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Abstract
Recommendation models can effectively estimate
underlying user interests and predict one’s future
behaviors by factorizing an observed user-item
rating matrix into products of two sets of latent
factors. However, the user-specific embedding
factors can only be learned in a transductive way,
making it difficult to handle new users on-the-fly.
In this paper, we propose an inductive collabora-
tive filtering framework that contains two repre-
sentation models. The first model follows con-
ventional matrix factorization which factorizes a
group of key users’ rating matrix to obtain meta la-
tents. The second model resorts to attention-based
structure learning that estimates hidden relations
from query to key users and learns to leverage
meta latents to inductively compute embeddings
for query users via neural message passing. Our
model enables inductive representation learning
for users and meanwhile guarantees equivalent
representation capacity as matrix factorization.
Experiments demonstrate that our model achieves
promising results for recommendation on few-
shot users with limited training ratings and new
unseen users which are commonly encountered in
open-world recommender systems.

1. Introduction
As information explosion has become one major factor af-
fecting human life, recommender systems, which can filter
useful information and contents of user’s potential interests,
play an increasingly indispensable role. Recommendation
problems can be generally formalized as matrix completion
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(MC) where one has a user-item rating matrix whose entries,
which stand for interactions of users with items (ratings or
click behaviors), are partially observed. The goal of MC is
to predict missing entries (unobserved or future potential
interactions) in the matrix based on the observed ones.

Modern recommender systems need to meet two important
requirements for practical utility. First of all, recommenda-
tion models should have enough expressiveness to capture
diverse user interests and preferences so that the systems can
accomplish personalized recommendation. Existing meth-
ods based on collaborative filtering (CF)1 or, interchange-
ably, matrix factorization (MF) have shown great power in
this problem by factorizing the rating matrix into two classes
of latent factors (i.e., embeddings) for users and items re-
spectively, and further leverage dot-product of two factors to
predict potential ratings (Hu et al., 2008; Koren et al., 2009;
Rendle et al., 2009; Srebro et al., 2004; Zheng et al., 2016).
Equivalently, for each user, the methods consider a one-hot
user encoding as input, and assume a user-specific embed-
ding function mapping user index to a latent factor. Such
learnable latent factors can represent user’s preferences in a
low-dimensional space. Recent works extend MF with com-
plex architectures, like multi-layer perceptrons (Dziugaite
& Roy, 2015), recurrent units (Monti et al., 2017), autore-
gressive models (Zheng et al., 2016), graph neural networks
(van den Berg et al., 2017), etc., achieving state-of-the-art
results on both benchmark datasets and commercial systems
(Covington et al., 2016; Ying et al., 2018; Kang et al., 2020).

The second requirement stems from a key observation from
real-world scenarios: recommender systems often interact
with a dynamic open world where new users, who are not
exposed to models during training, may appear in test stage.
This requires that models trained on a set of users manage
to adapt to unseen users. However, the above-mentioned
CF models would fail in this situation since the embedding
factors are parameterized for specific users and need to be
learned collaboratively with all other users in transductive
setting (see Fig. 1 for illustration). Brute-force ways include:

1In recent literature, collaborative filtering (CF) approaches
often refer to model-based CF, i.e. matrix factorization, while
its memory-based counterpart, as an heuristic approach, adopts
similarity methods like KNN for recommendation.
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Figure 1. (a) Conventional (model-based) collaborative filtering model assumes user-specific embeddings for user representation, which is
parameterized in a user-specific manner and limits the model’s capability to handle new unseen users. (b) Feature-driven models manage
to deal with new users and achieves inductive learning via modeling a user-sharing mapping from user features to representations, but
would lack enough expressiveness for diverse user interests. (c) Our proposed inductive CF model that absorbs the advantage of both of
the worlds, achieving inductive representation learning for users without compromising representation capacity.

1) retrain a model with an augmented rating matrix; 2) con-
sider incremental learning (Hu et al., 2008) for new users’
embeddings. The former requires much extra time cost,
which would be unacceptable for online systems, while
the latter is prone for over-fitting and disables on-the-fly
inference. There are quite a few studies that propose induc-
tive matrix completion models using user features (Jain &
Dhillon, 2013; Xu et al., 2013; Cheng et al., 2016; Ying
et al., 2018; Zhong et al., 2018). Their different thinking
paradigm, as shown in Fig. 1(b), is to target a user-sharing
mapping from user features to user representations, instead
of from one-hot user indices. Since the feature space is
shared among users, such methods are able to adapt a trained
model to unseen users. Nevertheless, feature-driven models
may suffer from limited expressiveness with low-quality
features that have weak correlation with labels. For exam-
ple, users with the same age and occupation (commonly
used features) may have distinct ratings on movies. Unfor-
tunately, high-quality features that can unveil user interests
for personalized recommendation are often hard to collect
due to increasingly concerned privacy issues.

A following question arises: Can we build a recommen-
dation model that guarantees enough expressiveness for
personalized preferences and enables inductive learning?
Such question still remains unexplored so far. In fact, si-
multaneously meeting the two requirements is a non-trivial
challenge when high-quality user features are unavailable.
First, to achieve either of them, one often needs to com-
promise on the other. The user-specific embedding vectors,
which assume independent parametrization for different
users, can give sufficient capacity for learning distinct user
preferences from historical rating patterns (Mikolov et al.,
2013). To make inductive learning possible, one needs to
construct a shared input feature space among users out of
the rating matrix, as an alternative to one-hot user encodings.
However, the new constructed features have relatively insuf-
ficient expressive power. Second, the computation based on
new feature space often brings extra costs for time and space,
which limits model’s scalability on large-scale datasets.

In this paper, we propose an InDuctive Collaborative Filter-
ing model (IDCF)2 as a general CF framework that achieves
inductive learning for user representations and meanwhile
guarantees enough expressiveness and scalability, as shown
in Fig. 1. Our approach involves two representation models.
A conventional matrix factorization model that factorizes a
group of key users’ rating matrix to obtain their user-specific
embeddings, which we call meta latents. On top of that,
we further design a relation learning model, specified as
multi-head attention mechanism, that learns hidden graphs
between key and query users w.r.t. their historical rating
behaviors. The uncovered relation graphs enable neural
message passing among users in latent space and inductive
computation of user-specific representations for query users.

Furthermore, we develop two training strategies for practical
cases in what we frame as open-world recommendation: in-
ductive learning for interpolation and inductive learning for
extrapolation, respectively. In the first case, query users are
disjoint from key users in training and the model is expected
to provide decent performance on few-shot query users with
limited training ratings. In the second case, query users are
the same as key users in training and the trained model aims
to tackle zero-shot test users that are unseen before. We
show that our inductive model guarantees equivalent capac-
ity as matrix factorization and provides superior expressive-
ness compared to other inductive models (feature-driven,
item-based and graph-based). Empirically, we conduct ex-
periments on five datasets for recommendation (with both
explicit and implicit feedbacks). The comprehensive eval-
uation demonstrates that IDCF 1) consistently outperform
various inductive models by a large margin on recommenda-
tion for few-shot users , and 2) can achieve superior results
on recommendation for new unseen users (with few his-
torical ratings not used in training). Moreover, compared
with transductive models, IDCF provides very close recon-
struction error and can even outperform them when training

2The codes are available at https://github.com/
qitianwu/IDCF.

https://github.com/qitianwu/IDCF
https://github.com/qitianwu/IDCF
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ratings becomes scarce. The contributions of this paper are
summarized as follows.

1) We propose a new inductive collaborative filtering frame-
work that can inductively compute user representations for
new users based on a set of pretrained meta latents, which
is suitable for open-world recommender systems. The new
approach can serve as a brand new learning paradigm for
inductive representation learning.

2) We show that a general version of our model can mini-
mize reconstruction loss to the same level as vanilla matrix
factorization model under a mild condition. Empirically,
IDCF gives very close RMSE to transductive CF models.

3) IDCF achieves very competitive and superior
RMSE/NDCG/AUC results on few-shot and new un-
seen users compared with various inductive models on
explicit feedback and implicit feedback data.

As a general model-agnostic framework, IDCF can flexi-
bly incorporate with various off-the-shelf MF models (e.g.
MLP-based, GNN-based, RNN-based, attention-based, etc.)
as backbones as well as combine with user profile features
for hybrid recommendation.

2. Background
Consider a general matrix completion (MC) problem which
deals with a user-item rating matrix R = {rui}M⇥N where
M and N is the number of users and items, respectively. For
explicit feedback, rui records rating value of user u on item
i. For implicit feedback, rui is a binary entry for whether
user u rated (or clicked on, reviewed, liked, purchased,
etc.) item i or not. The recommendation problem can be
generally formalized as: given partially observed entries in
R, one needs to estimate the missing values in the matrix.

Existing recommendation models are mostly based on col-
laborative filtering (CF) or, interchangeably, matrix factor-
ization (MF) where user u (resp. item i) corresponds to
a d-dimensional latent factor (i.e., embedding) pu (resp.
qi). Then one has a prediction model r̂ui = f(pu,qi)
where f can be basically specified as simple dot product
or some complex architectures, like neural networks, graph
neural networks, etc. One advantage of CF models is that
the user-specific embedding pu (as learnable parameters)
can provide enough expressive power for learning diverse
personal preferences from user historical behaviors and de-
cent generalization ability through collaborative learning
with all the users and items. However, such user-specific
parametrization limits the model in transductive learning. In
practical situations, one cannot have information for all the
users that may appear in the future when collecting training
data. When it comes to new users in test stage, the model
has to be retrained and cannot deliver on-the-fly inference.
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Figure 2. Framework of inductive collaborative filtering for open-
world recommendation. We consider two scenarios, inductive
learning for interpolation (query users are different from key users)
and extrapolation (query users are the same as key users), which
aims to handle few-shot query users and zero-shot new users in test
stage. In both cases, the learning procedures contain pretraining
and adaption. The pretraining learns initial user meta latents via
matrix factorization over key users’ ratings. The adaption opti-
mizes a relation model, which estimates hidden relations from key
to query users and inductively computes embeddings for query
users. In particular, in extrapolation case, we introduce a self-
supervised contrastive loss that enforces similarity between meta
latents and inductively computed embeddings for the same users.

3. Methodology
We propose the InDuctive Collaborative Filtering (IDCF)
model. Our high-level methodology stems from a key ob-
servation: there exist a (or multiple) latent relational graph
among users that represents preference proximity and be-
havioral interactions. For instance, social networks and
following networks in social media can be seen as realiza-
tions of such relational graphs, but in most cases, the graph
structures are unobserved and implicitly affect user’s be-
haviors. If we can identify the graph structures, we can
leverage the idea of message passing (Scarselli et al., 2009;
Hamilton et al., 2017; Gilmer et al., 2017; Chen et al., 2020),
propagating learned embeddings from one group of users to
others, especially, in an inductive manner.

We formulate our model through two sets of users: 1) key
users (denoted by Uk), for which we learn their embeddings
by matrix factorization and use them as meta latents; 2)
query users (denoted by Uq), for which we consider neural
message passing to inductively compute their embeddings.
Assume |Uk| = Mk and |Uq| = Mq. Correspondingly, we
have two rating matrices: Rk = {rui}Mk⇥N (given by Uk)
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and Rq = {ru0i}Mq⇥N (given by Uq). Based on this, we
further consider two scenarios.

Scenario I: Inductive learning for interpolation. U1 \ U2 =
;, i.e., query users are disjoint from key users. In training,
it learns to leverage meta latents of key users to compute
representations for another group of query users in a super-
vised way. The model is expected to perform robustly on
few-shot query users with limited training ratings.

Scenario II: Inductive learning for extrapolation. U1 = U2,
i.e., key and query users are the same. In training, it learns to
use meta latents given by key users to represent themselves
in a self-supervised way. Then the trained model aims to
deal with zero-shot test users (with limited observed ratings
not used in training) that are unseen before.

Notice that in the above two cases, we assume no side
information, such as user profile features (ages, occupation,
etc,), social networks, item content features, etc., besides
the observed user-item rating matrix. We frame the problem
as open-world recommendation which requires the model
to deal with few-shot and zero-shot users. We present our
model framework for two settings in Fig. 2 and go into the
details in the following.

3.1. Matrix Factorization Model

We first pretrain a (transductive) matrix factorization model
for Uk using Rk, denoted as r̂ui = f✓(pu,qi), where pu 2
Rd denotes a user-specific embedding for user u in Uk,
qi 2 Rd denotes an item-specific embedding for item i and
f✓ can be simple dot-product or a network with parameter
✓. Section 5.1 gives details for two specifications for f✓
using neural network and graph convolution network, as
used in our implementation. Denote Pk = {pu}Mk⇥d,
Q = {qi}N⇥d and the objective becomes

min
Pk,Q,✓

DSk(R̂k, Rk), (1)

where we define R̂k = {r̂ui}Mk⇥N , DSk(R̂k, Rk) =
1
Tk

P
(u,i)2Sk

l(rui, r̂ui) and Sk 2 ([Mk]⇥ [N ])Tk is a set
with size Tk containing indices of observed entries in Rk.
Here l(rui, r̂ui) can be MSE loss for explicit user feedbacks
or cross-entropy loss for implicit user feedbacks.

We treat the pretrained factors Pk as meta latents, to induc-
tively compute user latents for query via a relation model.

3.2. Inductive Relation Model

Assume C = {cuu0}Mk⇥Mq , where cuu0 2 R denotes
weighted edge from user u 2 Uk to user u0 2 Uq, and
define cu0 = [c1u0 , c2u0 , · · · cMku0 ]> the u0-th column of C.
Then we express embedding of user u0 as p̃u0 = c>u0Pk,
a weighted sum of embeddings of key users. The rating
can be predicted by r̂u0i = f✓(p̃u0 ,qi) and the problem of

model optimization becomes:

min
C,Q

DSq (R̂q, Rq), (2)

where we define R̂q = {r̂u0i}Mq⇥N , DSq (R̂q, Rq) =
1
Tq

P
(u0,i)2Sq

l(ru0i, r̂u0i) and Sq 2 ([Mq] ⇥ [N ])Tq is a
set with size Tq containing indices of observed entries in
Rq. The essence of above method is taking attentive pool-
ing as message passing from key to query users. We first
justify this idea by analyzing its capacity and then propose
a parameterized model enabling inductive learning.

Theoretical Justification If we use dot-product for f✓ in
the MF model, then we have r̂u0i = p̃>

u0qi. We compare
Eq. (2) with using matrix factorization over Rq:

min
P̃q,Q

DSq (R̂q, Rq), (3)

where P̃q = {p̃u0}Mq⇥d and have the following theorem.

Theorem 1. Assume Eq. (3) can achieve DSq (R̂q, Rq) <
✏ and the optimal Pk given by Eq. (1) satisfies column-full-
rank, then there exists at least one solution for C in Eq. (2)
such that DSq (R̂q, Rq) < ✏.

The only condition that Pk is column-full-rank can be triv-
ially guaranteed since d ⌧ N . The theorem shows that
the proposed model can minimize the reconstruction loss
of MC to at least the same level as matrix factorization
which gives sufficient capacity for learning personalized
user preferences from historical rating patterns.

Parametrization We have shown that using attentive pool-
ing does not sacrifice model capacity than MF/CF models
under a mild condition. However, directly optimizing over
C is intractable due to its O(MkMq) parameter space and
cu0 is a user-specific high-dimensional vector which disal-
lows inductive learning. Hence, we parametrize C with an
attention network, reducing parameters and enabling it for
inductive learning. Concretely, we estimate the adjacency
score between user u0 and u as

cu0u =
e>[Wqdu0 �Wkpu]P

u02U1
e>[Wqdu0 �Wkpu0 ]

, (4)

where e 2 R2d⇥1, Wq 2 Rd⇥d, Wk 2 Rd⇥d are trainable
parameters, � denotes concatenation and du0 =

P
i2Iu0 qi.

Here Iu0 = {i|ru0i > 0} includes the historically rated
items of user u0. The attention network captures first-
order user proximity on behavioral level and also maintains
second-order proximity that users with similar historical
ratings on items would have similar relations to other users.
Besides, if Iu0 is empty (for extreme cold-start recommen-
dation), we can randomly select a group of items from all the
candidates. Also, if user’s profile features are available, we
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can harness them as du0 . We provide details in Appendix C.
Yet, in the main body of our paper, we focus on learning
from user-item rating matrix, i.e., the common setting for
CF approaches.

The normalization in Eq. (4) requires computation for all the
key users, which limits scalability to large dataset. There-
fore, we use sampling strategy to control the size of key
users in relation graph for each query user and further con-
sider multi-head attentions that independently sample dif-
ferent subsets of key users. The attention score given by the
l-th head is

c(l)u0u =
(e(l))>[W(l)

q du0 �W(l)
k pu]

P
u02U(l)

k
(e(l))>[W(l)

q du0 �W(l)
k pu0 ]

, (5)

where U (l)
k denotes a subset of key users sampled from Uk.

Each attention head independently aggregates embeddings
of different subsets of key users and the final inductive
representation for user u0 can be given as

p̃u0 = Wo

2

64
LM

l=1

X

u2U(l)
k

c(l)u0uW
(l)
v pu

3

75 , (6)

where Wo 2 Rd⇥Ld and W(l)
v 2 Rd⇥d. To keep the

notation clean, we denote p̃u0 = hw(du0) and w =

[L
l=1{e(l),W

(l)
q ,W(l)

k ,W(l)
v } [ {Wo}.

With fixed meta latents P1 and Q, we can consider opti-
mization for our inductive relation model

min
w,✓

DSq (R̂q, Rq). (7)

We found that using fixed Q here contributes to much better
performance than optimizing it in the second stage.

Next we analyze the generalization ability of inductive
model on query users. Also, consider f✓ as dot-product op-
eration and we assume cu0u 2 R+ to simplify the analysis.
Now, we show that the generalization error D(R̂q, Rq) =
E(u0,i)[l(ru0i, r̂u0i)] on query users is bounded by the num-
bers of key users and observed ratings of query users.

Theorem 2. Assume 1) D is L-Lipschitz, 2) for 8r̂u0i 2
R̂q we have |r̂u0i|  B, and 3) the L1-norm of cu0 is
bounded by H . Then with probability at least 1 � � over
the random choice of Sq 2 ([Mq]⇥ [N ])Tq , it holds that for
any R̂q , the gap between D(R̂q, Rq) and DSq (R̂q, Rq) will
be bounded by

O

 
2LHB

s
2Mq lnMk

Tq
+

s
ln(1/�)

Tq

!
. (8)

The theorem shows that the generalization error bound de-
pends on the size of Uk. Theorem 1 and 2 show that the

configuration of Uk has an important effect on model ca-
pacity and generalization ability. On one hand, we need to
make key users in Uk ‘representative’ of diverse user be-
havior patterns on item consumption in order to guarantee
enough representation capacity. Also, we need to control
the size of Uk to maintain generalization ability.

3.3. Model Optimization

The complete training process is comprised of: pretrain-
ing and adaption. In the first stage, we train a MF model
in transductive setting via Eq. (1) and obtain embeddings
Pk, Q and network f✓. The adaption involves optimization
for the inductive relation model hw and finetuning the pre-
diction network f✓ via Eq. (3). In particular, in terms of
inductive learning for extrapolation (i.e., Uk = Uq), we fur-
ther consider a self-supervised contrastive loss that pursuits
similarity between the inductively computed user embed-
dings and the ones given by the MF model. Concretely, the
loss is defined as

min
w,✓

DSq (R̂q, Rq) + �LC(Pk, P̃q), (9)

where � is a trading-off hyper-parameter and

LC(Pk, P̃q) =
1

Mq

X

u

log

 
exp(p>

u p̃u)P
u02Uq

exp(p>
u p̃u0)

!
.

(10)
The summation in the denominator can be approximated by
in-batch negative samples with mini-batch training.

4. Comparison with Existing Works
We discuss related works and highlight our differences.

Feature-driven Recommendation. The collaborative fil-
tering (CF) models do not assume any side information
other than the rating matrix, but they cannot be trained in
inductive ways due to the learnable user-specific embedding
pu. To address the issue, previous works leverage side in-
formation, e.g. user profile features, to achieve inductive
learning (Jain & Dhillon, 2013; Xu et al., 2013; Cheng et al.,
2016; Ying et al., 2018; Zhong et al., 2018). Define user
features (like age, occupation) as au and item features (like
movie genre, director) as bi. The feature-driven model tar-
gets a prediction model r̂ui = g(au,bi). Since the space of
au is shared among users, a model trained on one group of
users can adapt to other users without retraining. However,
feature-driven models often provide limited performance
since the shared feature space is not expressive enough com-
pared to user-specific embedding factors (see Appendix A
for more discussions). Another issue is that high-quality
features are hard to collect in practice. A key advantage of
IDCF is the capability for inductive representation learning
without using features.
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Table 1. Statistics of five datasets used in our experiments. Amazon-Books and Amazon-Beauty datasets contain implicit user feedbacks
while Douban, ML-100K, ML-1M have explicit feedbacks (ratings range within [1, 2, 3, 4, 5]).

Dataset # Users #Items # Ratings Density # Key/Query Users # Training/Test Instances

Douban 3,000 3,000 0.13M 0.0152 2,131/869 80,000/20,000
Movielens-100K 943 1,682 0.10M 0.0630 123,202/13,689
Movielens-1M 6,040 3,706 1.0M 0.0447 5,114/926 900,199/100,021
Amazon-Books 52,643 91,599 2.1M 0.0012 49,058/3,585 2,405,036/526,430
Amazon-Beauty 2,944 57,289 0.08M 0.0004 780/2,164 53,464/29,440

Inductive Matrix Completion. There are few existing
works that attempt to handle inductive matrix completion
using only user-item rating matrix. (Hartford et al., 2018) (F-
EAE) puts forward an exchangeable matrix layer that takes a
whole rating matrix as input and inductively outputs predic-
tion for missing ratings. However, the scalability of F-EAE
is limited since it requires the whole rating matrix as input
for training and inference for users, while IDCF enables
mini-batch training and efficient inference. Besides, (Zhang
& Chen, 2020) (IGMC) proposes to use local subgraphs of
user-item pairs in a bipartite graph of rating information
as input features and further adopt graph neural networks
to encode subgraph structures for rating prediction. The
model achieves inductive learning via replacing users’ one-
hot indices by shared input features (i.e., index-free local
subgraph structures). However, the expressiveness of IGMC
is limited since the local subgraph structures can be indistin-
guishable for users with distinct behaviors (see Appendix A
for more discussions), and the issue would become worse
for implicit feedback data. By contrast, IDCF has equivalent
expressiveness as original CF models. Another drawback of
F-EAE and IGMC is that their models cannot output user
representations. Differently, IDCF maintains the ability to
give user-specific representations, which reflect users’ pref-
erences and can be used for downstream tasks (like user
behavior modeling (Liu et al., 2020), user-controllable rec-
ommendation (Ma et al., 2019; Cen et al., 2020), target
advertisement and influence maximization (Khalil et al.,
2017; Manchanda et al., 2019), etc.).

Item-based CF Models. Previous works use item embed-
dings as representation for users. (Cremonesi et al., 2010;
Kabbur et al., 2013) adopts a combination of items rated
by users to compute user embeddings and frees the model
from learning parametric user-specific embeddings. Further-
more, there are quite a few auto-encoder architectures for
recommendation problem, leveraging user’s rating vector
(ratings on all the items) as input, estimating user embed-
ding (as latent variables), and decoding missing values in
the rating vector (Sedhain et al., 2015; Liang et al., 2018).
With item embeddings and user’s rating history, these meth-
ods enable inductive learning for user representation and
can adapt to new users on-the-fly. On methodological level,
IDCF has the following differences. First, IDCF assumes
learnable embeddings for both users and items, which main-

tains equivalent representation capacity as general MF/CF
models (as proved in Theorem 1). Item-based models only
consider learnable embeddings for items, and may suffer
from limited representation capacity. Second, IDCF learns
message-passing graphs among users by a relation model
to obtain better user representations, instead of directly ag-
gregating a given observed set of items’ embeddings as
item-based models.

5. Experiment
In this section, we apply the proposed model IDCF to several
real-world recommendation datasets to verify and dissect
its effectiveness. Before going into the experiment results,
we first introduce experiment setup including dataset infor-
mation, evaluation protocol and implementation details.

5.1. Experiment Setups

Datasets. We consider five common recommendation
benchmarks: Douban, Movielens-100K (ML-100K),
Movielens-1M (ML-1M), Amazon-Books and Amazon-
Beauty. Douban, ML-100K and ML-1M have explicit user’s
ratings on movies. Amazon-Books and Amazon-Beauty
contain implicit user feedbacks (the records of user’s inter-
actions with items). For Douban and ML-100K, we use the
training/testing splits provided by (Monti et al., 2017). For
ML-1M3, we follow previous works (van den Berg et al.,
2017; Hartford et al., 2018; Zhang & Chen, 2020) and use
9:1 training/testing spliting. For two Amazon datasets, we
use the last ten interactions of each user for test and the
remaining for training. We leave out 5% training data as val-
idation set for early stopping in training. Note that the raw
datasets for Amazon-Books and Amazon-Beauty 4 are very
large and sparse ones and we filter out infrequent items and
users with less than five ratings. The statistics of datasets
used in our experiments are summarized in Table 1.

Evaluation. For datasets with explicit feedbacks, the goal
is to predict user’s ratings on items, i.e. estimate the missing
values in user-item rating matrix. The task can be seen as
a multi-class classification or regression problem. We use

3https://grouplens.org/datasets/movielens/
4http://jmcauley.ucsd.edu/data/amazon/
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Table 2. Test RMSE and NDCG for all the users (All) and few-shot users (FS) in Douban, ML-100K and ML-1M. We highlight the best
scores among all the (resp. inductive) models with bold (resp. underline). Inductive indicates whether the method can achieve inductive
learning. Feature indicates whether the method relies on user features.

Method Inductive Feature
Douban ML-100K ML-1M

RMSE NDCG RMSE NDCG RMSE NDCG
All FS All FS All FS All FS All FS All FS

PMF No No 0.737 0.718 0.939 0.954 0.932 1.003 0.858 0.843 0.851 0.946 0.919 0.940
NNMF No No 0.729 0.705 0.939 0.952 0.925 0.987 0.895 0.878 0.848 0.940 0.920 0.937
GCMC No No 0.731 0.706 0.938 0.956 0.911 0.989 0.900 0.886 0.837 0.947 0.923 0.939

NIMC Yes Yes 0.732 0.745 0.928 0.931 1.015 1.065 0.832 0.824 0.873 0.995 0.889 0.904
BOMIC Yes Yes 0.735 0.747 0.923 0.925 0.931 1.001 0.828 0.815 0.847 0.953 0.905 0.924
F-EAE Yes No 0.738 - - - 0.920 - - - 0.860 - - -
IGMC Yes No 0.721 0.728 - - 0.905 0.997 - - 0.857 0.956 - -

IDCF-NN (ours) Yes No 0.738 0.712 0.939 0.956 0.931 0.996 0.896 0.880 0.844 0.952 0.922 0.940
IDCF-GC (ours) Yes No 0.733 0.712 0.940 0.956 0.905 0.981 0.901 0.884 0.839 0.944 0.924 0.940

RMSE and NDCG to evaluate general reconstruction error
and personalized ranking performance. RMSE counts the
overall l2 distance from predicted ratings to the ground-
truth, while NDCG is an averaged score that measures the
consistency between the ranking of predicted ratings and
that of the ground-truth for each user. For datasets with
implicit feedbacks, the goal is to predict whether a user
interacts with an item. The task is essentially a one-class
classification problem. Since the dataset is very sparse and
only has positive instances, we uniformly sample five items
as negative samples for each clicked item and adopt AUC
and NDCG to measure the global and personalized ranking
accuracy, respectively. AUC is short of Area Under of the
ROC Curve which measures the global consistency between
the ranking of all the predicted user-item interactions and
the ground-truth (which ranks all the 1’s before 0’). More
details for evaluation metrics are provided in Appendix D.2

Implementations. We consider two specifications for f✓
in our model: IDCF-NN, which adopts multi-layer percep-
tron for f , and IDCF-GC, which uses graph convolution
network for f .

Feedforward Neural Network as Matrix Factorization Model
(IDCF-NN). We follow the architecture in NNMF (Dziugaite
& Roy, 2015) and use neural network for f✓. Here we
combine a three-layer neural network and a shallow dot-
product operation. Concretely,

f✓(pu,qi) =
(p>

u qi + nn([pukqikpu � qi]))

2
+ bu + bi,

(11)
where nn is a three-layer neural network using tanh acti-
vation, � denotes element-wise product and bu, bi are bias
terms for user u and item i, respectively.

Graph Convolution Network as Matrix Factorization Model
(IDCF-GC). We follow the architecture in GCMC (van den
Berg et al., 2017) and adopt graph convolution network for
f✓(). Besides user-specific embedding for user u and item-

specific embedding for item i, we consider embeddings for
user u’s rated items and users who rated on item i, i.e., the
one-hop neighbors of u and i in user-item bipartite graph.
Denote Nu,m = {i|rui = m} as user u’s rated items with
rating value m and Ni,m = {u|rui = m} as users who
rated on item i with rating value m for m � 1. Consider
graph convolution to aggregate information from neighbors,

mu,m =ReLU(
1

|Nu,m|
X

i2Nu,m

Wq,mqi),

ni,m =ReLU(
1

|Ni,m|
X

u2Ni,m

Wp,mpu),
(12)

and combination function: mu = FC({mu,m}m), ni =
FC’({ni,m}m) where FC denotes a fully-connected layer.
Then we define the output function

f(pu,qi, {pu}u2Ni , {qi}i2Nu)

=nn0([pu � qikpu �mukni � qikni �mu]) + bu + bi,
(13)

where nn0 is a three-layer neural network using ReLU
activation function. In Appendix D.1, we provide more
details for hyper-parameter setting. Moreover, we specify
l(r̂ui, rui) as MSE loss (resp. cross-entropy) for explicit
(resp. implicit) feedback data.

5.2. Comparative Results

5.2.1. INTERPOLATION FOR FEW-SHOT USERS.

Setup. We study the performance on few-shot query users
with limited training ratings. We split users in each dataset
into two sets: users with more than � training ratings, de-
noted as U1, and those with less than � training ratings U2.
We basically set � = 30 for Douban, ML-100K and ML-
1M datasets, and � = 20 for Amazon datasets. For IDCF,
we adopt the training algorithm of inductive learning for
interpolation with U1 as key users and U2 as query users.
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Table 3. Test AUC and NDCG for few-shot users (FS) and new
users (New) in Amazon-Books and Amazon-Beauty.

Method Amazon-Books Amazon-Beauty
AUC NDCG AUC NDCG

Query New Query New Query New Query New

PMF 0.917 - 0.888 - 0.779 - 0.769 -
NNMF 0.919 - 0.891 - 0.790 - 0.763 -
NGCF 0.916 - 0.896 - 0.793 - 0.775 -

PinSAGE 0.923 - 0.901 - 0.790 - 0.775 -
FISM - 0.752 - 0.792 - 0.613 - 0.678

MultVAE - 0.738 - 0.701 - 0.644 - 0.679
IDCF-NN 0.944 0.939 0.928 0.920 0.792 0.750 0.783 0.774
IDCF-GC 0.938 0.946 0.921 0.930 0.801 0.791 0.772 0.791

We use the training ratings for U1 and U2 as input data for
our pretraining and adaption, respectively. We compare
with several competitors, including 1) powerful transduc-
tive methods PMF (Salakhutdinov & Mnih, 2007), NNMF
(Dziugaite & Roy, 2015) and GCMC (van den Berg et al.,
2017), 2) inductive feature-driven methods NIMC (Zhong
et al., 2018), BOMIC (Ledent et al., 2020), and 3) inductive
matrix completion model IGMC (Zhang & Chen, 2020). We
train each competitor with training ratings of U1 and U2.

Table 2 reports RMSE and NDCG for test ratings of all the
users and few-shot users in U2 on Douban, ML-100k and
ML-1M. As we can see, IDCF-NN (resp. IDCF-GC) gives
very close RMSE and NDCG on all the users and query
users to NNMF (resp. GCMC), which suggests that our
inductive model can achieve similar reconstruction error and
ranking accuracy as corresponding transductive counterpart.
The results validate our theoretical analysis in Section 3
that IDCF possesses the same representation capacity as
matrix factorization model. Even though IDCF enables
inductive representation learning via a parameter-sharing
relation model, it does not sacrifice any representation power.
Compared with inductive methods, IDCF-GC achieves the
best RMSE and NDCG for query users in most cases. The
results demonstrate the superiority of IDCF against other
feature-driven and inductive matrix completion models.

Table 3 shows AUC and NDCG for test interactions of few-
shot users in U2 on Amazon-Books and Amazon-Beauty.
Since Amazon datasets have no user feature, the feature-
driven competitors would not work. Also, IGMC would
fail to work with implicit feedbacks. We compare with
two other graph-based recommendation models, NGCF
(Wang et al., 2019) and PinSAGE (Ying et al., 2018). As
shown in Table 3, IDCF-NN and IDCF-GC significantly
outperform transductive models in implicit feedback set-
ting with 2.3%/3.0% (resp. 1.0%/1.0%) improvement of
AUC/NDCG on Amazon-Books (resps. Amazon-Beauty).
The two Amazon datasets are both very sparse with rating
density approximately 0.001. One implication here is that
our inductive model can provide better performance than
transductive models for users with few training ratings.

Table 4. Test RMSE and NDCG for new users on Douban, ML-
100K and ML-1M.

Method Douban ML-100K ML-1M
RMSE NDCG RMSE NDCG RMSE NDCG

NIMC 0.766 0.921 1.089 0.864 1.059 0.883
BOMIC 0.764 0.920 1.088 0.859 1.057 0.879
FISM 1.910 0.824 1.891 0.760 2.283 0.771

MultVAE 2.783 0.823 2.865 0.758 2.981 0.792
IGMC 0.743 - 1.051 - 0.997 -

IDCF-NN 0.749 0.955 1.078 0.877 0.994 0.941
IDCF-GC 0.723 0.955 1.011 0.881 0.957 0.942

5.2.2. EXTRAPOLATION FOR NEW USERS.

Setup. We then investigate model’s generalization perfor-
mance on new users that are unseen in training. We assume
the model is only exposed to the training ratings of U1 and
test its performance on test ratings of U2. Concretely, for
IDCF, we leverage the training algorithm of inductive learn-
ing for extrapolation with U1 as both key and query users.
The two-stage training uses training ratings of U1. We com-
pare with inductive models NIMC, BOMIC, IGMC and
item-based CF models FISM (Kabbur et al., 2013), Mult-
VAE (Liang et al., 2018).

Table 4 reports results on test ratings for new users in U2

on Douban, ML-100K and ML-1M. Notably, IDCF-GC
outperforms the best competitors by a large margin, with
RMSE (resp. NDCG) improvement of 2.6% (resp. 3.6%)
on Douban, 3.8% (resp. 2.0%) on ML-100K and 4.0%
(resp. 6.7%) on ML-1M. Also, Table 3 reports test AUC
and NDCG for new users on two Amazon datasets. The
results show that both IDCF-NN and IDCF-GC outperform
other competitors with 25.7% (resp. 17.4%) and 22.8%
(resp. 16.4%) improvements of AUC (resp. NDCG) on
Amazon-Books and Amazon-Beauty, respectively. Such
results demonstrate superior power of IDCF for addressing
new users in open-world recommendation.

5.3. Further Discussion

Sparse Data and Few-shot Users. A successful recom-
mender system is supposed to handle data sparsity and few-
shot users with few historical ratings. Here we construct
sparse datasets by using 50%, 20%, 10%, 5%, 1% and 0.1%
training ratings in Movielens-1M, and then compare the test
RMSEs of query users in Fig. 3(a). Also, Fig. 3(b) com-
pares the test RMSEs for users with different numbers of
historical ratings under 50% sparsity. As shown in Fig. 3(a),
as the dataset becomes sparser, the RMSEs of all the mod-
els suffer from a drop, but the drop rate of our inductive
models IDCF-NN and IDCF-GC is much smaller compared
with transductive models NNMF and GCMC. In Fig. 3(b),
we find that users with more historical ratings usually have
better RMSE scores compared with few-shot users. By con-
trast, our inductive models IDCF-NN and IDCF-GC exhibit
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(a) (b) (c) (d) (e)

Figure 3. Evaluation. (a) Overall RMSE w.r.t # sparsity ratio. (b) User-specific RMSE w.r.t # user’s training ratings. (c) Attention weights
of query users (y-axis) on key users (x-axis). (d) Key uses’ accumulated attention weights w.r.t. # historical ratings. (e) Scalability test.

a more smooth decrease and even outperform other trans-
ductive methods NNMF and GCMC for users with very few
ratings. In the extreme cases with less than five historical
ratings, IDCF-GC achieves 2.5% improvement on RMSE
compared with the best transductive method GCMC.

Attention Weight Distribution In Fig. 3(c) we visualize at-
tention weights of IDCF-NN from query users to key users
in ML-1M. There is an interesting phenomenon that some
of key users appear to be very ‘important’ and most query
users have high attention scores on them. It indicates that
the embeddings of these key users are informative and can
provide powerful expressiveness for query users’ prefer-
ences. In Fig. 3(d) we further plots key users’ accumulated
attention weights (sum of the attention scores over all the
query users) w.r.t. # historical ratings. We can see that key
users with more historical ratings are more likely to have
large attention weights on query users, though they are also
more likely to have low attention scores. This observation is
consistent with intuition that the users with more historical
ratings are easier for the model to identify their interests.
Also, the results gives an important hint for selecting useful
key users: informative key users are more likely to exsit
in users with more historical ratings. In Appendix E, we
compare different split ways for key and query users and
will provide more discussions on this point.

Scalability Test We further investigate the scalability of
IDCF-GC compared with two GNN-based counterparts
IGMC and GCMC. We statistic the training time per epoch
on ML-1M using a GTX 1080Ti with 11G memory. Here
we truncate the dataset and use different numbers of rat-
ings for training. The results are shown in Fig. 3(e). As
we can see, when dataset size becomes large, the training
times per epoch of three models all exhibit linear increase.
IDCF spends approximately one more time than GCMC,
while IGMC is approximately ten times slower than IDCF.
Nevertheless, while IDCF costs one more training time than
GCMC, the latter cannot tackle new unseen users without
retraining a model in test stage.

More Insights on IDCF’s Effectiveness. The relation
model aims at learning graph structures among users that
explore more useful proximity information and maximize
the benefits of message passing for inductive representation

learning. Existing graph-based (recommendation) models
rely on a given observed graph, on top of which a GNN
model would play as a strong inductive bias. Such induc-
tive bias may be beneficial for some cases (if the graph
is fully observed and possesses homophily property) and
harmful for other cases (if the graph has noisy/missing links
or have heterophily structures). Differently, IDCF enables
mutual reinforcement between structure learning and mes-
sage passing with the guidance of supervised signals from
downstream tasks in a fully data-driven manner.

6. Conclusions and Outlook
We have proposed an inductive collaborative filtering frame-
work that learns hidden relational graphs among users to
allow effective message passing in the latent space. It ac-
complishes inductive computation for user-specific repre-
sentations without compromising on representation capacity
and scalablity. Our model achieves state-of-the-art perfor-
mance on inductive collaborative filtering for recommenda-
tion with few-shot and zero-shot users that are commonly
encountered in open-world recommendation.

The core idea of IDCF opens a new way for next generation
of representation learning, i.e., one can consider a pretrained
representation model for one set of existing entities and their
representations (through some simple transformations) can
be generalized to efficiently compute inductive representa-
tions for others, enabling the model to flexibly handle new
coming entities in the wild.
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