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Appendix

A. Discussion on Representation Power and
Expressiveness

We compare IDCF with other related models from two per-
spectives in order to shed more lights on the advantages and
differences of our model.

Comparison of Representation Power. We first provide
a comparison with related works on methodological level
as a clear elaboration for essential differences of our work
to others. In Fig. 5, we present an intuitive comparison
with general CF model, local-graph-based inductive CF and
item-based CF model. As shown in Fig. 5(a), general col-
laborative filtering assumes user-specific embeddings for
users and learn them collaboratively among all the users in
one dataset. It disables inductive learning due to such learn-
able embeddings. Item-based model, as shown in Fig. 5(b),
leverages embeddings of user’s historically rated items to
compute user’s embeddings via some pooling methods. The
learnable parameters only lie in the item space. It suffers
from limited representation capacity compared to general
CF model that assumes both user and item embeddings. Be-
sides, local-graph-based inductive model (e.g. (Zhang &
Chen, 2020)), shown in Fig. 5(b), extracts local subgraph
structures within 1-hop neighbors of each user-item pair
(i.e., rated items of the user and users who rated the item)
from a bipartite graph of all the observed user-item ratings
and use GNNs to encode such graph structures for rating
prediction. Note that the model requires that the local sub-
graphs do not contain user and item indices, so it cannot
output user-specific embeddings. Its representation power
is limited since it cannot represent diverse user preferences
with arbitrary rating history on items. Also it cannot output
user representations. Differently, our model IDCF, as shown
in Fig. 5(d) adopts item-based embedding as initial states
for query users to compute attention scores on key users
and aggregate the embeddings (i.e., meta latents) of key
users to estimate user-specific embeddings for query users,
which maintains ability to produce user representations with
enough representation power and meanwhile achieves in-
ductive learning.

(a) (b)
Figure 4. Comparison of expressiveness. Feature-driven and local-
graph-based models fail in (a) and (b), respectively. IDCF works
effectively in both cases with superior expressiveness.

Comparison of Expressiveness. We provide a comparison
with feature-driven and local-graph-based inductive (ma-
trix completion) models through two cases in Fig. 4 so as
to highlight the superior expressiveness of IDCF. Here we
assume ratings are within {�1, 1} (positive, denoted by
red line, and negative, denoted by black line). The solid
lines are observed ratings for training and dash lines are test
ratings. In Fig. 4(a), we consider test ratings (u1, i2) and
(u2, i2). For local-graph-based models, the 1-hop local sub-
graphs of (u1, i2) (resp. (u2, i2)) consists of {i1, i2, u1, u3}
(resp. {i1, i2, u2, u3}) and the subgraph structures are dif-
ferent for two cases due to the positive (resp. negative)
edge for (u1, i1) (resp. (u2, i1)). The local-graph-based
models can give right prediction for two ratings relying on
different structures. Also, CF models and IDCF can work
smoothly in this case, relying on different rating history of
u1 and u2. However, feature-driven models will fail once
u1 and u2 have the same features though two users have
different rating history. In Fig. 4(b), we consider test rat-
ings (u1, i3) and (u2, i3). The 1-hop local subgraphs of
(u1, i3) (resp. (u2, i3)) consists of (i1, i2, i3, u1, u3) (resp.
(i1, i2, i3, u2, u3)) and the subgraph structures are the same.
Thus, the local-graph-based models will fail to distinguish
two inputs and give the same prediction for (u1, i3) and
(u2, i3). Differently, CF models and IDCF can recognize
that u3 has similar rating patterns with u1 and different from
u2, thus pushing the embedding of u1 (resp. u2) close to
(resp. distant from) u3, which guides the model to right
prediction. Note that the first case becomes a common is-
sue when the feature space is small while the second case
becomes general when the rating patterns of users are not
distinct enough throughout a dataset, which induces similar
local subgraph structures. Therefore, IDCF enjoys superior
expressiveness for input data than feature-driven and local-
graph-based inductive (matrix completion) models. Also,
it maintains as good expressiveness as (transductive) CF
models.

B. Proofs in Section 3
B.1. Proof of Theorem 1

Proof. The proof is trivial by construction. Assume the op-
timal P2 for Eq. (3) as P⇤

2. Since P1 given by Eq. (1)
is column-full-rank, for any column vector p⇤

u0 in P⇤
2

(u0 2 U2), there exists c⇤u0 such that c⇤u0
>P1 = p⇤

u0 .
Hence, C⇤ = [c⇤u0 ]u02U2 is a solution for Eq. (2) and gives
DSq (R̂2, R2) < ✏.

B.2. Proof of Theorem 2

Proof. With fixed a true rating matrix R2 to be learned
and a probability distribution P over [Mq] ⇥ [N ], which
is unknown to the learner, we consider the problem under
the framework of standard PAC learning. We can treat the
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Figure 5. Comparison with related works on methodological level. We highlight the advantage of proposed model IDCF: it can 1)
inductively compute user representations (or embeddings) and meanwhile 2) maintain enough capacity as general CF models.

matrix R2 as a function (u0, i) ! ru0i. Let R, a set of
matrices in RMq⇥N , denotes the hypothesis class of this
problem. Then the input to the learner is a sample of R2

denoted as

T =
�
(u0

t, it, ru0
tit
)|(u0

t, it) 2 Sq

�
,

where Sq = {(u0
t, it)} 2 ([Mq] ⇥ [N ])T2 is a set with

size T2 containing indices of the observed entries in R2

and each (u0, i) in Sq is independently chosen according
to the distribution P . When using T as training exam-
ples for the learner, it minimizes the error DSq (R̂2, R2) =
1
T2

P
(u0,i)2Sq

l(ru0i, r̂u0i). We are interested in the general-
ization error of the learner, which is defined as

D(R̂2, R2) = E(u0,i)2P [l(ru0i, r̂u0i)].

The (empirical) Rademacher complexity of R w.r.t. the
sample T is defined as

RadT (R) =
1

T2
E�

"
sup

R̂22R

T2X

t=1

�tr̂u0
tit

#
,

where �t 2 {�1, 1} is a random variable with probability
Pr(�t = 1) = Pr(�t = �1) = 1

2 . Assume l(·, ·) is L-
Lipschitz w.r.t. the first argument and |l(·, ·)| is bounded by
a constant. Then a general result for generalization bound
of R is

Lemma 1. (Generalization bound (Mohri et al., 2012)):
For a sample T with random choice of Sq = ([Mq]⇥[N ])T2 ,
it holds that for any R̂2 2 R and confidence parameter
0 < � < 1,

Pr(D(R̂2, R2)  DSq (R̂2, R2) +G) � 1� �, (14)

where,

G = 2L ·Rad(R) +O

0

@
s

ln(1/�)

T2

1

A .

Based on the lemma, we need to further estimate the
Rademacher complexity in our model to complete the proof.
In our model, R̂2 = C>PkQ and the entry r̂u0i is given by
r̂u0i = p>

u0qi = c>u0Pkqi (where cu0 is the u0-th colunm
vector of C). Define C as a set of matrices,

C = {A 2 [0, 1]Mq⇥Mk : kau0k1 =
MkX

u=1

|au0u| = 1}.

Then we have

T2 ·RadT (R) = E�

"
sup
C2C

T2X

t=1

�tc
>
u0
t
Pkqit

#

= E�

2

4sup
C2C

MqX

u0=1

c>u0 ·
 
X

t:ut=u0

�tR̂k,⇤it

!3

5

(since R̂k,⇤it = Pkqit)

 H · E�

2

4 sup
A2A

MqX

u0=1

a>u0 ·
 
X

t:ut=u0

�tR̂k,⇤it

!3

5

= H · E�

2

4
MqX

u0=1

max
u2[Mk]

 
X

t:ut=u0

�tr̂uit

!3

5 .

(15)
The last equation is due to the fact that au0 is a probability
distribution for choosing entries in Rk,⇤it , the it-th column
of matrix R̂k. In fact, we can treat the maxu2[Mk] inside
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the sum over all u0 2 U2 as a mapping  from u0 2 [Mq]
to u 2 [Mk]. Let K = { : [Mq] ! [Mk]} be the set of all
mappings from [Mq] to [Mk], and then the above formula
can be written as

E�

2

4
MqX

u0=1

max
u2[Mk]

 
X

t:ut=u0

�tr̂uit

!3

5 (16)

=E�

2

4sup
2K

MqX

u0=1

X

t:ut=u0

�tr̂(u0),it

3

5 (17)

=E�

"
sup
2K

T2X

t=1

�tr̂(ut),it

#
(18)

B
p
T2 ·

p
2Mq logMk. (19)

The last inequality is according to the Massart Lemma.
Hence, we have

RadT (R)  HB

r
2Mq logMk

T2
. (20)

Incorporating Eq. (20) into Eq. (14), we will arrive at the
result in this theorem.

C. Extensions of IDCF
IDCF can be extended to feature-based setting and deal with
extreme cold-start recommendation where test users have
no historical ratings. Here, we provide details of feature-
based IDCF (IDCF-HY) which indeed is a hybrid model
that considers both user features and one-hot user indices.
Furthermore, we discuss in the views of transfer-learning
and meta-learning that can be leveraged to enhance our
framework as future study.

C.1. Hybrid Model with Features (IDCF-HY)

Assume au denotes user u’s raw feature vector, i.e., a con-
catenation of all the features (often including binary, cate-
gorical and continuous variables) where categorical features
can be denoted by one-hot or multi-hot vectors. If one has
m user features in total, then au can be

au = [au1||au2||au3|| · · · ||aum].

Then we consider user-sharing embedding function yi()
which can embed each feature vector into a d-dimensional
embedding vector:

yu = [y1(au1)||y2(au2)||y3(au3)|| · · · ||ym(aum)].

Similarly, for item feature bi = [bi1||bi2||bi3|| · · · ||bin],
we have its embedding representation:

zi = [z1(bi1)||z2(bi2)||z3(bi3)|| · · · ||zn(bin)].

Also, we assume user-specific index embedding pu and
item-specific index embedding qi for user u and item i,
respectively, as is in Section 3. The prediction for user u’s
rating on item i can be

r̂ui = g✓(pu,yu,qi, zi), (21)

where g✓ can be a shallow neural network with parameters
denoted by ✓. To keep notation clean, we denote Y =
{y1,y2, · · · ,ym} and Z = {z1, z2, · · · , zn}. Then for
key users in Uk with rating matrix Rk, we consider the
optimization problem,

min
Pk,Q,Y,Z,✓

DSk(R̂k, Rk), (22)

based on which we get learned feature embedding functions
Y, Z as well as transductive embedding matrices Pk, Q
which we further use to compute inductive embeddings for
query users.

For query users, feature embeddings can be obtained
by the learned Y and Z in Eq. (22), i.e., yu0 =
[yu01(au01)|| · · · ||yu0m(au0m)] where au0 is raw feature
vector of user u0. Then we have a relation learning model
hw that consists of a multi-head attention function and
use user feature as input du0 = yu0 . The inductive user-
specific representation can be given by pu0 = hw(du0)
(i.e., Eq. (5) and Eq. (6)), similar as the CF setting in Sec-
tion 3. The rating of user u0 on item i can be predicted
by r̂u0i = g✓(pu0 ,yu0 ,qi, zi). Also, the optimization for
inductive relation model is

min
w,✓

DSq (R̂q, Rq). (23)

C.2. Extreme Cold-Start Recommendation

For cold-start recommendation where test users have no
historical rating, we have no information about users if with-
out any side information. In such case, most CF models
would fail for personalized recommendation and degrade
to a trivial one which outputs the same result (or the same
distribution) to all the users using the popularity of items.
For IDCF, the set Iu0 in Eq. (4) would be empty for users
with no historical rating, in which situation we can randomly
select a group of key users to construct Iu0 used for com-
puting attentive scores with key users. Another method is
to directly use average embeddings of all the key users as
estimated embeddings for query users. In such case, the
model degrades to ItemPop (using the numbers of users who
rated the item for prediction).

On the other hand, if side information (such as user pro-
file features) is available, our hybrid model IDCF-HY can
leverage user features for computing inductive embeddings,
which enables extreme cold-start recommendation. We ap-
ply this method to cold-start recommendation on Movielens-
1M using features and the results are given in Appendix E.
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C.3. Transfer Learning & Meta-Learning

Another extension of IDCF is to consider transfer learning
on cross-domain recommendation tasks or when treating
recommendation for different users as different tasks like
(Lee et al., 2019). Transfer learning and meta learning have
shown power in learning generalizable models that can adapt
to new tasks. In our framework, we can also take advantage
of transfer learning (few-shot learning or zero-shot learning)
or mete-learning algorithms to train our relation learning
model hw. For example, if using model-agnostic meta-
learning algorithm for the second-stage optimization, we
can first compute one-step (or multi-step) gradient update
independently for each user (or a group of clustering users)
in a batch and then average them as one global update for
the model. The meta-learning can be applied over different
groups of users or cross-domain datasets.

D. Details in Implementations
We provide implementation details that are not presented in
Section 5 in order for reproducibility.

D.1. Hyper-parameter Settings

We present details for hyper-parameter settings in different
datasets. We use L = 4 attention heads for our inductive
relation learning model among all the datasets. For Douban
and ML-100K, each attention head randomly samples 200
key users for computing attention weights. For ML-1M, we
set sample size as 500; for Amazon-Books and Amazon-
Beauty, we set it as 2000. We use Adam optimizer and learn-
ing rates are searched within [0.1, 0.01, 0.001, 0.0001]. For
pretraining, we consdier L2 regularization for user and item
embeddings. The regularization weights are searched within
[0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2]. The mini-
batch sizes are searched within [64, 256, 512, 1024, 2048]
to keep a proper balance between training efficiency and per-
formance. For adaption stage, regularization weight � is set
as 10 for five datasets. Besides, different hyper-parameters
for architectures are used in three implementations.

IDCF-NN. For Douban and ML-100K, we use embedding
dimension d = 16 and neural size 48� 32� 32� 1 for f✓.
For ML-1M, ML-10M and Amazon-Books, we use d = 32
and neural size 96� 64� 64� 1 for f✓.

IDCF-GC. For Douban and ML-100K, we use embedding
dimension d = 32 and neural size 128� 32� 32� 1 for f✓.
For ML-1M, ML-10M and Amazon-Books, we use d = 64
and neural size 256� 64� 64� 1 for f✓.

IDCF-HY. We use embedding size d = 32 for each feature
in ML-1M as well as user-specific and item-specific index
embeddings. The neural size of g✓ is set as 320�64�64�1.

D.2. Evaluation Metrics

We provide details for our adopted evaluation metrics. In
our experiments, we follow evaluation protocols commonly
used in previous works in different settings. Three metrics
used in our paper are as follows.

• RMSE: Root Mean Square Error is a commonly used
metric for explicit feedback data and measures the
averaged L2 distance between predicted ratings and
ground-truth ratings:

RMSE =

vuut
P

(u,i)2I+

(r̂ui � rui)2

|I+| . (24)

• AUC: Area Under the ROC Curve is a metric for im-
plicit feedback data. It measures general consistency
between a ranking list of predicted scores and ground-
truth ranking with 1’s before 0’s. More specifically,
AUC counts the average area under the curve of true-
positive v.s. false-positive curve:

AUC =

P
(u,i)2I+

P
(u0,i0)2I� �(r̂u,i > r̂u0,i0)

|I+||I�| ,

(25)
where I+ = {(u, i)|rui > 0} and I� =
{(u0, i0)|ru0j0 = 0} denote the sets of observed user-
item interaction pairs and unobserved user-item pairs
respectively. The indicator �(r̂ui > r̂uj) returns 1
when r̂ui > r̂uj and 0 otherwise. Since we only
have ground-truth positive examples (clicked items)
for users, we negatively sample five items as negative
examples (non-clicked items) for each user-item rating
in dataset, which composes the set I�.

• NDCG: Normalized discounted cumulative gain (Nor-
malized DCG) measures the usefulness, or gain, of a
recommended item based on its position in the result
list. NDCG can be used to evaluate the model on both
explicit and implicit feedback data. The gain is accu-
mulated from the top of the recommendation list to
the bottom, with the gain of each result discounted at
lower ranks. The NDCG metric is computed for each
user and can measures the averaged performance of
personalized recommendation. Given the ranking list
of recommended items to a user u, denoted as K̂u, its
DCG is defined as:

DCG =
X

i2K̂u

reli
log2(i+ 1)

. (26)

where reli is the graded relevance of item i with user u.
For explicit feedbacks, reli is the ground-truth rating
of user u on item i. For implicit feedbacks, reli = 1 for
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observed user-item interaction and reli = 0 otherwise.
The normalized discounted cumulative gain, or NDCG,
is computed as:

NDCG@K =
DCG@K

IDCG@K
(27)

where IDCG@K is ideal discounted cumulative gain:
IDCG@K =

P
i2Ku

reli
log2(i+1) , and Ku represents the

ground-truth ranking list of relevant items (ordered by
their ground-truth ratings/interactions by user u).

E. More Experiment Results
E.1. Impacts of different splits for key and query users

In our experiments in Section 5, we basically consider users
with more than � training ratings as U1 and the remaining as
U2, based on which we construct key users and query users
to study model’s performance on few-shot query users (for
inductive interpolation) and new unseen users (for inductive
extrapolation). Here we provide a further discussions on two
spliting ways and study the impact on model performance.

• Threshold: we select users with more than � training
ratings as U1 and users with less than � training ratings
as U2.

• Random: we set a ratio � 2 (0, 1) and randomly
sample � ⇥ 100% of users in the dataset as U1. The
remaining users are grouped as U2.

We consider � = [20, 30, 40, 50, 60, 70] and � =
[0.97, 0.85, 0.75, 0.68, 0.62, 0.57] (which exactly gives the
same ratio of |U1| and |U2| as corresponding � in thresh-
old split5) in Movielens-1M dataset. For each spliting, we
also consider two situations for key users and query users:
1) inductive learning for interpolation on few-shot query
users, i.e., the first-starge training is on the training ratings
of key users Uk = U1 and the second-stage training is on the
training ratings of query users Uk = U2; inductive learning
for extrapolation on zero-shot new users, i.e., the two-stage
trainings are both on the training ratings of a same group of
users Uk = Uq = U1. We test the model on the testing rat-
ings of users in U2. The results of IDCF-NN are presented
in Table 5 where we report test RMSEs on all the users,
few-shot query users and zero-shot new users.

As we can see from Table 5, with threshold split, as � in-
creases (we have fewer key users and more query users
and they both have more training ratings on average), test
RMSEs for query users exhibit a decrease. The reason is

5For example, using � = 0.97 in random split will result in the
same sizes of U1 and U2 as using � = 20 in threshold split.

two-folds: 1) since key usres have more training ratings,
the transductive model can learn better representations; 2)
since query users have more training ratings, the inductive
model would have better generalization ability. On the other
hand, with different spliting thresholds, test RMSEs for new
users remain in a fixed level. The results demonstrate that
the performance of IDCF on new unseen users is not sensi-
tive to different splitting thresholds. However, with random
split, when � decreases (also we have fewer key users and
more query users but their average training ratings stay un-
changed), RMSEs for new users suffer from an obvious
decrease. One possible reason is that when we use smaller
ratio of key users with random split, the ‘informative’ key
users in the dataset are more likely to be ignored. (Recall
that, as is shown in Fig. 3(c), there exist some important
key users that give high attention weights on query users.)
If such key users are missing, the performance would be
affected due to insufficient expressive power of the inductive
representation model.

Comparing threshold split with random split, we can find
that when using the same ratio of key users and query users
(i.e., the same column in Table 5), RMSEs on new users
with threshold split are always better than those with random
split. Such observation again shows that key users with more
historical ratings would be more informative for providing
useful information to inductive representation learning on
query users, and again echo the results in Fig. 3(d) which
demonstrates that important key users who give large at-
tention weights on query users tend to exist in users with
sufficient historical ratings.

E.2. Ablation Studies

In Table 6 we present the results of ablation study on ML-
1M and Amazon-Books datasets. We compare IDCF-GC
with 1) RD-Item (using randomized item embeddings), 2)
Trans-User (directly optimizing Pq in Eqn. (2)) and 3) Meta-
Path (using meta-path user-item-user in the observed user-
item bipartite graph to determine users’ neighbors for mes-
sage passing). The results show that RD-Item performs
much worse than IDCF-GC since the randomized item em-
beddings may provide wrong signals for both graph learning
and final prediction. Compared with Trans-User, IDCF-GC
significantly outperforms it over a large margin. The reason
is that directly optimizing Pq would lead to serious over-
fitting since query users have few training data. Furthermore,
we can see that Meta-Path provides inferior performance
than IDCF-GC in Table 1. The reason is that meta-path can
only identify limited relations from observed bipartite graph
that often has missing/noisy links, while IDCF learns and
explores useful semantic relations for sufficient message
passing.
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Table 5. Test RMSEs on all the users (All), few-shot query users (FS) and new users (New) of IDCF-NN in Movielens-1M using different
splits for key and query users. (Lower RMSE is better)

Threshold

� 20 30 40 50 60 70
All (RMSE) 0.8440 0.8437 0.8439 0.8440 0.8444 0.8451
FS (RMSE) 0.9785 0.9525 0.9213 0.9166 0.9202 0.9160

New (RMSE) 0.9945 0.9942 0.9902 0.9883 0.9911 0.9929

Random

� 0.97 0.85 0.75 0.68 0.62 0.57
All (RMSE) 0.8446 0.8536 0.8587 0.8637 0.8669 0.8689
FS (RMSE) 0.8863 0.8848 0.8760 0.8805 0.8824 0.8855

New (RMSE) 0.9901 0.9923 0.9956 0.1001 1.0198 1.0262

Table 6. Ablation studies on ML-1M and Amazon-Books datasets. (Lower RMSE and Higher AUC/NDCG are better)

Method
ML-1M Amazon-Books

Query New Query New
RMSE NDCG RMSE NDCG AUC NDCG AUC NDCG

IDCF-GC 0.944 0.940 0.957 0.942 0.938 0.946 0.921 0.930
RD-Item 1.014 0.843 1.023 0.835 0.665 0.701 0.832 0.821

Trans-User 0.992 0.876 - - 0.845 0.821 - -
Meta-Path 0.959 0.912 0.981 0.892 0.910 0.916 0.882 0.901

(a) Test RMSEs (b) Training time per epoch
Figure 6. Performance comparison for extreme cold-start recom-
mendation on ML-1M with user profile features.

E.3. Cold-Start with User Features

We also wonder if our inductive model can handle extreme
cold-start users with no historical rating 6. Note that cold-
start users are different and more challenging compared
to new (unseen) users. For new users, the model can still
use historical ratings as input features during inference,
though it cannot be trained on these ratings. To enable cold-
start recommendation, we leverage user attribute features in
Movielens-1M. We use the dataset provided by (Lee et al.,
2019), which contains attribute features and split warm-start
and cold-start users. For IDCF, we also adopt the training
algorithm of inductive learning for extrapolation and treat
the warm-start users as key and query users. We user the
warm-start users’ training ratings for model training and
the cold-start users’ test ratings for test. We compare with
Wide&Deep network (Cheng et al., 2016), GCMC (using
feature vectors) and two recently proposed methods for cold-
start recommendation: graph-based model AGNN (Qian
et al., 2019) and meta-learning model MeLU (Lee et al.,
2019).

6In some literature, cold-start users also mean users with few
historical ratings (for training or/and inference). Here we consider
extreme cold-start recommendation for users with no historical
rating for both training and inference.

Fig. 6(a) gives the test RMSEs for all the models. It shows
that our IDCF-HY outperforms the competitors, achieving
2.6% improvement of RMSE over the best one MeLU even
on the difficult zero-shot recommendation task. The result
indicates that IDCF is a promising approach to handle new
users with no historical behavior in real-world dynamic
systems. We also compare the training time per epoch of
each method in Fig. 6(b). By contrast, IDCF-HY is much
faster than MeLU and as efficient as AGNN and GCMC.


