
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary Material for
“Generative Video Transformer: Can Objects be the Words?”

Figure A1. Qualitative generation results for Mod2 dataset. Given the first 50 frames of the video, each model predicts the next 50 frames.
The first 20 predicted frames are shown.

A. Additional Results
A.1. Qualitative Generation Results

Figures A1, A2, A3 show qualitative generation results for
the Mod2, Mod3, and Mod1234 datasets.

A.2. Attention Analysis

Figure A4 shows an example of the attention weights in the
transformer when predicting the last timestep of a sequence
in the Mod1 dataset. The right hand side shows the balls at
timestep t and the left hand side shows the balls for the 6
timesteps prior. The darker the shade of gray, the stronger
the weight. At this particular timestep, the color of the top
right ball changes from red to cyan. We see that the strongest
attention weights are to the same ball in the previous frames
as well as the violet ball several frames prior, which is the
ball that last interacted with this ball. This makes intuitive
sense because the positions of the same ball in the last few
frames are important in predicting to updated location of
the ball at the next timestep. In order to correctly predict
the color change of the ball, it must also attend to the ball
that it most recently interacted with.

A.3. End-to-End Training

We also evaluated OCVT in a setting where we train the
entire model end-to-end instead of freezing the parameters

of the encoder and decoder while training the transformer.
This is done under two settings: (a) training the model
completely from scratch end-to-end and (b) using a pre-
trained encoder and fine-tuning the model end-to-end. We
achieve a next-step change accuracy of 82.21% for (a) and
76.95% for (b) for the Mod1 dataset. While this end-to-end
training does not outperform our best pre-trained model,
end-to-end training may be beneficial in certain scenarios
since the encoder can incorporate temporal information from
the scene. We leave this investigation for future work.

B. Implementation Details
B.1. Model Architecture

For the foreground image encoder, we use a ResNet18 (He
et al., 2016). For (H,W ) = (4, 4), we apply an extra pair
of 3 × 3 convolutions with stride 1 to get the appropriate
dimensions per grid cell (see Hyperparameters in the next
section). For (H,W ) = (8, 8), we remove the last ResNet
block and then apply the pair of convolutions. To obtain zt,
each cell is run through a 3-layer fully convolutional net-
work with ReLU activation and group normalization (Wu &
He, 2018). After the final layer, we apply softplus to com-
pute standard deviations of the Gaussian distributions for
zwhere
t , zwhat

t , zdepth
t . For zpres

t , we apply the sigmoid function
and use the Gumbel-Softmax (Jang et al., 2016) relaxation
to model a Bernoulli random variable. For the foreground



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Generative Video Transformer

Figure A2. Qualitative generation results for Mod3 dataset. Given the first 50 frames of the video, each model predicts the next 50 frames.
The first 20 predicted frames are shown.

Figure A3. Qualitative generation results for Mod1234 dataset. Given the first 70 frames of the video, each model predicts the next 80
frames. The first 20 predicted frames are shown.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Generative Video Transformer

Figure A4. Attention strength at 7th layer during color change.

image decoder, we use a 6-layer sub-pixel convolutional
network (Shi et al., 2016) with group normalization in the
intermediate layers.

For the background image encoder, we use a 4-layer convo-
lutional network with CELU activation (Barron, 2017) and
group normalization followed by a final linear layer. For
the background image decoder, we use a 6-layer convolu-
tional network, each consisting of 2D bilinear upsampling
followed by a convolution with leaky ReLU activation.

For the transformer, we use a linear layer to obtain the
desired dimensions for the transformer input (see Hyper-
parameters). The output of the transformer runs through a
single hidden layer MLP with ReLU activation to obtain the
next step predictions.

B.2. Hyperparameters

We provide the hyperparameters used in our experiments in
Tables A1 and A2.

C. Dataset and Experiment Details
C.1. Bouncing Balls

In all the bouncing ball datasets, we have 20,000 videos
for training, 200 videos for validation, and 200 videos for
testing. For the Mod1, Mod2, and Mod3 datasets, each
video has an episode length of 100 frames. For the Mod1234
dataset, each video has an episode length of 150 frames.
This longer episode length is to allow for a sufficient number
of interactions (up to 4 for this dataset) in the videos. We
choose the best model based on the change accuracy on the

Table A1. List of Hyperparameters for Bouncing Ball Datasets

Description Value

Image Size (64,64)
Grid size (H,W ) (4,4)
Dimension per grid cell 128
Dimension of zwhat 16
Dimension of zbg None
Foreground Variance 0.2
Background Variance None
Gumbel-Softmax Temp. for zpres

t 0.01
βwhere 20
βdepth 0
βpres 1
βwhat 4
Dimension of transformer input 360
Feedforward dimension in transformer 256
Number of heads 8
Number of transformer layers 15

Table A2. List of Hyperparameters for CATER Datasets

Description Value

Image Size (64,64)
Grid size (H,W ) (8,8)
Dimension per grid cell 128
Dimension of zwhat 64
Dimension of zbg 64
Foreground Variance 0.05
Background Variance 0.2
Gumbel-Softmax Temp. for zpres

t 0.01
βwhere 50
βdepth 1
βpres 1
βwhat 1
Dimension of transformer input 360
Feedforward dimension in transformer 256
Number of heads 6
Number of transformer layers 15

validation set and then use this model on the test set for
evaluation. All models are trained to convergence measured
by the plateauing of the change accuracy on the validation
set.

C.2. CATER

This dataset consists of 3,080 videos for the training set,
770 videos for the validation set, and 1650 videos for the
test set. Each video frame is reshaped to 64x64 pixels. Each
video originally has 300 frames and we randomly sample
50 frames for training. For validation and testing, we take



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Generative Video Transformer

every sixth frame for a total of 50 frames. We choose the
best model based on the best Top 5 Accuracy for the snitch
localization task on the validation set and then use this
model on the test set for evaluation.

References
Barron, J. T. Continuously differentiable exponential linear

units. CoRR, abs/1704.07483, 2017. URL http://
arxiv.org/abs/1704.07483.

He, K., Zhang, X., Ren, S., and Sun, J. Deep resid-
ual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/
10.1109/CVPR.2016.90.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A. P.,
Bishop, R., Rueckert, D., and Wang, Z. Real-time sin-
gle image and video super-resolution using an efficient
sub-pixel convolutional neural network. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pp. 1874–1883. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.207. URL https://doi.org/
10.1109/CVPR.2016.207.

Wu, Y. and He, K. Group normalization. In Ferrari,
V., Hebert, M., Sminchisescu, C., and Weiss, Y. (eds.),
Computer Vision - ECCV 2018 - 15th European Con-
ference, Munich, Germany, September 8-14, 2018, Pro-
ceedings, Part XIII, volume 11217 of Lecture Notes
in Computer Science, pp. 3–19. Springer, 2018. doi:
10.1007/978-3-030-01261-8\ 1. URL https://doi.
org/10.1007/978-3-030-01261-8_1.

http://arxiv.org/abs/1704.07483
http://arxiv.org/abs/1704.07483
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.207
https://doi.org/10.1109/CVPR.2016.207
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1

