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Figure A1. Qualitative generation results for Mod2 dataset. Given the first 50 frames of the video, each model predicts the next 50 frames.
The first 20 predicted frames are shown.

A. Additional Results
A.1. Qualitative Generation Results

Figures A1, A2, A3 show qualitative generation results for
the Mod2, Mod3, and Mod1234 datasets.

A.2. Attention Analysis

Figure A4 shows an example of the attention weights in the
transformer when predicting the last timestep of a sequence
in the Mod1 dataset. The right hand side shows the balls at
timestep t and the left hand side shows the balls for the 6
timesteps prior. The darker the shade of gray, the stronger
the weight. At this particular timestep, the color of the top
right ball changes from red to cyan. We see that the strongest
attention weights are to the same ball in the previous frames
as well as the violet ball several frames prior, which is the
ball that last interacted with this ball. This makes intuitive
sense because the positions of the same ball in the last few
frames are important in predicting to updated location of
the ball at the next timestep. In order to correctly predict
the color change of the ball, it must also attend to the ball
that it most recently interacted with.

A.3. End-to-End Training

We also evaluated OCVT in a setting where we train the
entire model end-to-end instead of freezing the parameters

of the encoder and decoder while training the transformer.
This is done under two settings: (a) training the model
completely from scratch end-to-end and (b) using a pre-
trained encoder and fine-tuning the model end-to-end. We
achieve a next-step change accuracy of 82.21% for (a) and
76.95% for (b) for the Mod1 dataset. While this end-to-end
training does not outperform our best pre-trained model,
end-to-end training may be beneficial in certain scenarios
since the encoder can incorporate temporal information from
the scene. We leave this investigation for future work.

B. Implementation Details
B.1. Model Architecture

For the foreground image encoder, we use a ResNet18 (He
et al., 2016). For (H,W ) = (4, 4), we apply an extra pair
of 3 × 3 convolutions with stride 1 to get the appropriate
dimensions per grid cell (see Hyperparameters in the next
section). For (H,W ) = (8, 8), we remove the last ResNet
block and then apply the pair of convolutions. To obtain zt,
each cell is run through a 3-layer fully convolutional net-
work with ReLU activation and group normalization (Wu &
He, 2018). After the final layer, we apply softplus to com-
pute standard deviations of the Gaussian distributions for
zwhere
t , zwhat

t , zdepth
t . For zpres

t , we apply the sigmoid function
and use the Gumbel-Softmax (Jang et al., 2016) relaxation
to model a Bernoulli random variable. For the foreground
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Figure A2. Qualitative generation results for Mod3 dataset. Given the first 50 frames of the video, each model predicts the next 50 frames.
The first 20 predicted frames are shown.

Figure A3. Qualitative generation results for Mod1234 dataset. Given the first 70 frames of the video, each model predicts the next 80
frames. The first 20 predicted frames are shown.
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Figure A4. Attention strength at 7th layer during color change.

image decoder, we use a 6-layer sub-pixel convolutional
network (Shi et al., 2016) with group normalization in the
intermediate layers.

For the background image encoder, we use a 4-layer convo-
lutional network with CELU activation (Barron, 2017) and
group normalization followed by a final linear layer. For
the background image decoder, we use a 6-layer convolu-
tional network, each consisting of 2D bilinear upsampling
followed by a convolution with leaky ReLU activation.

For the transformer, we use a linear layer to obtain the
desired dimensions for the transformer input (see Hyper-
parameters). The output of the transformer runs through a
single hidden layer MLP with ReLU activation to obtain the
next step predictions.

B.2. Hyperparameters

We provide the hyperparameters used in our experiments in
Tables A1 and A2.

C. Dataset and Experiment Details
C.1. Bouncing Balls

In all the bouncing ball datasets, we have 20,000 videos
for training, 200 videos for validation, and 200 videos for
testing. For the Mod1, Mod2, and Mod3 datasets, each
video has an episode length of 100 frames. For the Mod1234
dataset, each video has an episode length of 150 frames.
This longer episode length is to allow for a sufficient number
of interactions (up to 4 for this dataset) in the videos. We
choose the best model based on the change accuracy on the

Table A1. List of Hyperparameters for Bouncing Ball Datasets

Description Value

Image Size (64,64)
Grid size (H,W ) (4,4)
Dimension per grid cell 128
Dimension of zwhat 16
Dimension of zbg None
Foreground Variance 0.2
Background Variance None
Gumbel-Softmax Temp. for zpres

t 0.01
βwhere 20
βdepth 0
βpres 1
βwhat 4
Dimension of transformer input 360
Feedforward dimension in transformer 256
Number of heads 8
Number of transformer layers 15

Table A2. List of Hyperparameters for CATER Datasets

Description Value

Image Size (64,64)
Grid size (H,W ) (8,8)
Dimension per grid cell 128
Dimension of zwhat 64
Dimension of zbg 64
Foreground Variance 0.05
Background Variance 0.2
Gumbel-Softmax Temp. for zpres

t 0.01
βwhere 50
βdepth 1
βpres 1
βwhat 1
Dimension of transformer input 360
Feedforward dimension in transformer 256
Number of heads 6
Number of transformer layers 15

validation set and then use this model on the test set for
evaluation. All models are trained to convergence measured
by the plateauing of the change accuracy on the validation
set.

C.2. CATER

This dataset consists of 3,080 videos for the training set,
770 videos for the validation set, and 1650 videos for the
test set. Each video frame is reshaped to 64x64 pixels. Each
video originally has 300 frames and we randomly sample
50 frames for training. For validation and testing, we take
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every sixth frame for a total of 50 frames. We choose the
best model based on the best Top 5 Accuracy for the snitch
localization task on the validation set and then use this
model on the test set for evaluation.
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