
Data-efficient Hindsight Off-policy Option Learning

Supplementary Material

A. Additional Experiments
A.1. Decomposition and Option Clustering

We further deploy HO2 on a set of simple locomotion tasks,
where the goal is for an agent to move to one of three
randomized target locations in a square room. These are
specified as a set of target locations and a task index to select
the target of interest.

The main research questions we aim to answer (both quali-
tatively and quantitatively) are: (1) How do the discovered
options specialize and represent different behaviors?; and
(2) How is this decomposition affected by variations in the
task, embodiment, or algorithmic properties of the agent?
To answer these questions, we investigate a number of vari-
ations:

• Three bodies: a quadruped with two (“Ant”) or three
(“Quad”) torque-controlled joints on each leg, and a
rolling ball (“Ball”) controlled by applying yaw and
forward roll torques.

• With or without information asymmetry (IA) between
high- and low-level controllers, where the task index
and target positions are withheld from the options and
only provided to the categorical option controller.

• With or without a limited number of switches in the
optimization.

Information-asymmetry (IA) in particular, has recently been
shown to be effective for learning general skills (Galashov
et al., 2018): by withholding task-information from low-
level options, they can learn task-agnostic, temporally-
consistent behaviors that can be composed by the option
controller to solve a task. This mirrors the setup in the afore-
mentioned Sawyer tasks, where the task information is only
fed to the high-level controller.

For each of the different cases, we qualitatively evaluate the
trained agent over 100 episodes, and generate histograms
over the different options used, and scatter plots to indi-
cate how options cluster the state/action spaces and task
information. We also present quantitative measures (over 5
seeds) to accompany these plots, in the form of (1) Silhou-
ette score, a measure of clustering accuracy based on inter-
and intra-cluster distances2; and (2) entropy over the option
histogram, to quantify diversity. The quantitative results
are shown in Table 2, and the qualitative plots are shown
in Figure 10. Details and images of the environment are in
Section B.4.

2The silhouette score is a value in [−1, 1] with higher values

The results show a number of trends. Firstly, the usage of IA
leads to a greater diversity of options used, across all bodies.
Secondly, with IA, the options tend to lead to specialized
actions, as demonstrated by the clearer option separation in
action space. In the case of the 2D action space of the ball,
the options correspond to turning left or right (y-axis) at
different forward torques (x-axis). Thirdly, while the simple
Ball can learn these high-level body-agnostic behaviors,
the options for more complex bodies have greater switch
rates that suggest the learned behaviors may be related to
lower-level motor behaviors over a shorter timescale. Lastly,
limiting the number of switches during marginalization does
indeed lead to a lower switch rate between options, without
hampering the ability of the agent to complete the task.

A.2. Action and Temporal Abstraction Experiments

The complete results for all pixel and proprioception based
multitask experiments for ball-in-cup and stacking can be
respectively found in Figures 11 and 12. Both RHPO and
HO2 outperform a simple Gaussian policy trained via MPO.
HO2 additionally improves performance over mixture poli-
cies (RHPO) demonstrating that the ability to learn tem-
poral abstraction proves beneficial in these domains. The
difference grows as the task complexity increases and is
particularly pronounced for the final stacking tasks.

A.3. Task-agnostic Terminations

The perspective of options as task-independent skills with
termination conditions as being part of a skill, leads to
termination conditions which are also task independent. We
show that at least in this limited set of experiments, the
perspective of task-dependent termination conditions - i.e.
with access to task information - which can be understood
as part of the high-level control mechanism for activating
options improves performance. Intuitively, by removing task
information from the termination conditions, we constrain
the space of solutions which first accelerates training slightly
but limits final performance. It additionally shows that while
we benefit when sharing options across tasks, each task gains
from controlling the length of these options independently.
Based on these results, the termination conditions across all
other multi-task experiments are conditioned on the active
task.

The complete results for all experiments with task-agnostic
terminations can be found in Figure 13.

indicating cluster separability. We note that the values obtained
in this setting do not correspond to high absolute separability, as
multiple options can be used to model the same skill or behavior
abstraction. We are instead interested in the relative clustering
score for different scenarios.

Data-efficient Hindsight Off-policy Option Learning

Histogram over options t-SNE scatter plots
Actions States Task

B
al

l,
no

IA
B

al
l,

w
ith

IA
A

nt
,n

o
IA

A
nt

,w
ith

IA
Q

ua
d,

no
IA

Q
ua

d,
w

ith
IA

Figure 10: Qualitative results for the three bodies (Ball, Ant, Quad) without limited switches, both with and without IA,
obtained over 100 evaluation episodes. Left: the histogram over different options used by each agent; Centre to right:
scatter plots of the action space, state space, and task information, colored by the corresponding option selected. Each of
these spaces has been projected to 2D using t-SNE, except for the two-dimensional action space for Ball, which is plotted
directly. For each case, care has been taken to choose a median / representative model out of 5 seeds.

A.4. Off-Policy Option Learning

In order to train in a more on-policy regime, we reduce
the size of the replay buffer by two orders of magnitude
and increase the ratio between data generation (actor steps)
and data fitting (learner steps) by one order of magnitude.
The resulting algorithm is run without any additional hy-

perparameter tuning to provide an insight into the effect of
conditioning on action probabilities under options in the
inference procedure. We can see that in the on-policy case
the impact of this change is less pronounced. Across all
cases, we were unable to generate significant performance
gains by including action conditioning into the inference
procedure.

Data-efficient Hindsight Off-policy Option Learning

Scenario Option entropy Switch rate Cluster score (actions) Cluster score (states) Cluster score (tasks)

R
eg

ul
ar

Ball No IA 2.105± 0.074 0.196± 0.010 −0.269± 0.058 −0.110± 0.025 −0.056± 0.011
With IA 2.123± 0.066 0.346± 0.024 −0.056± 0.024 −0.164± 0.051 −0.057± 0.008

Ant No IA 1.583± 0.277 0.268± 0.043 −0.148± 0.034 −0.182± 0.068 −0.075± 0.011
With IA 2.119± 0.073 0.303± 0.019 −0.053± 0.021 −0.066± 0.024 −0.052± 0.006

Quad No IA 1.792± 0.127 0.336± 0.019 −0.078± 0.064 −0.113± 0.035 −0.089± 0.050
With IA 2.210± 0.037 0.403± 0.014 0.029± 0.029 −0.040± 0.003 −0.047± 0.006

L
im

ite
d

Sw
itc

he
s

Ball No IA 1.804± 0.214 0.020± 0.009 −0.304± 0.040 −0.250± 0.135 −0.131± 0.049
With IA 2.233± 0.027 0.142± 0.015 −0.132± 0.035 −0.113± 0.043 −0.053± 0.003

Ant No IA 1.600± 0.076 0.073± 0.014 −0.124± 0.017 −0.155± 0.067 −0.084± 0.034
With IA 2.222± 0.043 0.141± 0.015 −0.052± 0.011 −0.054± 0.014 −0.050± 0.007

Quad No IA 1.549± 0.293 0.185± 0.029 −0.075± 0.036 −0.126± 0.030 −0.112± 0.022
With IA 2.231± 0.042 0.167± 0.025 −0.029± 0.029 −0.032± 0.004 −0.053± 0.009

Table 2: Quantitative results indicating the diversity of options used (entropy), and clustering accuracy in action and state
spaces (silhouette score), with and without information asymmetry (IA), and with or without limited number of switches.
Higher values indicate greater separability by option / component.

Figure 11: Complete results on pixel-based ball-in-cup experiments.

The complete results for all experiments with and without
the action-conditional inference procedure can be found in
Figure 14.

A.5. Trust-region Constraints

The complete results for all trust-region ablation experi-
ments can be found in Figure 15.

With the exception of very high or very low constraints, the
approach trains robustly, but performance drops consider-
ably when we remove the constraint fully.

A.6. Single Time-Step vs Multi Time-Step Inference

To investigate the impact of probabilistic inference of poste-
rior option distributions πH(ot|ht) along the whole sampled

trajectory instead of using sampling-based approximations
until the current timestep, we perform additional ablations
displayed in Figure 16. Note that we are required to per-
form probabilistic inference for at least one step to use
backpropagation through the inference step to update our
policy components. Any completely sampling-based ap-
proach would require a different policy optimizer (e.g. via
likelihood ratio or reparametrization trick) which would
introduce additional compounding effects.

We compare HO2 with an ablated version where we do not
compute the option probabilities along the trajectory fol-
lowing Equation 3 but instead use an approximation with
only concrete option samples propagating across timesteps
for all steps until the current step. To generate action sam-
ples, we therefore sample options for every timestep along

Data-efficient Hindsight Off-policy Option Learning

Figure 12: Complete results on pixel-based stacking experiments.

Figure 13: Complete results on multi-task block stacking with and without conditioning termination conditions on tasks.

a trajectory without keeping a complete distribution over
options and sample actions only from the active option at
every timestep. To determine the likelihood of actions and
options for every timestep, we rely on Equation 2 based the
sampled options of the previous timestep. By using samples
and the critic-weighted update procedure from Equation 8,
we can only generate gradients for the policy for the current
timestep instead of backpropagating through the whole in-
ference procedure. We find that using both samples from
executed options reloaded from the buffer as well as new
samples during learning can reduce performance depending
on the domain. However, in the Hopper-v2 environment,
sampling during learning performs slightly better than infer-
ring options.

B. Additional Experiment Details
B.1. OpenAI Gym Experiments

All experiments are run with asynchronous learner and ac-
tors. We use a single actor and report performance over
the number of transitions generated. Following (Wulfmeier
et al., 2020), both HO2 and RHPO use different biases for
the initial mean of all options or mixture components - dis-
tributed between minimum and maximum action output.
This provides a small but non-negligible benefit and sup-
ports specialization of individual options. In line with our
baselines (DAC (Zhang & Whiteson, 2019), IOPG (Smith
et al., 2018), Option Critic (Bacon et al., 2017)) we use 4
options or mixture components for the OpenAI gym experi-
ments. We run all experiments with 5 samples and report
variance and mean. All experiments are run with a single ac-
tor in a distributed setting. The variant with limited switches
limits to 2 switches over a sequence length of 8. Lower and
higher values led to comparable results.

Data-efficient Hindsight Off-policy Option Learning

Figure 14: Complete results on OpenAI gym with and without conditioning component probabilities on past executed actions.
For the off-policy (top) and on-policy case (bottom). The on-policy approaches uses data considerably less efficiently and
the x-axis is correspondingly adapted.

Figure 15: Complete results on block stacking with varying trust-region constraints for both termination conditions β and
the high-level controller πC .

B.2. Action and Temporal Abstraction Experiments

Shared across all algorithms, we use 3-layer convolutional
policy and Q-function torsos with [128, 64, 64] feature
channels, [(4, 4), (3, 3), (3, 3)] as kernels and stride 2. For
all multitask domains, we build on information asymmetry
and only provide task information as input to the high-level
controller and termination conditions to create additional
incentive for the options to specialize. The Q-function has
access to all observations (see the corresponding tables in
this section). We follow (Riedmiller et al., 2018; Wulfmeier
et al., 2020) and assign rewards for all possible tasks to tra-
jectories when adding data to the replay buffer independent
of the generating policy.

Stacking The setup consists of a Sawyer robot arm
mounted on a table and equipped with a Robotiq 2F-85

parallel gripper. In front of the robot there is a basket of size
20x20 cm which contains three cubes with an edge length
of 5 cm (see Figure 4).

The agent is provided with proprioception information for
the arm (joint positions, velocities and torques), and the
tool center point position computed via forward kinematics.
For the gripper, it receives the motor position and velocity,
as well as a binary grasp flag. It also receives a wrist sen-
sor’s force and torque readings. Finally, it is provided with
three RGB camera images at 64 × 64 resolution. At each
timestep, a history of two previous observations (except for
the images) is provided to the agent, along with the last two
joint control commands. The observation space is detailed
in Table 6. All stacking experiments are run with 50 actors
in parallel and reported over the current episodes generated
by any actor. Episode lengths are up to 600 steps.

Data-efficient Hindsight Off-policy Option Learning

Figure 16: Ablation results comparing inferred options with sampled options during learning (sampled) and during execution
(executed). The ablation is run with five actors instead of a single one as used in the OpenAI gym experiments in order to
generate results faster.

Hyperparameters HO2 RHPO MPO
Policy net 256-256

Number of actions samples 20
Q function net 256-256

Number of components 4 NA
ε 0.1
εµ 5e-4
εΣ 5e-5
εα 1e-4 NA
εt 1e-4 NA

Discount factor (γ) 0.99
Adam learning rate 3e-4
Replay buffer size 2e6

Target network update period 200
Batch size 256

Activation function elu
Layer norm on first layer Yes

Tanh on output of layer norm Yes
Tanh on actions (Q-function) Yes

Sequence length 8

Table 3: Hyperparameters - OpenAI gym

The robot arm is controlled in Cartesian velocity mode at
20Hz. The action space for the agent is 5-dimensional, as
detailed in Table 5. The gripper movement is also restricted
to a cubic volume above the basket using virtual walls.

stol(v, ε, r) =

{
1 iff |v| < ε

1− tanh2(atanh(
√

0.95)
r |v|) else

(10)

slin(v, εmin, εmax) =


0 iff v < εmin

1 iff v > εmax
v−εmin

εmax−εmin else
(11)

btol(v, ε) =

{
1 iff |v| < ε

0 else
(12)

Hyperparameters HO2 RHPO MPO
Policy torso

(shared across tasks) 256 512
Policy task-dependent

heads 100 (cat.) 200

Policy shared
heads 100 (comp.) NA

Policy task-dependent
terminations

100
(term.) NA NA

εµ 1e-3
εΣ 1e-5
εα 1e-4 NA
εt 1e-4 NA

Number of action samples 20
Q function torso

(shared across tasks) 400
Q function head

(per task) 300
Number of components number of tasks NA

Replay buffer size 1e6
Target network
update period 500

Batch size 256

Table 4: Hyperparameters. Values are taken from the Ope-
nAI gym experiments with the above mentioned changes.

Table 5: Action space for the Sawyer Stacking experiments.

Entry Dims Unit Range

Translational Velocity in x, y, z 3 m/s [-0.07, 0.07]
Wrist Rotation Velocity 1 rad/s [-1, 1]
Finger speed 1 tics/s [-255, 255]

• REACH(G): stol(d(TCP,G), 0.02, 0.15):
Minimize the distance of the TCP to the green cube.

• GRASP:
Activate grasp sensor of gripper ("inward grasp signal"
of Robotiq gripper)

Data-efficient Hindsight Off-policy Option Learning

Table 6: Observations for the Sawyer Stacking experiments.
The TCP’s pose is represented as its world coordinate po-
sition and quaternion. In the table, m denotes meters, rad
denotes radians, and q refers to a quaternion in arbitrary
units (au).

Entry Dims Unit History

Joint Position (Arm) 7 rad 2
Joint Velocity (Arm) 7 rad/s 2
Joint Torque (Arm) 7 Nm 2
Joint Position (Hand) 1 tics 2
Joint Velocity (Hand) 1 tics/s 2
Force-Torque (Wrist) 6 N, Nm 2
Binary Grasp Sensor 1 au 2
TCP Pose 7 m, au 2
Camera images 3× 64× R/G/B value 0

64× 3
Last Control Command 8 rad/s, tics/s 2

• LIFT(G): slin(G, 0.03, 0.10)
Increase z coordinate of an object more than 3cm rela-
tive to the table.

• PLACE_WIDE(G, Y): stol(d(G, Y +
[0, 0, 0.05]), 0.01, 0.20)
Bring green cube to a position 5cm above the yellow
cube.

• PLACE_NARROW(G, Y): stol(d(G, Y +
[0, 0, 0.05]), 0.00, 0.01):
Like PLACE_WIDE(G, Y) but more precise.

• STACK(G, Y): btol(dxy(G, Y), 0.03)∗btol(dz(G, Y)+
0.05, 0.01) ∗ (1− GRASP)
Sparse binary reward for bringing the green cube on
top of the yellow one (with 3cm tolerance horizontally
and 1cm vertically) and disengaging the grasp sensor.

• STACK_AND_LEAVE(G, Y): stol(dz(TCP,G) +
0.10, 0.03, 0.10) ∗ STACK(G, Y)
Like STACK(G, Y), but needs to move the arm 10cm
above the green cube.

Ball-In-Cup This task consists of a Sawyer robot arm
mounted on a pedestal. A partially see-through cup structure
with a radius of 11cm and height of 17cm is attached to the
wrist flange. Between cup and wrist there is a ball bearing,
to which a yellow ball of 4.9cm diameter is attached via a
string of 46.5cm length (see Figure 4).

Most of the settings for the experiment align with the stack-
ing task. The agent is provided with proprioception infor-
mation for the arm (joint positions, velocities and torques),
and the tool center point and cup positions computed via
forward kinematics. It is also provided with two RGB cam-
era images at 64×64 resolution. At each timestep, a history

of two previous observations (except for the images) is pro-
vided to the agent, along with the last two joint control
commands. The observation space is detailed in Table 8.
All BIC experiments are run with 20 actors in parallel and
reported over the current episodes generated by any actor.
Episode lengths are up to 600 steps.

The position of the ball in the cup’s coordinate frame is
available for reward computation, but not exposed to the
agent. The robot arm is controlled in joint velocity mode
at 20Hz. The action space for the agent is 4-dimensional,
with only 4 out of 7 joints being actuated, in order to avoid
self-collision. Details are provided in Table 5.

Table 7: Action space for the Sawyer Ball-in-Cup experi-
ments.

Entry Dims Unit Range

Rotational Joint Velocity
for joints 1, 2, 6 and 7 4 rad/s [-2, 2]

Table 8: Observations for the Sawyer Ball-in-Cup experi-
ments. In the table, m denotes meters, rad denotes radians,
and q refers to a quaternion in arbitrary units (au). Note: the
joint velocity and command represent the robot’s internal
state; the 3 degrees of freedom that were fixed provide a
constant input of 0.

Entry Dims Unit

Joint Position (Arm) 7 rad
Joint Velocity (Arm) 7 rad/s
TCP Pose 7 m, au
Camera images 2× 64× 64× 3 R/G/B value
Last Control Command 7 rad/s

Let BA be the Cartesian position in meters of the ball in the
cup’s coordinate frame (with an origin at the center of the
cup’s bottom), along axes A ∈ {x, y, z}.

• CATCH: 0.17 > Bz > 0 and ||Bxy||2 < 0.11
Binary reward if the ball is inside the volume of the
cup.

• BALL_ABOVE_BASE: Bz > 0
Binary reward if the ball is above the bottom plane of
the cup.

• BALL_ABOVE_RIM: Bz > 0.17
Binary reward if the ball is above the top plane of the
cup.

• BALL_NEAR_MAX: Bz > 0.3
Binary reward if the ball is near the maximum possible
height above the cup.

Data-efficient Hindsight Off-policy Option Learning

• BALL_NEAR_RIM: 1−tanh2(atanh(
√

0.95)
0.5 ×||Bxyz−

(0, 0, 0.17)||2)
Shaped distance of the ball to the center of the cup
opening (0.95 loss at a distance of 0.5).

B.3. Pre-training and Sequential Transfer Experiments

The sequential transfer experiments are performed with the
same settings as their multitask equivalents. However, they
rely on a pre-training step in which we take all but the
final task in each domain and train HO2 to pre-train options
which we then transfer with a new high-level controller
on the final task. Fine-tuning of the options is enabled as
we find that it produces slightly better performance. Only
data used for the final training step is reported but all both
approaches were trained for the same amount of data during
pretraining until convergence. The variant with limited
switches limits to 4 switches over a sequence length of 16.

B.4. Locomotion experiments

Figure 17: The environment used for simple locomotion
tasks with Ball (top), Ant (center) and Quadruped (bottom).

Figure 17 shows examples of the environment for the dif-
ferent bodies used. In addition to proprioceptive agent state
information (which includes the body height, position of
the end-effectors, the positions and velocities of its joints

and sensor readings from an accelerometer, gyroscope and
velocimeter attached to its torso), the state space also in-
cludes the ego-centric coordinates of all target locations and
a categorical index specifying the task of interest. Table
9 contains an overview of the observations and action di-
mensions for this task. The agent receives a sparse reward
of +60 if part of its body reaches a square surrounding the
predicate location, and 0 otherwise. Both the agent spawn
location and target locations are randomized at the start of
each episode, ensuring that the agent must use both the task
index and target locations to solve the task.

Table 9: Observations for the go to one of 3 targets task
with Ball, Ant, and Quadruped.

Entry Dimensionality

Task Index 3
Target locations 9
Proprioception (Ball) 16
Proprioception (Ant) 41
Proprioception (Quad) 57
Action Dim (Ball) 2
Action Dim (Ant) 8
Action Dim (Quad) 12

C. Additional Derivations
In this section we explain the derivations for training option
policies with options parameterized as Gaussian distribu-
tions. Each policy improvement step is split into two parts:
non-parametric and parametric update.

C.1. Non-parametric Option Policy Update

In order to obtain the non-parametric policy improvement
we optimize the following equation:

max
q

Eht∼p(ht)
[
Eat,ot∼q

[
Qφ(st, at, ot)]

]
s.t.Eht∼p(ht)

[
KL(q(·|ht), πθ(·|ht))

]
< εE

s.t.Eht∼p(ht)
[
Eq(at,ot|ht)

[
1
]]

= 1.

for each step t of a trajectory, where ht =
{st, at−1, st−1, ...a0, s0} represents the history of states
and actions and p(ht) describes the distribution over histo-
ries for timestep t, which in practice are approximated via
the use of a replay buffer D. When sampling ht, the state st
is the first element of the history. The inequality constraint
describes the maximum allowed KL divergence between
intermediate update and previous parametric policy, while
the equality constraint simply ensures that the intermediate
update represents a normalized distribution.

Subsequently, in order to render the following derivations

Data-efficient Hindsight Off-policy Option Learning

more intuitive, we replace the expectations and explicitly use
integrals. The Lagrangian L(q, η, γ) can now be formulated
as

L(q, η, γ) =

∫∫∫
p(ht)q(at, ot|ht)Qφ(st, at, ot) (13)

dot dat dht

+η

(
εE −

∫∫∫
p(ht)q(at, ot|ht) log

q(at, ot|ht)
πθ(at, ot|ht)

dot dat dht

)
+γ

(
1−

∫∫∫
p(ht)q(at, ot|ht) dot dat dht

)
.

Next to maximize the Lagrangian with respect to the primal
variable q, we determine its derivative as,

∂L(q, η, γ)

∂q
= Qφ(at, ot, st)− η log q(at, ot|ht)

+η log πθ(at, ot|ht)− η − γ.

In the next step, we can set the left hand side to zero and
rearrange terms to obtain

q(at, ot|ht) = πθ(at, ot|ht) exp

(
Qφ(st, at, ot)

η

)
exp

(
−η + γ

η

)
.

The last exponential term represents a normalization con-
stant for q, which we can formulate as

η + γ

η
= log

(∫∫
πθ(at, ot|ht)

exp

(
Qφ(st, at, ot)

η

)
dot dat

)
.

(14)

In order to obtain the dual function g(η), we insert the solu-
tion for the primal variable into the Lagrangian in Equation
13 which yields

L(q, η, γ) =

∫∫∫
p(ht)q(at, ot|ht)Qφ(st, at, ot)

dot dat dht

+η

(
εE −

∫∫∫
p(ht)q(at, ot|ht)

log
πθ(at,ot|ht) exp

(
Qφ(st,at,ot)

η

)
exp(− η+γη)

πθ(at,ot|ht)
dot dat dht

)
+γ

(
1−

∫∫∫
p(ht)q(at, ot|ht) dot dat dht

)
.

We expand the equation and rearrange to obtain

L(q, η, γ) =

∫∫∫
p(ht)q(at, ot|ht)Qφ(st, at, ot)

dot dat dht

− η
∫∫∫

p(ht)q(at, ot|ht)
[Qφ(st, at, ot)

η

+ log πθ(at, ot|ht)−
η + γ

η

]
dot dat dht

+ ηεE + η

∫∫∫
p(ht)q(at, ot|ht)

log πθ(at, ot|ht) dot dat dht

+ γ

(
1−

∫∫∫
p(ht)q(at, ot|ht) dot dat dht

)
.

In the next step, most of the terms cancel out and after
additional rearranging of the terms we obtain

L(q, η, γ) = ηεE + η

∫
p(ht)

η + γ

η
dht.

We have already calculated the term inside the integral in
Equation 14, which we now insert to obtain

g(η) = min
q
L(q, η, γ) (15)

=ηεE + η

∫
p(ht) log

(∫∫
πθ(at, ot|ht)

exp

(
Qφ(st, at, ot)

η

)
dot dat

)
dht

=ηεE + ηEht∼p(ht)
[

log

(
Eat,ot∼πθ

[
exp

(
Qφ(st, at, ot)

η

)])]
.

The dual in Equation 15 can finally be minimized with
respect to η based on samples from the replay buffer and
policy.

C.2. Parametric Option Policy Update

After obtaining the non-parametric policy improvement,
we can align the parametric option policy to the current
non-parametric policy. As the non-parametric policy is
represented by a set of samples from the parametric policy
with additional weighting, this step effectively employs a
type of critic-weighted maximum likelihood estimation. In
addition, we introduce regularization based on a distance
function T which has a trust-region effect for the update
and stabilizes learning.

Data-efficient Hindsight Off-policy Option Learning

θnew = arg min
θ

Eht∼p(ht)
[
KL
(
q(at, ot|ht)‖πθ(at, ot|ht)

)]
= arg min

θ
Eht∼p(ht)

[
Eat,ot∼q

[
log q(at, ot|ht)

− log πθ(at, ot|ht)
]]

= arg max
θ

Eht∼p(ht),at,ot∼q
[

log πθ(at, ot|ht)
]
,

s.t. Eht∼p(ht)
[
T (πθnew(·|ht)|πθ(·|ht))

]
< εM ,

where ht ∼ p(ht) is a trajectory segment, which in prac-
tice sampled from the dataset D, T is an arbitrary distance
function between the new policy and the previous policy.
εM denotes the allowed change for the policy. We again
employ Lagrangian Relaxation to enable gradient based
optimization of the objective, yielding the following primal:

max
θ

min
α>0

L(θ, α) = Eht∼p(ht),at,ot∼q
[

log πθ(at, ot|ht)
]

+α
(
εM − Eht∼p(ht)

[
T (πθnew(·|ht), πθ(·|ht))

])
.

(16)

We can solve for θ by iterating the inner and outer optimiza-
tion programs independently. In practice we find that it is
most efficient to update both in parallel.

We also define the following distance function between old
and new option policies

T (πθnew(·|ht), πθ(·|ht)) = TH(ht) + TT (ht) + TL(ht)

TH(ht) = KL(Cat({αjθnew(ht)}j=1...M)‖

Cat({αjθ(ht)}j=1...M))

TT (ht) =
1

M

M∑
j=1

KL(Cat({βijθnew(ht)}j=1...2)‖

Cat({βijθ (ht)}j=1...2))

TL(ht) =
1

M

M∑
j=1

KL(N (µjθnew(ht),Σ
j
θnew

(ht))‖

N (µjθ(ht),Σ
j
θ(ht)))

where TH evaluates the KL between the categorical dis-
tributions of the high-level controller, TT is the average
KL between the categorical distributions of the all termi-
nation conditions, and TL corresponds to the average KL
across Gaussian components. In practice, we can exert addi-
tional control over the convergence of model components by
applying different εM to different model parts (high-level
controller, termination conditions, options).

C.3. Transition Probabilities for Option and Switch
Indices

The transitions for option o and switch index n are given
by:

p(ot, nt|st, ot−1, nt−1) =
(1− β(st, ot−1)) if nt = nt−1, ot = ot−1

β(st, ot−1)πC(ot|st) if nt = nt−1 + 1

0 otherwise
(17)

