively use ¢ (z, y, 0; w)
and (I, 4 0;w). ¢ can be different functions depending on
applications, which will be discussed in Section 3 and 4.

https://github.com/shirley-wu/simul-mt_temporally-correlated-task-scheduling
https://github.com/shirley-wu/simul-mt_temporally-correlated-task-scheduling
https://github.com/shirley-wu/simul-mt_temporally-correlated-task-scheduling
https://github.com/microsoft/qlib/tree/main/examples/benchmarks/TCTS
https://github.com/microsoft/qlib/tree/main/examples/benchmarks/TCTS

Temporally Correlated Task Scheduling for Sequence Learning

—« Aw

Figure 1: The optimization workflow of one episode. The
solid lines and dashed lines represent the workflow of inner-
optimization (w.r.t. 6) and outer-optimization (w.r.t. w)
respectively. At step s, with training data (x5, ys), the sched-
uler (- - - ;w) chooses a suitable task 7}, (green solid lines)
to update the model f(--- ;) (blue solid lines). After S
steps, we evaluate the model f on the validation set D, and
update the scheduler ¢ (green dashed lines).

Now we have two sets of parameters to learn from the data:
w in the scheduler ¢ and 6 in the model f. Let D, and
D, denote the training and validation sets respectively. We
formulate the training of f and ¢ as a bi-level optimiza-
tion (Sinha et al., 2017), which is

max M(Dy;0(w)); s.t., (D
o1
f(w) = arg min i Z Erp(z,y,0:) (2, y, T50).
o ' (z,y)~D:

In the above formulation, M (Dy; §(w)) denotes the valida-
tion performance of the main task, and ¢ is the loss function
of data (z,y) on task 7'. Intuitively, we expect that the
scheduler can select a good auxiliary task for each input-
output pair, so that eventually the validation performance of
the model on the main task can be maximized.

Following the common practice (Liu et al., 2019; Fan et al.,
2018), we optimize Eqn.(1) in an alternative way: We first
fix w and optimize 0, and then fix 6 and optimize w using the
REINFORCE algorithm (Sutton & Barto, 2018). We repeat
the process until convergence, as shown in Algorithm 1.
The training process consists of F episodes (i.e., the outer
loop), and each episode consists of S update iterations (i.e.,
the inner loop). The inner loop (from step 4 to step 9)

Algorithm 1 The optimization algorithm.

1: Input: Training episode I; internal update iterations S; learn-
ing rate n; of model f(--- ;@) ; learning rate 7> of the sched-
uler (- - - ;w); batch size B;

2: fore <+ 1: Edo

3: Prepare a buffer to store states and actions: B = {};

4: fors<+1:Sdo

5: Sample a minibatch of data D, s from D, with size B;

6: For each (z,y) € D.,s, we sample a temporally corre-
lated auxiliary task 7" according to the output distribu-
tion of ¢(x,y, 6;w), and get D= {(z,y,T)} where
|D| = B:

7: Add the inputs of ¢ (i.e., I5,y,0) to B:
B BU{(Lsy,0,T)|(z,y,T) € D};

8: Update model f:

06— (Ul/B)VG Z(gg,y,T)eE é(.’E, Y, T; 0)’
9: end for
10: Calculate the validation performance as the reward: R. =
M(Dv, 95,5’);
11: Update the scheduler:
wwFnRe 3 1 ryep Vo log Pp(lw) =T).
12: end for
13: Return: 6.

aims to optimize 6, where we can update the parameter
with any gradient-based optimizer like momentum SGD,
Adam (Kingma & Ba, 2015), etc. The outer loop (from
step 2 to step 11) aims to optimize w. ¢(z,y, #;w) can be
regarded as a policy network, where the state is the feature
I, 4.6, the action is the choice of task T' € T, and the reward
is the validation performance R. (step 10). At the end of
each episode, we update w using REINFORCE algorithm
(step 11). The workflow of one episode is shown in Figure 1.

2.3. Discussion
Our problem is related to several other learning settings.

(1) In multi-task learning (Zhang & Yang, 2017) (briefly,
MTL), multiple tasks are jointly trained and mutually
boosted. In MTL, each task is treated equally, while in
our setting, we focus on the main task.

(2) Transfer learning (Pan et al., 2010) also leverages auxil-
iary tasks to boost a main task. Curriculum transfer learning
(briefly, CL) (Shao et al., 2018; Dong et al., 2017) is one
kind of transfer learning which schedules auxiliary tasks
according to certain rules, e.g., from easy to difficult. Our
problem can also be regarded as a special kind of transfer
learning, where the auxiliary tasks are temporally correlated
with the main task. Our learning process is dynamically con-
trolled by a scheduler rather than some pre-defined rules.

(3) Our method is also related to Different Data Selection
(DDS) (Wang et al., 2020). Both our work and DDS train a
meta controller to improve the learning process on a given
task via reinforcement learning. The main difference is
that DDS aims to better select training data from a dataset,

Temporally Correlated Task Scheduling for Sequence Learning

while our work aims to better utilize temporally correlated
tasks (and their corresponding data). Given a main task,
our method constructs and schedules a series of temporal
correlated tasks, while DDS works on the given task only.

Intuitively, training with temporally correlated auxiliary
tasks helps the main task for two reasons: (1) The temporally
correlated tasks either share the same output with overlapped
inputs or the same input. Thus, joint training of them enables
shared representation learning, just like general multi-task
training (MTL), and consequently improves the main task;
(2) The x/y pairs from correlated tasks can be viewed as
noised augmentation of the training data for the main task,
which helps the main task.

3. Application to Simultaneous Translation

In this section, we apply our algorithm to text-to-text simul-
taneous translation.

3.1. Task Description

Simultaneous neural machine translation (briefly, NMT) has
attracted much attention recently. In contrast to standard
NMT, where the NMT system can access the full input
sentence, simultaneous NMT requires the model to conduct
translation before reading the full input sentence. In this
task, X and) are collections of sentences in the source
language and the target language. Wait-k (Ma et al., 2019) is
a simple yet effective method in simultaneous NMT, where
the translation is £ words behind the source input. Formally,
given a data pair (z,y) € X x Y where the ¢-th token of
xly is x4/y;, when we read a prefix (z1, 2, - -+ , xy) (briefly
denoted as x<y), we need to output the first target token
y1; when reading x<j1, we should output y», etc. In
comparison, for standard NMT, one can start translation
after reading all tokens in x. A larger k£ makes the task
easier and leads to better translation quality, but at the cost
of a larger waiting time.

Under our framework, simultaneous translation belongs
to the first class of tasks in Section 2.1. Let 7}, denote
wait-m task, and o7, for task T;,, is m — 1. Assuming
wait-k is the main task T},,i,, then the temporally cor-
related tasks T are wait-m with different m values, i.e.
T ={T1,To,--- ,Tar}. In this work, we set M = 13. If
the scheduler ¢ assigns a task 7T, (i.e., wait-m) to a data
pair (z,y), the loss function on this task is:

|yl
Uz,y, T3 0) = ZIOgP(ythJStflax§t+m7159)~ 2

t=1
3.2. Background

Previous work on simultaneous NMT can be categorized by
whether using a fixed decoding strategy or an adaptive one.

Fixed strategies use pre-defined rules to determine when to
read or to write a new token (Dalvi et al., 2018; Ma et al.,
2019). Wait-k is a representative method (Ma et al., 2019),
which achieves good results in terms of translation quality
and controllable latency, and has been used in speech-related
simultaneous NMT (Zhang et al., 2019; Ren et al., 2020).

For adaptive strategies, Cho & Esipova (2016) proposed
wait-if-worse (WIW) and wait-if-diff (WID) methods which
generate a new target word if its probability does not de-
crease (for WIW) or if the generated word is unchanged (for
WID) after reading a new source token. Grissom II et al.
(2014) and Gu et al. (2017) used reinforcement learning to
train the read/write controller, while Zheng et al. (2019a)
trained the controller in a supervised way. Alinejad et al.
(2018) added a “predict” operator to the controller so that
it can anticipate future source inputs. Zheng et al. (2019b)
introduced a “delay” token into the target vocabulary indi-
cating that the model should read a new word. Monotonic
infinite lookback attention (MILK) used a hard attention
model to determine when to read new tokens, and a soft
attention model to perform translation (Arivazhagan et al.,
2019). Ma et al. (2020) introduced multi-head attention to
MILk and proposed monotonic multihead attention (MMA)
with two variants: MMA-IL (Infinite Lookback) with higher
translation quality and greater computational overhead, and
MMA-H(ard) with higher computational efficiency.

Besides, Zheng et al. (2020a) extended wait-k to an adaptive
strategy by training multiple waif-m models with different
m’s and adaptively selecting a decoding strategy during
inference. Zheng et al. (2020b) explored a new setting,
where at each timestep, the translation model over-generates
the target words and corrects them in a timely fashion.

3.3. Settings

Datasets: For IWSLT’ 14 En—De, following (Edunov et al.,
2018), we split 7k sentences from the training corpus for
validation, and the test set is the concatenation of 512010,
tst2011, tst2012, dev2010 and dev2012. For IWSLT 15
En— Vi, following (Ma et al., 2020), we use 512012 as the
validation set and 512013 as the test set. For IWSLT 17
En—Zh, we concatenate tst2013, tst2014 and tst2015 as the
validation set and use tst2017 as the test set. For WMT’ 15
En—De, following (Ma et al., 2019; Arivazhagan et al.,
2019), we use newstest2013 as the validation set and use
newstest2015 as the test set. More details about datasets can
be found in Appendix C.1.

Models: Following Ma et al. (2019), the translation model
f is based on Transformer (Vaswani et al., 2017). However,
different from Ma et al. (2019), we conduct incremental
encoding, so that when encoding each source token, the
model can only attend to its previous tokens. The computa-
tion complexity for encoding is O(L2) compared to O(L3)

Temporally Correlated Task Scheduling for Sequence Learning

in Ma et al. (2019), where L, is the length of the source
sentence x. We find that our model is more efficient than Ma
et al. (2019) with little accuracy drop. Detailed formulation
and empirical comparison are in Appendix B.

For IWSLT En—Zh and En— Vi, we use the transformer
small model, where the embedding dimension, feed-forward
layer dimension, number of layers are 512, 1024 and 6 re-
spectively. For IWSLT En—De, we use the same archi-
tecture but change the embedding dimension into 256. For
WMT’ 15 En—De, we use the transformer big setting, where
the above three numbers are 1024, 4096 and 6 respectively.
The scheduler ¢ for each task is a multilayer perceptron
(MLP) with one hidden layer and the t anh activation func-
tion. The size of the hidden layer is 256.

Input features of p: The input of ¢ is a 7-dimension
vector with the following features: (1) the ratios be-
tween the lengths of the source/target sentences to
the average source/target sentence lengths in all train-
ing data (2 dimensions), i.e., Ly/(D,/cx Lo/ /|X]) and
Ly/(32, ey Ly /1Y]); (2) the training loss over data (z,y)
evaluated on the main task wait-k; (3) the average of histor-
ical training losses; (4) the validation loss of the previous
epoch; (5) the average of historical validation loss; (6) the
ratio of current training step to the total training iteration.
The ablation study of feature selection is in Appendix E.1.

Choice of M: The validation performance M is the negative
validation loss with wait-k strategy. To stabilize training,
the reward for the e-th episode (step 10 of Algorithm 1) is
R, — R._1, where R._ is the validation performance M
of the previous episode.

Baselines: We implement the MTL and CL baselines dis-
cussed in Section 2.3: (1) For MTL, each task is randomly
sampled. (2) For the curriculum transfer learning (briefly,
CL), we start from the easiest task T; and gradually move
to the main task Ti,i,. For wait-k, we implement another
variant wait-k*, where we train M baseline models on dif-
ferent wait-m tasks (1 < m < M), and pick the best
model according to the validation performance on wait-k
task. Wair-k* is expected to bring additional improvements
as pointed out by Ma et al. (2019). After that, we com-
pare with several adaptive methods, including Wait-if-Worse
(WIW), Wait-if-Diff (WID), MILk, MMA-IL and MMA-H
(refer to Section 3.2 for a brief introduction). Finally, we
combine our method with Zheng et al. (2020a). We leave
the training details of all algorithms (optimizer, hyperpa-
rameter, etc) in Appendix C.2, and the details of baselines
in Appendix C.3.

Evaluation: We use BLEU to measure the translation qual-
ity, and use Average Proportion (AP) and Average Lagging
(AL) to evaluate the translation latency. AP measures the
average proportion of source symbols required for transla-

tion, and AL measures the average number of delayed words
(see Appendix A.l. for details). Following the common
practice (Ma et al., 2019; 2020), we show the BLEU-AP
and BLEU-AL curves to demonstrate the tradeoff between
quality and latency. For IWSLT’ 14 En—De and IWSLT’ 15
En—Vi, we use multi-bleu.perl to evaluate BLEU
scores; for IWSLT’17 En—Zh and WMT’ 15 En—De, we
use sacreBLEU to evaluate the detokenized BLEU scores.

3.4. Results and Analysis

We first compare our method with MTL, CL and wait-k*
on IWSLT datasets. The BLEU-latency curves are shown in
Figure 2, and the BLEU scores of En— Vi are reported in
Table 1. For the wair-k*, we also report the optimal training
task (i.e., k*) for each main task wair-k . BLEU scores of
all language pairs are left in Appendix D. Experiments on
more heuristic baselines are in Appendix E.2.

BLEU
BLEU

(a) BLEU-AP, En—Vi.

BLEU
BLEU

(¢) BLEU-AP, En—De.

BLEU
BLEU

0.60 0.65 0.70 0.75 0.80
AP

(e) BLEU-AP, En—Zh.

(f) BLEU-AL, En—Zh.

Figure 2: Translation quality against latency metrics (AP
and AL) on IWSLT tasks.

We have the following observations:

(1) Generally, our method consistently performed the best
across different translation tasks in terms of both translation

Temporally Correlated Task Scheduling for Sequence Learning

k wait-k wait-k*/ k¥ CL MTL Ours
1 25.14 26.14/5 26.01 26.12 27.03
3 27.17 28.25/5 26.37 28.54 29.01
5 28.29 28.44 /9 2797 28.61 2891
7 2831 28.38 /13 28.31 28.77 29.17
9 28.39 28.39/9 28.31 28.70 29.06

Table 1: BLEU scores on IWSLT En— Vi task.

quality and controllable latency. As shown in Table 1, our
method achieves the highest BLEU scores among all base-
lines. In Figure 2, the curve for our method (i.e., the red
one) is on the top in most cases, which indicates that given
specific latency (e.g., AP or AL), we can achieve the best
translation quality. The results of significance tests are left
in Appendix D.

(2) MTL and CL can outperform the vanilla baseline, which
demonstrates the effectiveness of leveraging the temporally
correlated tasks. However, the improvements are not consis-
tent, and it is hard to tell which baseline is better. CL slightly
outperforms MTL on En—De. However, on En—Zh, CL
performs better at lower latency while MTL performs better
at higher latency. In comparison, the improvement brought
by our method is much more consistent.

(3) Wait-k* also outperforms wait-k. Specifically, we notice
that the optimal training k£* is always larger than k for the
main task. This is consistent with the observation in Ma
et al. (2019). However, compared with CL and MTL, wait-
k* does not have a consistent advantage. This shows that the
improvements of MTL, CL and our method is not due to the
existence of some “best” task in 7, and further demonstrates
the importance of adaptively using all auxiliary tasks.

The results on WMT’ 15 En—De, whose training corpus
is larger, are shown in Figure 3. Wait-k*, MTL and CL
do not bring much improvement compared to vanilla wait-
k. Our method consistently outperforms all baselines,
which demonstrates the effectiveness of our method on
large datasets. We further evaluate them on WMT’ 14 and
WMT’ 16 test sets and obtain similar conclusions (see Ap-
pendix D for details).

Comparison with adaptive simultaneous NMT methods: We
further compare our method with WIW, WID, MILk, MMA-
IL and MMA-H on IWSLT En—Vi. The BLEU-AL curves
are shown in Figure 4(a) and the BLEU-AP curves are in
Appendix D. When AL > 5.0, our method outperforms all
baseline models, and when AL < 5.0, our method performs
slightly worse than MMA-IL and MMA-H. A possible rea-
son is that our method does not explicitly reduce the latency,
but focuses on improving performance under given latency
constraints.

We further compare and combine our method with Zheng

0.60 0.65 0.70 0.75 0.80 3 4 5 6 7 8 9
AP AL

(a) BLEU-AP (b) BLEU-AL

Figure 3: Translation quality against latency metrics (AP
and AL) on WMT’15 En—De.

et al. (2020a). We conduct experiments on two variants of
Zheng et al. (2020a), where the wait-m models are obtained
through vanilla wait-k (denoted by “Zheng et al.””) and our
strategy respectively (denoted by “Zheng et al. + Ours”.
The BLEU-AL curves are shown in Figure 4(b), and the
BLEU-AP curves are in Appendix D. We can see that: (1)
our method catches up with Zheng et al. (2020a), which
is built upon 10 models in total (wait-1,2, - -- ,10); (2) af-
ter combing our approach with Zheng et al. (2020a), the
performance can be further boosted, which shows that our
method is complementary to adaptive inference strategies
like Zheng et al. (2020a).

—— Wait-k

—¥— Ours

--v-- Zheng et al.

--v-- Zheng et al. + ours

—¥— Wait-k MiLk
23 —¥— Ours o wiw 26
2 ¥~ MMAIL O WID
—¥— MMAH

o

25 50 75 100 125 150 175 200 4 6 8§ 10 12 14 16 18
AL AL

(a) Comparison with several (b) Comparison and combina-
adaptive methods. tion with Zheng et al. (2020a).

Figure 4: BLEU-AL comparison between our method and
baselines on En—Vi.

Computational overhead: To evaluate the additional compu-
tational overhead brought by our method, we compare the
training speed of standard wait-k and our method on wait-3
(measured by the number of batches per second). Results
on IWSLT datasets are summarized in Table 2. Our method
requires 20% ~ 30% additional training time, which is ac-
ceptable considering the performance improvements. The
major overhead comes from computing the training loss by
wait-k. To verify that, we record the training speed of our
method without the second and third input features of ¢, i,e,
the training loss over data (x, y) evaluated on wait-k, and
the average of historical training losses (denoted by “Ours
w/o feature (2,3)”). Without these two features, the training

Temporally Correlated Task Scheduling for Sequence Learning

speed of our method is close to wait-k.

Task ‘ wait-k Ours Ours w/o feature (2,3)
En—De 5.3 4.0 (-23%) 5.2 (-2%)
En—Vi 1.5 1.1 (-27%) 1.4 (-7%)
En—Zh 2.5 1.8 (-28%) 2.4 (-4%)

Table 2: Comparison of training speed (batch / sec) between
wait-k and our methods.

Strategy analysis: In Figure 5, we visualize the distribution
of wait-m tasks obtained by the scheduler for two main
tasks, wait-3 and wait-9 on IWSLT En—Zh dataset. We
show the frequency of each wait-m task sampled by the
scheduler ¢ at the Oth, 1st, 5th, 10th and 40th episode.

We observed that the scheduler uniformly samples different
tasks at first, and then the strategies converge within 10
episodes. After convergence, the scheduler mainly samples
several specific tasks, i.e., m = 5,9,12 for wait-3, and
m = 5, 12 for wait-9. The task that both schedulers prefer
most is m = 12, which is close to the optimal training
task wait-k* (k* = 11) for both wait-3 and wait-9. This
demonstrates that the scheduler can learn which task is more
beneficial to the main task. However, it is worth noting that
the scheduler also samples other tasks, which shows the
importance of training with multiple tasks instead of one
single optimal task. For example, the scheduler for wait-9
samples both wait-5 and 9 with a probability of about 0.1.

4. Application to Stock Trend Forecasting
4.1. Task Description

Stock trend forecasting is a core problem in stock market
investment. Following the common practice, in this task,
X represents the historical transactions data including both
prices and trading volumes, and) denotes the stock price
movement in future days.

At the t-th day, a specific stock can be represented by a
5-dimension feature vector z; including the opening price,
closing price (denoted as p;), the highest price, the lowest
price and the trading volume. The task T}, € T is to forecast
the stock price rise percent of the next k-th day, i.e., y; =
pﬁ% — 1. This task lies in the second type of classes as
introduced in Section 2.1. In stock forecasting, we usually
make predictions based on a window of historical inputs of
length L, i.e., (Tt—r+1, Tt—r+2, -, Tt). We explore three
different main tasks in this work: forecasting the stock rise

trend of the next 1st, 2nd and 3rd days (i.e., 11, 1> and T3).

As mentioned by Tang et al. (2020), all the above three tasks
are important because investors tend to invest in stocks with
rising price trends in a continuous period, rather than caring
the next trading day only.

4.2. Background

Traditional methods for stock trend forecasting are based on
time-series analysis models, such as the Auto-regressive In-
tegrated Moving Average (ARMA) and Kalman Filters (Yan
& Guosheng, 2015). With the development of deep learn-
ing, applying neural network to stock forecasting becomes
a new trend due to its better performance on noisy data.
GRU (Chung et al., 2014) is one of the most representa-
tive deep neural networks in stock trend forecasting (Hu
et al., 2018). By utilizing the reset gate and update gate,
GRU can adaptively choose the information to be kept or
dropped, which makes it relatively robust to the diverse and
noisy sequential data in the stock market. Other types of
recurrent neural networks are also leveraged such as LSTM,
SFM (Zhang et al., 2017b), ALSTM (Qin et al., 2017b),
etc. Recent works start to use graph neural networks (e.g.
GAT (Velickovi¢ et al., 2017)) to model different stocks
so that the information can be propagated along with the
pre-defined relations (Feng et al., 2019; Kim et al., 2019).

In addition to neural networks, many machine learning meth-
ods have been successfully applied to forecast stock future
trends. A particularly powerful branch is the tree-based
approach, such as LightGBM (Ke et al., 2017) and Ran-
dom Forest. They have outstanding performance and certain
interpretability, so they are widely used in stock market
investment (Khaidem et al., 2016; Tan et al., 2019).

4.3. Settings

We conduct experiments on individual stocks in the Chinese
A-share market. We explore three groups of temporally cor-
related tasks: T3 = {T1, T2, T3}, Ts = {T1, T2, -+ ,T5}
and 710 = {jjl,Tlg7 e 7T10}-

Dataset : We use the historical transaction data for 300
stocks on CSI300 (CSI300, 2008) from 01/01/2008 to
08/01/2020. We split the data into training (01/01/2008-
12/31/2013), validation (01/01/2014-12/31/2015), and
test sets (01/01/2016-08,/01/2020) based on the transac-
tion time. All the data is provided by Yang et al. (2020).

Models: The forecasting model f is built on top of a 2-layer
GRU with hidden dimension 32. The length of the input
sequence (i.e., the L in Section 4.1) is 60. The scheduler ¢
is a single-layer feed-forward network with ReL U activation.
The hidden size of ¢ is 32.

Input features of p: The features consist of four parts: (1) the
data (x,y) € D, itself; (2) the training loss of the previous
iteration; (3) the forecasting results of the previous iteration;
(4) the labels of each task in 7.

Baselines: Similar to Section 3.3, we implement MTL and
CL as baselines by using temporally correlated tasks. In CL,
we start from the easiest task 77, and then gradually move

Temporally Correlated Task Scheduling for Sequence Learning

Wait-3
[I
. [
§ I m=1
E‘ E m=2
B m=3
Il m=4
B m=5
T T T T T T i I m=6
0.4 0.5 0.6 0.7 0.8 0.9 1.0 B m=7
Wait-9 I m=8
0 m=9
B e 1 = e
B m=11
9] - 0 m=12
E BN m=13
0?0 011 OjZ 013 0?4 0‘,5 0j6 0t7 ofs 019 1.0
Figure 5: The distribution of wait-m tasks for wait-3 and wait-9 on En—Zh dataset.
to the most difficult one. Besides, we implement different Methods Task-1 Task-2 Task-3
models for stock forecasting for comparison, including sim- GRU 0.049/1903 0.018/1.972 0.014/1.989
ple feed-forward networks (denoted by MLP), lightGBM MLP 0.023/1.961 0.022/1.962 0.015/1.978
(briefly, LGB) (Ke et al., 2017) and GAT (Veli¢kovi¢ et al., LGB 0.038/1.883 0.023/1.952 0.007 /1.987
2017; Feng et al., 2019). Note that for GAT, we do not GAT 0.052/1.898 0.024/1.954 0.015/1.973
leverage the specific relation between stocks. MTL (73) 0.061/1.862 0.023/1.942 0.012/1.956
. . . CL (T3) 0.051/1.880 0.028/1.941 0.016/1.962
Evaluation: We use rank correlation coefficient (Zhang et al., Ours (T3) 0.071/1.851 0.030/1.939 0.017/1.963
2020) (briefly, RankIC) and the? mean square error (briefly, MTL (7o) 0057/ 1.875 0021/1.939 0.017/1.959
MSE) to evaluate the forecasting results. RankIC can be CL (T3) 0.056/1.877 0.028/1.942 0.015/1.962
regarded as a correlation between the prediction and the Ours (75) 0.075/1.849 0.032/1.939 0.021/1.955
groundtruth results (the larger, the better). MSE measures MTL (Tio) 0.052/1.882 0.020/1.947 0.019/1.952
the gap between prediction results and the groundtruth re- CL (Tio) 0.051/1.882 0.028/1.950 0.016/1.961
sults (the smaller, the better). Due to space limitation, we Ours (710) 0.067/1.867 0.030/1.960 0.022/1.942

put the evaluation results using ICIR (a measurement that
takes stability into consideration) in Appendix F.

4.4. Results and Analysis

The results of stock trend forecasting are reported in Table 3.
We have the following observations:

(1) With different sets of temporally correlated auxiliary
tasks, i.e., T3, T5 and 71g, our method significantly outper-
forms MTL and CL on most settings, which demonstrates
the effectiveness of leveraging an adaptive scheduler.

(2) Using a larger temporally correlated task set does not
always bring improvements. Taking task 7} as an example,
our method achieves the best performance when using 5
temporally correlated tasks, while using 10 hurts the per-
formance. The reason is that more tasks will introduce
additional noise to the training.

(3) There are more advanced methods than GRU like GAT,
leveraging temporally correlated tasks can achieve superior

Table 3: Results of stock trend forecasting. The first four
rows are the results of various model architectures without
leveraging temporally correlated tasks. The following rows
are the results with different algorithms (MTL, CL and ours)
and different auxiliary task sets (73, 75 and 71¢). For each
cell, the RankIC is put on the left and MSE on the right.

performance than the strong models. Currently, our model
is based on GRU, and we will combine our method with
GAT and lightGBM in the future for more improvements.

5. Conclusions and Future Work

In this work, we formulated and studied the problem of tem-
porally correlated task scheduling, which can cover many
applications including sequence processing with latency
constraints (e.g., simultaneous machine translation) and se-
quence future prediction (e.g. stock trend forecasting). Ex-

Temporally Correlated Task Scheduling for Sequence Learning

periments on four translation tasks and one stock prediction
task demonstrate the effectiveness of our approach.

For future work, we will apply our method to more appli-
cations like action prediction (Kong et al., 2020; Cai et al.,
2019), streaming speech recognition, weather forecasting,
game Al (Li et al., 2020; Vinyals et al., 2019), etc. We will
also design better methods for the problem. Another inter-
esting direction is to theoretically understand the problem
and analyze our method.

References

Alinejad, A., Siahbani, M., and Sarkar, A. Prediction
improves simultaneous neural machine translation. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 3022-3027,
Brussels, Belgium, October-November 2018. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/D18-1337. URL https://www.aclweb.org/
anthology/D18-1337.

Arivazhagan, N., Cherry, C., Macherey, W., Chiu, C.-C.,
Yavuz, S., Pang, R., Li, W.,, and Raffel, C. Mono-
tonic infinite lookback attention for simultaneous ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pp. 1313-1323, Florence, Italy, 2019. Association

for Computational Linguistics. URL https://www.

aclweb.org/anthology/P19-1126.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
In ICLR, 2014. URL https://arxiv.org/abs/
1409.0473.

Cai, Y., Li, H., Hu, J.-F.,, and Zheng, W.-S. Action knowl-
edge transfer for action prediction with partial videos. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 8118-8125, 2019.

Cho, K. and Esipova, M. Can neural machine translation do
simultaneous translation? CoRR, abs/1606.02012, 2016.
URL http://arxiv.org/abs/1606.02012.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

CSI300. Csi 300, 2008. URL http://www.csindex.

com.cn/en/indices/index—-detail/
000300.

Dai, Y. and Zhang, Y. Machine learning in stock price trend
forecasting, 2013.

Dalvi, F., Durrani, N., Sajjad, H., and Vogel, S. Incre-

mental decoding and training methods for simultane-
ous translation in neural machine translation. In Pro-
ceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2
(Short Papers), pp. 493-499, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-2079. URL https://www.
aclweb.org/anthology/N18-2079.

Dong, Q., Gong, S., and Zhu, X. Multi-task curriculum

transfer deep learning of clothing attributes. In 2017
IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 520-529. IEEE, 2017.

Edunov, S., Ott, M., Auli, M., Grangier, D., and Ranzato, M.

Classical structured prediction losses for sequence to se-
quence learning. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 355-364, New Orleans,
Louisiana, June 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1033. URL https:
//www.aclweb.org/anthology/N18-1033.

Fan, Y., Tian, F,, Qin, T., Li, X., and Liu, T. Learning

to teach. CoRR, abs/1805.03643, 2018. URL http:
//arxiv.org/abs/1805.03643.

Feng, F., He, X., Wang, X., Luo, C., Liu, Y., and Chua, T.-S.

Temporal relational ranking for stock prediction. ACM
Transactions on Information Systems (TOIS), 37(2):1-30,
2019.

Grissom II, A., He, H., Boyd-Graber, J., Morgan, J., and
Daumé III, H. Don’t until the final verb wait: Rein-
forcement learning for simultaneous machine transla-
tion. In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP),
pp- 1342-1352, Doha, Qatar, October 2014. Associ-
ation for Computational Linguistics. doi: 10.3115/
v1/D14-1140. URL https://www.aclweb.org/
anthology/D14-1140.

Gu, J., Neubig, G., Cho, K., and Li, V. O. Learning
to translate in real-time with neural machine transla-
tion. In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pp. 1053-1062,
Valencia, Spain, April 2017. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/E17-1099.

He, Y., Sainath, T. N., Prabhavalkar, R., McGraw, 1., Al-
varez, R., Zhao, D., Rybach, D., Kannan, A., Wu, Y.,
Pang, R., Liang, Q., Bhatia, D., Shangguan, Y., Li, B.,

https://www.aclweb.org/anthology/D18-1337
https://www.aclweb.org/anthology/D18-1337
https://www.aclweb.org/anthology/P19-1126
https://www.aclweb.org/anthology/P19-1126
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1606.02012
http://www.csindex.com.cn/en/indices/index-detail/000300
http://www.csindex.com.cn/en/indices/index-detail/000300
http://www.csindex.com.cn/en/indices/index-detail/000300
https://www.aclweb.org/anthology/N18-2079
https://www.aclweb.org/anthology/N18-2079
https://www.aclweb.org/anthology/N18-1033
https://www.aclweb.org/anthology/N18-1033
http://arxiv.org/abs/1805.03643
http://arxiv.org/abs/1805.03643
https://www.aclweb.org/anthology/D14-1140
https://www.aclweb.org/anthology/D14-1140
https://www.aclweb.org/anthology/E17-1099
https://www.aclweb.org/anthology/E17-1099

Temporally Correlated Task Scheduling for Sequence Learning

Pundak, G., Sim, K. C., Bagby, T., Chang, S., Rao, K.,
and Gruenstein, A. Streaming end-to-end speech recog-
nition for mobile devices. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 6381-6385, 2019. doi:
10.1109/ICASSP.2019.8682336.

Hu, Z., Liu, W., Bian, J., Liu, X., and Liu, T.-Y. Listening to
chaotic whispers: A deep learning framework for news-
oriented stock trend prediction. In Proceedings of the
eleventh ACM international conference on web search
and data mining, pp. 261-269, 2018.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W.,
Ma, W., Ye, Q., and Liu, T.-Y. Lightgbm: A
highly efficient gradient boosting decision tree. In
Guyon, 1., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Processing
Systems, volume 30, pp. 3146-3154. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/

6449f44a102fde848669bdd9%ebbb76fa-Paper.

pdf.

Khaidem, L., Saha, S., and Dey, S. R. Predicting the direc-
tion of stock market prices using random forest. arXiv
preprint arXiv:1605.00003, 2016.

Kim, R., So, C. H., Jeong, M., Lee, S., Kim, J., and Kang,
J. Hats: A hierarchical graph attention network for stock
movement prediction. arXiv preprint arXiv:1908.07999,
2019.

Kim, S., Hong, S., Joh, M., and Song, S. Deeprain: Con-
vlstm network for precipitation prediction using multi-
channel radar data. CoRR, abs/1711.02316, 2017. URL
http://arxiv.org/abs/1711.02316.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015. URL https://arxiv.org/
pdf/1412.6980.pdf.

Kong, Y., Tao, Z., and Fu, Y. Adversarial action prediction
networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(3):539-553, 2020.

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R.,
Zhao, L., Qin, T., Liu, T.-Y., and Hon, H.-W. Suphx:
Mastering mahjong with deep reinforcement learning.
arXiv preprint arXiv:2003.13590, 2020.

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differ-
entiable architecture search. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=S1eYHoC5FX.

Ma, M., Huang, L., Xiong, H., Zheng, R., Liu, K., Zheng,
B., Zhang, C., He, Z., Liu, H.,, Li, X., Wu, H., and
Wang, H. STACL: Simultaneous translation with im-
plicit anticipation and controllable latency using prefix-
to-prefix framework. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pp- 3025-3036, Florence, Italy, July 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/P19-1289. URL https://www.aclweb.org/
anthology/P19-12809.

Ma, X., Pino, J., Cross, J., Puzon, L., and Gu, J. Monotonic
multihead attention. In 8th International Conference on
Learning Representations, 2020.

Pan, S. J., Yang, Q., Fan, W., and (ph. D, S. J. P. A survey
on transfer learning. /IEEE Transactions on Knowledge
and Data Engineering, 2010.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pp. 311—
318, Philadelphia, Pennsylvania, USA, July 2002. Asso-
ciation for Computational Linguistics. doi: 10.3115/
1073083.1073135. URL https://www.aclweb.
org/anthology/P02-1040.

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., and
Cottrell, G. A dual-stage attention-based recurrent neu-
ral network for time series prediction. arXiv preprint
arXiv:1704.02971, 2017a.

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., and
Cottrell, G. A dual-stage attention-based recurrent neu-
ral network for time series prediction. arXiv preprint
arXiv:1704.02971, 2017b.

Ren, Y., Liu, J., Tan, X., Zhang, C., Qin, T., Zhao, Z., and
Liu, T. Simulspeech: End-to-end simultaneous speech to
text translation. In ACL, 2020.

Shao, K., Zhu, Y., and Zhao, D. Starcraft micromanage-
ment with reinforcement learning and curriculum transfer
learning. IEEE Transactions on Emerging Topics in Com-
putational Intelligence, 3(1):73-84, 2018.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k.,
and Woo, W.-c. Convolutional Istm network: A machine
learning approach for precipitation nowcasting. In Pro-
ceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’15, pp.
802-810, Cambridge, MA, USA, 2015. MIT Press.

Sinha, A., Malo, P., and Deb, K. A review on bilevel opti-
mization: from classical to evolutionary approaches and
applications. IEEE Transactions on Evolutionary Com-
putation, 22(2):276-295, 2017.

https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
http://arxiv.org/abs/1711.02316
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://www.aclweb.org/anthology/P19-1289
https://www.aclweb.org/anthology/P19-1289
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040

Temporally Correlated Task Scheduling for Sequence Learning

Sutskever, 1., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q. (eds.), Advances in Neural Information Processing
Systems 27. Curran Associates, Inc., 2014.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Tan, Z., Yan, Z., and Zhu, G. Stock selection with random
forest: An exploitation of excess return in the chinese
stock market. Heliyon, 5(8):e02310, 2019.

Tang, Z., Zhang, T., Wu, J., Du, X., and Chen, K. Multistep-
ahead stock price forecasting based on secondary de-
composition technique and extreme learning machine
optimized by the differential evolution algorithm. Mathe-
matical Problems in Engineering, 2020, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N, Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Veli¢kovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350-354, 2019.

Wang, X., Pham, H., Michel, P., Anastasopoulos, A., Car-
bonell, J., and Neubig, G. Optimizing data usage via
differentiable rewards. In International Conference on
Machine Learning, pp. 9983-9995. PMLR, 2020.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

Yan, X. and Guosheng, Z. Application of kalman filter in the
prediction of stock price. In 5th International Symposium
on Knowledge Acquisition and Modeling (KAM 2015).
Atlantis Press, 2015.

Yang, X., Liu, W., Zhou, D., Bian, J., and Liu, T.-Y. Qlib:
An ai-oriented quantitative investment platform. arXiv
preprint arXiv:2009.11189, 2020.

Zhang, C., Tan, X., Liu, J., Ren, Y., Qin, T., and Liu,
T.-Y. Simuls2s: End-to-end simultaneous speech to

speech translation. Openreview, 2019. URL https:
//openreview.net/pdf?id=Ske_56EYVS.

Zhang, F., Guo, R., and Cao, H. Information coefficient as
a performance measure of stock selection models, 2020.

Zhang, L., Aggarwal, C., and Qi, G.-J. Stock price pre-
diction via discovering multi-frequency trading patterns.
In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp- 2141-2149. ACM, 2017a.

Zhang, L., Aggarwal, C., and Qi, G.-J. Stock price pre-
diction via discovering multi-frequency trading patterns.
In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pp.
2141-2149, 2017b.

Zhang, Y. and Yang, Q. A survey on multi-task learning.
CoRR, abs/1707.08114, 2017. URL http://arxiv.
org/abs/1707.08114.

Zheng, B., Zheng, R., Ma, M., and Huang, L. Simpler and
faster learning of adaptive policies for simultaneous trans-
lation. In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pp. 1349-1354, Hong Kong,
China, November 2019a. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1137. URL https:
//www.aclweb.org/anthology/D19-1137.

Zheng, B., Zheng, R., Ma, M., and Huang, L. Simulta-
neous translation with flexible policy via restricted im-
itation learning. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pp. 5816-5822, Florence, Italy, July 2019b. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/P19-1582. URL https://www.aclweb.org/
anthology/P19-1582.

Zheng, B., Liu, K., Zheng, R., Ma, M., Liu, H., and
Huang, L. Simultaneous translation policies: From
fixed to adaptive. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguis-
tics, pp. 2847-2853, 2020a. doi: 10.18653/v1/2020.
acl-main.254. URL https://www.aclweb.org/
anthology/2020.acl-main.254.

Zheng, R., Ma, M., Zheng, B., Liu, K., and Huang, L.
Opportunistic decoding with timely correction for si-
multaneous translation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pp. 437-442, Online, July 2020b. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/2020.acl-main.42. URL https://www.aclweb.
org/anthology/2020.acl-main.42.

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://openreview.net/pdf?id=Ske_56EYvS
https://openreview.net/pdf?id=Ske_56EYvS
http://arxiv.org/abs/1707.08114
http://arxiv.org/abs/1707.08114
https://www.aclweb.org/anthology/D19-1137
https://www.aclweb.org/anthology/D19-1137
https://www.aclweb.org/anthology/P19-1582
https://www.aclweb.org/anthology/P19-1582
https://www.aclweb.org/anthology/2020.acl-main.254
https://www.aclweb.org/anthology/2020.acl-main.254
https://www.aclweb.org/anthology/2020.acl-main.42
https://www.aclweb.org/anthology/2020.acl-main.42

