
Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

A. Appendix
A.1. Analysis for Convergence Properties

We first extend the convergence theorem (Theorem B.1)
from (Kumar et al., 2019) to obtain a bound on the approx-
imation error with respect to bellman approximation error
�(s, a) – Theorem A.1.

Note that Theorem A.1 alone does not imply convergence,
since �(s, a) can be arbitrarily large due to OOD estimates
in offline RL. We then show (in Theorem A.2) that �(s, a)
can be bounded by any constant under mild assumptions
that the Q function is Lipschitz continuous. Theorem A.2
shows our framework converges w.r.t. OOD samples.
Theorem A.1. Suppose we run approximate distribution-
constrained value iteration with a set constrained backup
T ⇧ on a set of policies ⇧. Let �(s, a) be the upper-
bound for the Bellman approximation error for a given
state-action pair (s, a) over k training steps: �(s, a) =
supk

��Qk(s, a)� T ⇧Qk�1(s, a)
��. Then,

lim
k!1

E⇢0 [|Vk(s)� V ⇤(s)|]

 �

(1� �)2


C(⇧)Eµ


max
⇡2⇧

E⇡[�(s, a)]

�
+

1� �

�
↵(⇧)

�

with the suboptimality constant (↵(⇧)) and the concentra-
bility coefficient defined as:

↵(⇧) = max
s.a

��T ⇧Q⇤(s, a)� T Q⇤(s, a)
�� ;

C(⇧)
def
= (1� �)2

1X

k=1

k�k�1c(k)

The proof of the theorem is a direct modification of the
contraction proof in Theorem 3 of (Farahmand et al., 2010)
or Theorem 1 of (Munos, 2003).

The suboptimality constant (↵(⇧)) captures how far ⇡⇤ is
from ⇧, namely the suboptimality of the actor. The con-
centrability coefficient quantifies how far the visitation dis-
tribution generated by policies from ⇧ is from the training
data distribution, namely the degree to which the training
may encounter OOD actions and states. Kumar et al. (2019)
note a trade-off between ↵(⇧) and C(⇧), and propose to
bound both terms by constraining ⇧ to the set of policies
with support the same as the training set policy with MMD
loss.

However, the most important Bellman approximation error
term which is the root cause of the bootstrapping problem is
still left unbounded. We proceed to show that for ⇡0(a|s) =

�

supk

p
V ar[Qk(s,a)]

⇡(a|s)/Z. Assuming that Z � 1, and

that Q is bounded, we can bound the Bellman error term
max⇡0 E⇡0 [�(s, a)] by any constant C with arbitrarily high
probability by optimizing on ⇡0.

Note that Theorem A.2 considers down-weighting by in-
verse the square-root of the variance (standard deviation),
which is different from the inverse variance in Equation
3,4,5 and Algorithm 1. Down-weighing by the variance has
the same practical effect since we clip the ratio for numeri-
cal stability. We adopt variance for practical implementation
for the ease of tracing after multiple max,min,summation
operations in Algorithm 1.

Theorem A.2. Let ⇡0(a|s) =
�

supk

p
V ar[Qk(s,a)]

⇡(a|s)/Z(s), with the normaliza-

tion factor Z(s) =
R
a

�
V ar[Q(s,a)]⇡(a|s) as in equation

3. Assume that 1) 8s : Z(s) � 1 and 2) Q is bounded
(8s, a : |Q(s, a)|  Qm).

Then for any C 2 R, there exists �,K such that

P
⇣
max
⇡0

E⇡0 [�(s, a)] � C
⌘
 1

K2

Proof. We firstly apply triangle inequality to unwrap the
original formulation into a sum of two differences, and
bound the two terms respectively.

max
⇡0

E⇡0 [�(s, a)]

=max
⇡0

E⇡0


sup
k

��Qk(s, a)� T ⇧Qk�1(s, a)
��
�

=max
⇡0

E⇡0


sup
k

���Qk(s, a) + E[Qk(s, a)]

� E[Qk(s, a)]� T ⇧Qk�1(s, a)
���
�

max
⇡0

E⇡0


sup
k

|Qk(s, a)� E[Qk(s, a)]|
�
+

max
⇡0

E⇡0


sup
k

��E[Qk(s, a)]� T ⇧Qk�1(s, a)
��
�

Starting with the red term, we firstly obtain a probabilistic
bound on the distance term inside the expectation with the
Chebyshev’s inequality

P (|X � E[X]| � �K)  1

K2

P
⇣
|Qk(s, a)� E[Qk(s, a)]| � K

p
V ar[Qk(s, a)]

⌘
 1

K2

P

�

supk
p
V ar[Qk(s, a)]

|Qk(s, a)� E[Qk(s, a)]| � �K

!
 1

K2

Secondly, note that by assumption |Q| is bounded by
Qm. This provides us an upper-bound on the difference
|Q(s, a) � E[Q(s, a)]|  2Qm. Making use of both the

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

general upper-bound and the tight probabilistic bound, by
setting ⇡0(a|s) = �

supk

p
V ar[Qk(s,a)]

⇡(a|s)/Z(s), we have

max
⇡0

E⇡0


sup
k

|Qk(s, a)� E[Qk(s, a)]|
�

=max
⇡0

E⇡

"
�

supk
p

V ar[Qk(s, a)]
sup
k

|Qk(s, a)� E[Qk(s, a)]| /Z(s)

#


✓
1� 1

K2

◆
�K +

2

K2
Qm  B

By assumption Z(s) � 1 and can be safely ignored. By
picking the appropriate K and �, we can bound the red
term by any constant B 2 R. The same bound holds for
the blue term since E[T ⇧Qk�1(s, a)] = E[Qk(s, a)]. We
therefore arrive at a constant bound for the Bellman error
term max⇡0 E⇡0 [�(s, a)].

Note that in Theorem A.2 Assumption 1) does not change
the optimization problem in equation 4, 5 and Assumption
2) can be easily satisfied by imposing Spectral Norm on the
Q function.

Now according to the constant bound on �(s, a)
from Theorem A.2, the convergence of our pro-
posed framework follows directly from Theorem
A.1 (Kumar et al., 2019; Farahmand et al., 2010;
Munos, 2003), with the set of policies ⇧0 =⇢
⇡0 | ⇡0(a|s) = �

supk

p
V ar[Qk(s,a)]

⇡(a|s)/Z(s),⇡ 2 ⇧

�
.

A.2. Training Time of MC Dropout

Since the most time is spent during training is at communica-
tion between the GPU and CPU when performing roll-outs
for evaluation. UWAC with dropout takes less than 1.5
times the training time of BEAR, with 100 times the origi-
nal batchsize calculating sample uncertainty (in parallel on
a single GPU).

A.3. Observations on the Q Value Divergence of BEAR

We tested BEAR learning rate from {10�3, 10�4, 10�5},
the divergence behavior did not change. The action support
constraint of BEAR is helpful, but it relies on the MMD
approximation which is not perfect. Intuitively, UWAC
provides a complementary enforcement to the action support
constraint, where OOD actions that survive the MMD loss
are further penalized.

B. Figures

Figure 7: Top. The training dataset has observations with vertical
displacements > 0.8 removed. This makes all states on the top
OOD states. Bottom. Our model estimates higher uncertainty
(brighter color) on the top and lower uncertainty (colder color) on
the bottom.

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 8: Plot of average return v.s. training epochs, together with the corresponding average Q Target over training epochs on the D4RL
Adroit hand offline data set. Results are averaged across 5 random seeds. Note that the performance of baseline (BEAR) degrades over
time (also noted in original paper (Kumar et al., 2019)), and the Target Q value explodes. Our method, UWAC, achieves significantly
better overall performance and training stability.

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 9: Plot of average return v.s. training epochs (zoomed-in). The figure is the same as 8, except that the second column is zoomed-in
on the Q values of the UWAC critic.

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 10: Ablation: Plot of average return v.s. training epochs for BEAR v.s. BEAR+Spectral Norm, together with the corresponding
average Q Target over training epochs on the D4RL Adroit hand offline data set. Results are averaged across 5 random seeds. Although
BEAR with Spectral Normalized Q function maintains stable Q estimate during training, BEAR with SN often achieves significantly
worse training performance in terms of average return.

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 11: Ablation: Plot of average return v.s. training epochs for BEAR+Spectral Norm v.s. BEAR+Dropout+Spectral Norm, together
with the corresponding average Q Target over training epochs on the D4RL Adroit hand offline data set. The results are averaged across 5
random seeds. Without the UWAC reweighing loss, performing dropout on the Q function does not lead to improved performance.

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 12: Ablation: Plot of average return v.s. training epochs for UWAC (ours) v.s. ours without uncertainty weighing but with
dropout in the Q function, together with the corresponding average Q Target over training epochs on the D4RL Adroit hand offline data
set. The results are averaged across 5 random seeds. Without the weighing loss, performance of the agent drops drastically. Note that low
performance on hammer-cloned, door-cloned, and relocated-cloned may be attributed to the bad quality of the datasets caused by data
collection (explained in section 5.3)

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 13: Ablation: Figure 10, 11, 12 plotted together. Note that SN+Dropout (purple) is also denoted as ours-w/o-uncertainty in
Figure 12.

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 14: Ablation: Plot of UWAC under dropout (ours), Averaged-DQN ensembles, REM against baseline BEAR.

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 15: Ablation: Plot of UWAC with variance down-weighing v.s. standard deviation down-weighing.

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 16: Sequences of our offline agent trained from expert demonstrations executing learned policies performing on the
halfcheetah, walker2d, and hopper tasks in the MuJuCo Gym environment. See the videos attached in the supplementary.

Figure 17: Sequences of the agent trained from human demonstrations executing learned policies performing the Adroit
tasks of hammering a nail, twirling a pen and picking/moving a ball. The task of opening a door is shown in Figure 5. See
the videos attached in the supplementary.

