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Abstract
We introduce Hindsight Off-policy Op-
tions (HO2), a data-efficient option learning
algorithm. Given any trajectory, HO2 infers
likely option choices and backpropagates through
the dynamic programming inference procedure to
robustly train all policy components off-policy
and end-to-end. The approach outperforms
existing option learning methods on common
benchmarks. To better understand the option
framework and disentangle benefits from both
temporal and action abstraction, we evaluate
ablations with flat policies and mixture policies
with comparable optimization. The results high-
light the importance of both types of abstraction
as well as off-policy training and trust-region
constraints, particularly in challenging, simulated
3D robot manipulation tasks from raw pixel
inputs. Finally, we intuitively adapt the inference
step to investigate the effect of increased temporal
abstraction on training with pre-trained options
and from scratch.

1. Introduction
Deep reinforcement learning has seen numerous successes
in recent years (Silver et al., 2017; OpenAI et al., 2018;
Vinyals et al., 2019), but still faces challenges in domains
where data is limited or expensive. One candidate solution
to address the challenges and improve data efficiency is to
impose hierarchical policy structures. By dividing an agent
into a combination of low-level and high-level controllers,
the options framework (Sutton et al., 1999; Precup, 2000)
introduces a form of action abstraction, effectively reducing
the high-level controller’s task to choosing from a discrete
set of reusable sub-policies. The framework further enables
temporal abstraction by explicitly modelling the temporal
continuation of low-level behaviors. Unfortunately, in prac-
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tice, hierarchical control schemes often introduce technical
challenges, including a tendency to learn degenerate solu-
tions preventing the agent from using its full capacity (Harb
et al., 2018), undesirable trade-offs between learning effi-
ciency and final performance (Harutyunyan et al., 2019), or
the increased variance of updates (Precup, 2000). Additional
challenges in off-policy learning for hierarchical approaches
(Precup et al., 2006) led to a focus of recent works on the
on-policy setting, forgoing the considerable improvements
in data efficiency often connected to off-policy methods.

We propose an approach to address these drawbacks, Hind-
sight Off-policy Options (HO2): a method for data-efficient,
robust, off-policy option learning. The algorithm simulta-
neously learns a high-level controller and low-level options
via a single end-to-end optimization procedure. It improves
data efficiency by leveraging off-policy learning and infer-
ring distributions over option for trajectories in hindsight to
maximize the likelihood of good actions and options.

To facilitate off-policy learning the algorithm does not con-
dition on executed options but treats these as latent variables
during optimization and marginalizes over all options to
compute the exact likelihood. HO2 backpropagates through
the resulting dynamic programming inference graph (con-
ceptually related to (Rabiner, 1989; Shiarlis et al., 2018;
Smith et al., 2018)) to enable the training of all policy com-
ponents from trajectories, independent of the executed op-
tion. As an additional benefit, the formulation of the in-
ference graph allows to impose intuitive, hard constraints
on the option termination frequency, thereby regularizing
the learned solution (and encouraging temporally-extended
behaviors) independently of the scale of the reward.

The policy update follows an expectation-maximization per-
spective and generates an intermediate, non-parametric pol-
icy, which is adapted to maximize agent performance. This
enables the update of the parametric policy to rely on simple
weighted maximum likelihood, without requiring further ap-
proximations such as Monte Carlo estimation or continuous
relaxation (Li et al., 2019). Finally, the updates are stabi-
lized using adaptive trust-region constraints, demonstrating
the importance of robust policy optimization for hierarchical
reinforcement learning (HRL) in line with recent work on
on-policy option learning (Zhang & Whiteson, 2019).
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Figure 1: Graphical model for flat policies (left), mixture policies (middle) - introducing a type of action abstraction, and
option policies (right) - adding temporal abstraction via autoregressive options. While the action a is solely dependent on the
state s for flat policies, mixture policies introduce the additional component or option o which affects the actions (following
Equation 1). Option policies do not change the direct dependencies for actions but instead affect the options themselves,
which are now also dependent on the previous option and its potential termination b (following Equation 2).

We experimentally compare HO2 to prior option learning
methods. By treating options as latent variables in off-policy
learning and enabling backpropagation through the infer-
ence procedure, HO2 demonstrates to be more efficient than
prior approaches such as the Option-Critic (Bacon et al.,
2017) or DAC (Zhang & Whiteson, 2019). HO2additionally
outperforms IOPG (Smith et al., 2018), which considers a
similar perspective but still builds on on-policy training. To
better understand different abstractions in option learning,
we compare with corresponding policy optimization meth-
ods for flat policies (Abdolmaleki et al., 2018a) and mix-
ture policies without temporal abstraction (Wulfmeier et al.,
2020) thereby allowing us to isolate the benefits of both ac-
tion and temporal abstraction. Both properties demonstrate
particular relevance in more demanding simulated robot ma-
nipulation tasks from raw pixel inputs. We further perform
extensive ablations to evaluate the impact of trust-region
constraints, off-policyness, option decomposition, and the
benefits of maximizing temporal abstraction when using
pre-trained options versus learning from scratch.

Our main contributions include:

• A robust, efficient off-policy option learning algorithm
enabled by a probabilistic inference perspective on
HRL. The method outperforms existing option learning
methods on common benchmarks and demonstrates
benefits on pixel-based 3D robot manipulation tasks.

• An intuitive technique to further encourage temporal
abstraction beyond the core method, using the infer-
ence graph to constrain option switches without addi-
tional weighted loss terms.

• A careful analysis to improve our understanding of the
options framework by isolating the impact of action
abstraction and temporal abstraction.

• Further ablation and analysis of several algorithmic
choices: trust-region constraints, off-policy versus on-
policy data, option decomposition, and the importance
of temporal abstraction with pre-trained options versus
learning from scratch.

2. Method
We start by considering a reinforcement learning setting
with an agent operating in a Markov Decision Process
(MDP) consisting of the state space S, the action space
A, and the transition probability p(st+1|st, at) of reaching
state st+1 from state st when executing action at. The
agent’s behavior is commonly described as a conditional
distribution with actions at drawn from the agent’s policy
π(at|st). Jointly, the transition dynamics and policy induce
the marginal state visitation distribution p(st). The discount
factor γ together with the reward rt = r (st, at) gives rise
to the expected return, which the agent aims to maximize:
J(π) = Ep(st),π(at|st)

[∑∞
t=0 γ

trt

]
.

2.1. Policy Types

Option policies introduce temporal and action abstraction
in comparison to commonly-used flat Gaussian policies.
Our goal in this work is not only to introduce this additional
structure to improve data efficiency but to further understand
the impact of the different abstractions. For this purpose,
we further study mixture distributions. They represent an
intermediate case with only action abstraction, as described
in Figure 1.

We begin by covering both policy types in the following
paragraphs. First, we focus on computing likelihoods of
actions (and options) under a policy. Then, we describe the
proposed critic-weighted maximum likelihood algorithm to
train hierarchical policies.

Mixture Policies This type extends flat policies π(at|st)
by introducing a high-level controller that samples from
multiple options (low-level policies) independently at each
timestep (Figure 1). The joint probability of actions and
options is given as:

πθ(at, ot|st) = πL (at|st, ot)πH (ot|st) , (1)

where πH and πL respectively represent high-level policy
(which for the mixture is equal to a Categorical distribution
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πH (ot|st) = πC (ot|st)) and low-level policy (components
of the resulting mixture distribution), and o is the index of
the sub-policy or mixture component.

Option Policies This type extends mixture policies by in-
corporating temporal abstraction. We follow the semi-MDP
and call-and-return option model (Sutton et al., 1999), defin-
ing an option as a triple (I(st, ot), π

L(at|st, ot), β(st, ot)).
The initiation condition I describes an option’s proba-
bility to start in a state and is simplified to I(st, ot) =
1∀st ∈ S following (Bacon et al., 2017; Zhang & Whiteson,
2019). The termination condition bt ∼ β(st, ot) denotes
a Bernoulli distribution describing the option’s probability
to terminate in any given state, and the action distribution
for a given option is modelled by πL(at|st, ot). Every time
the agent observes a state, the current option’s termination
condition is sampled. If subsequently no option is active,
a new option is sampled from the controller πC(ot|st). Fi-
nally, we sample from either the continued or new option to
generate a new action. The resulting transition probabilities
between options are described by

p (ot|st, ot−1) = (2){
1− β(st, ot−1)(1− πC(ot|st)) if ot = ot−1

β(st, ot−1)π
C(ot|st) otherwise

During interaction in an environment, an agent samples in-
dividual options. However, during learning HO2 takes a
probabilistic inference perspective with options as latent
variables and states and actions as observed variables. This
allows us to infer likely options over a whole trajectory
in hindsight, leading to efficient intra-option learning (Pre-
cup, 2000) for all options independently of the executed
option. This is particularly relevant for off-policy learning,
as options can change between data generation and learning.

Following the graphical model in Figure 1 and correspond-
ing transition probabilities in Equation 2, the probabil-
ity of being in option ot at timestep t across a trajectory
ht = {st, at−1, st−1, ...s0, a0} is determined in a recursive
manner based on the previous timestep’s option probabil-
ities. For the first timestep, the probabilities are given by
the high-level controller πH (o0|h0) = πC (o0|s0). For all
consecutive steps are computed as follows for M options:

π̃H (ot|ht) =
M∑

ot−1=1

[
p (ot|st, ot−1)πH (ot−1|ht−1)

πL (at−1|st−1, ot−1)
] (3)

The distribution is normalized at each timestep following
πH (ot|ht) = π̃H (ot|ht)/

∑M
o′t=1 π̃

H (o′t|ht). Performing
this exact marginalization at each timestep is much more
efficient than computing independently over all possible
sequences of options and reduces variance compared to
sampling-based approximations.

Building on the option probabilities, Equation 4 conceptual-
izes the connection between mixture and option policies.

πθ(at, ot|ht) = πL (at|st, ot)πH (ot|ht) (4)

In both cases, the low-level policies πL only depend on the
current state. However, where mixtures only depend on
the current state st for the high-level probabilities πH , with
options we can take into account compressed information
about the history ht as facilitated by the previous timestep’s
distribution over options πH (ot−1|ht−1).

This dynamic programming formulation in Equation 3 en-
ables the exact computation of the likelihood of actions and
options along off-policy trajectories. We can use automatic
differentiation in modern deep learning frameworks (e.g.
(Abadi et al., 2016)) to backpropagate through the graph
and determine the gradient updates for all policy parameters.

2.2. Agent Updates

We continue by describing the policy improvement algo-
rithm, which uses the previously determined option prob-
abilities. The three main steps are: 1) update the critic
(Eq. 5); 2) generate an intermediate, non-parametric policy
based on the updated critic (Eq. 6); 3) update the parametric
policy to align to the non-parametric improvement (Eq. 8).
By handling the maximization of expected returns with a
closed-loop solution for a non-parametric intermediate pol-
icy, the update of the parametric policy can build on simple,
weighted maximum likelihood. In essence, we do not rely
on differentiating an expectation over a distribution with
respect to parameters of the distribution. This enables train-
ing a broad range of distributions (including discrete ones)
without further approximations such as required when the
update relies on the reparametrization trick (Li et al., 2019).

Policy Evaluation In comparison to prior work on train-
ing mixture policies (Wulfmeier et al., 2020), the critic for
option policies is a function of s, a, and o since the current
option influences the likelihood of future actions and thus
rewards. Note that even though we express the policy as a
function of the history ht, Q is a function of ot, st, at, since
these are sufficient to render the future trajectory indepen-
dent of the past (see the graphical model in Figure 1). We
define the TD(0) objective as

min
φ
L(φ) = Est,at,ot∼D

[(
QT −Qφ(st, at, ot))2

]
, (5)

where the current states, actions, and options are sam-
pled from the current replay buffer D. For the 1-step
target QT = rt + γEst+1,at+1,ot+1

[Q′(st+1, at+1, ot+1)],
the expectation over the next state is approximated with
the sample st+1 from the replay buffer, and we estimate
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Figure 2: Representation of the dynamic programming forward pass - bold arrows represent connections without switching.
Left: example with two options. Right: extension of the graph to explicitly count the number of switches. Marginalization
over the dimension of switches determines component probabilities. By limiting over which nodes to sum at every timestep,
the optimization can be targeted to fewer switches and more consistent option execution.

the value by sampling actions and options according to
at+1, ot+1 ∼ π′(·|ht+1) following Equation 4. π′ and Q′

respectively represent target networks for policy and critic
which are used to stabilize training.

Policy Improvement We follow an Expectation-
Maximization procedure similar to (Wulfmeier et al.,
2020; Abdolmaleki et al., 2018b), which first computes
an improved non-parametric policy and then updates the
parametric policy to match this target. In comparison to
prior work, the policy does not only depend on the current
state st but also on compressed information about the
rest of the previous trajectory ht, building on Equation 3.
Given the critic, all we require to optimize option policies
is the ability to sample from the policy and determine the
log-likelihood (gradient) of actions and options under the
policy. The first step provides us with a non-parametric
policy q(at, ot|ht).

max
q
J(q) = Eat,ot∼q,ht∼D

[
Qφ(st, at, ot)

]
,

s.t. Eht∼D

[
KL
(
q(·|ht)‖πθ(·|ht)

)]
≤ εE ,

(6)

where KL(·‖·) denotes the Kullback-Leibler divergence,
and εE defines a bound on the KL. We can find the solution
to the constrained optimization problem in Equation 6 in
closed-form and obtain

q(at, ot|ht) ∝ πθ(at, ot|ht) exp (Qφ(st, at, ot)/η) . (7)

Practically speaking, this step computes samples from the
previous policy and weights these based on the correspond-
ing temperature-calibrated values of the critic. The tem-
perature parameter η is computed following the dual of the
Lagrangian. The derivation and final form of the dual can
be found in Appendix C.1, Equation 15.

To align the parametric to the improved non-parametric

policy in the second step, we minimize their KL divergence.

θ = argmin
θ

Eht∼D

[
KL
(
q(·|ht)‖πθ(·|ht)

)]
,

s.t. Eht∼D

[
T
(
πθ+(·|ht)‖πθ(·|ht)

)]
≤ εM

(8)

The distance function T in Equation 8 has a trust-region
effect and stabilizes learning by constraining the change in
the parametric policy. The computed option probabilities
from Equation 3 are used in Equation 7 to enable sampling
of options as well as Equation 8 to determine and maximize
the likelihood of samples under the policy. We can apply
Lagrangian relaxation again and solve the primal as detailed
in Appendix C.2. Finally, we describe the complete pseudo-
code for HO2 in Algorithm 1.

Note that both Gaussian and mixture policies have been
trained in prior work via methods relying on critic-weighted
maximum likelihood (Abdolmaleki et al., 2018a; Wulfmeier
et al., 2020). By comparing with the extension towards
option policies described above, we will make use of this
connection to isolate the impact of action abstraction and
temporal abstraction in the option framework in Section 3.2.

2.3. Maximizing Temporal Abstraction

Persisting with each option over longer time periods can
help to reduce the search space and simplify exploration
(Sutton et al., 1999; Harb et al., 2018). Previous approaches
(e.g. (Harb et al., 2018)) rely on additional weighted loss
terms which penalize option transitions.

In addition to the main HO2 algorithm, we introduce an ex-
tension mechanism to explicitly limit the maximum number
of switches between options along a trajectory to increase
temporal abstraction. In comparison to additional loss terms,
a parameter for the maximum number of switches can be
chosen independently of the reward scale of an environ-
ment and provides an intuitive semantic interpretation, both
aspects simplify manual adaptation.

We extend the 2D graph for computing option probabilities
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Algorithm 1 Hindsight Off-policy Options

input: initial parameters for θ, η and φ, KL regulariza-
tion parameters ε, set of trajectories τ
repeat

sample trajectories τ from replay buffer
// forward pass along sampled trajectories
determine component probabilities πH (ot|ht) (Eq. 3)
sample actions aj and options oj from πθ(·|ht) (Eq. 4)
to estimate expectations
// compute gradients over batch for policy, Lagrangian
multipliers and Q-function
δθ ← −∇θ

∑
ht∈τ

∑
j [exp (Qφ(st, aj , oj)/η)

log πθ(aj , oj |ht)] following Eq. 7 and 8
δη ← ∇ηg(η) = ∇ηηε+ η

∑
ht∈τ log

∑
j [

exp (Qφ(st, aj , oj)/η)] following Eq. 15
δφ ← ∇φ

∑
(st,at,ot)∈τ

(
Qφ(st, at, ot)−QT

)2
following Eq. 5

update θ, η, φ // apply gradient updates
if number of iterations = target update then
π′ = πθ, Q′ = Qφ // update target networks for
policy π′ and value function Q′

(Figure 2) with a third dimension representing the number
of switches between options. Practically, this means that we
are modelling πH(ot, nt|ht) where nt represents the num-
ber of switches until timestep t. We can now marginalize
over all numbers of switches to again determine the op-
tion probabilities. Instead, to encourage option consistency
across timesteps, we can sum over only a subset of nodes
for all n ≤ N with N smaller than the maximal number of
switches leading to πH (ot|ht) =

∑N
nt=0 π

H (ot, nt|ht).

For the first timestep, only 0 switches are possible, such that
πH (o0, n0 = 0|h0) = πC (o0|s0) and 0 for all other values
of n. For further timesteps, all edges resulting in option
terminations β lead to the next step’s option probabilities
with increased number of switches nt+1 = nt + 1. All
edges representing the continuation of an option lead to
nt+1 = nt. This results in the computation of the joint

distribution for t > 0:

π̃H (ot, nt|ht) =
M,N∑

ot−1=1,
nt−1=1

p (ot, nt|st, ot−1, nt−1)

πH (ot−1, nt−1|ht−1)πL (at−1|st−1, ot−1)

(9)

which can then be normalized using πH (ot, nt|ht) =

π̃H (ot, nt|ht)/
∑M
o′t=1

∑L
n′t=1 π̃

H (o′t, n
′
t|ht). The option

and switch index transitions p (ot, nt|st, ot−1, nt−1) are fur-
ther described in Equation 17 in the Appendix.

3. Experiments
In this section, we aim to answer a set of questions to bet-
ter understand the contribution of different aspects to the
performance of option learning - in particular with respect
to the proposed method, HO2. To start, in Section 3.1 we
explore two questions: (1) How well does HO2 perform
in comparison to existing option learning methods? and
(2) How important is off-policy training in this context?
We use a set of common OpenAI gym (Brockman et al.,
2016) benchmarks to answer these questions. In Section 3.2
we ask: (3) How do action abstraction in mixture policies
and the additional temporal abstraction brought by option
policies individually impact performance? We use more
complex, pixel-based 3D robotic manipulation experiments
to investigate these two aspects and evaluate scalability with
respect to higher dimensional input and state spaces. We
also explore: (4) How does increased temporal consistency
impact performance, particularly with respect to sequential
transfer with pre-trained options? Finally, we perform addi-
tional ablations in Section 3.3 to investigate the challenges
of robust off-policy option learning and improve understand-
ing of how options decompose behavior based on various
environment and algorithmic aspects.

Across domains, we use HO2 to train option policies, RHPO
(Wulfmeier et al., 2020) for the reduced case of mixture-
of-Gaussians policies with sampling of options at every
timestep and MPO (Abdolmaleki et al., 2018a) to train indi-

Figure 3: Results on OpenAI gym. Dashed black line represents DAC (Zhang & Whiteson, 2019), dotted line represents
Option-Critic (Bacon et al., 2017), solid line represents IOPG (Smith et al., 2018), dash-dotted line represents PPO
(Schulman et al., 2017) (approximate results after 2× 106 steps from (Zhang & Whiteson, 2019)). We limit the number of
switches to 5 for HO2-limits. HO2 consistently performs better or on par with existing option learning algorithms.
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vidual flat Gaussian policies - all based on critic-weighted
maximum likelihood estimation for policy optimization.

3.1. Comparison of Option Learning Methods

We compare HO2 (with and without limits on option
switches) against competitive baselines for option learning
in common, feature-based continuous action space domains.
HO2 outperforms baselines including Double Actor-Critic
(DAC) (Zhang & Whiteson, 2019), Inferred Option Policy
Gradient (IOPG) (Smith et al., 2018) and Option-Critic (OC)
(Bacon et al., 2017). With PPO (Schulman et al., 2017), we
include a commonly used on-policy method for flat poli-
cies which in addition serves as the foundation for the DAC
algorithm.

As demonstrated in Figure 3, HO2 performs better than or
commensurate to existing option learning algorithms such as
DAC, IOPG and Option-Critic as well as PPO. Training mix-
ture policies (via RHPO (Wulfmeier et al., 2020)) without
temporal abstraction slightly reduces both performance and
sample efficiency but still outperforms on-policy methods
in many cases. Here, enabling temporal abstraction (even
without explicitly maximizing it) provides an inductive bias
to reduce the search space for the high-level controller and
can lead to more data-efficient learning, such that HO2 even
without constraints performs better than RHPO.

Finally, while less data-efficient than HO2, even off-policy
learning alone with flat Gaussian policies (here MPO (Ab-
dolmaleki et al., 2018b)) can outperform current on-policy
option algorithms, for example in the HalfCheetah and
Swimmer domains while otherwise at least performing on
par. This emphasizes the importance of a strong underlying
policy optimization method.

Using the switch constraints for increasing temporal abstrac-
tion from Section 2 can provide minor benefits in some
tasks but has overall only a minor effect on performance.
We further investigate this setting in sequential transfer in
Section 3.2. It has to be noted that given the comparable
simplicity of these tasks, considerable performance gains
are achieved with pure off-policy training. In the next sec-
tion, we study more complex domains to isolate additional
gains from action and temporal abstraction.

3.2. Ablations: Action Abstraction and Temporal
Abstraction

We next ablate different aspects of HO2 on more complex
simulated 3D robot manipulation tasks - stacking and the
more dynamic ball-in-cup (BIC) - as displayed in Figure 4,
based on robot proprioception and raw pixel inputs (64x64
pixel, 2 cameras for BIC and 3 for stacking). Since the
performance of HO2 for training from scratch is relatively
independent of switch constraints (Figure 3), we will sim-

Figure 4: Ball-In-Cup (top) and Stacking (bottom). Left:
Environments. Right: Example agent observations.

plify our figures by focusing on the base method. To reduce
data requirements, we use a set of common techniques to im-
prove data-efficiency and accelerate learning for all methods.
We will apply multi-task learning with a related set of tasks
to provide a curriculum, with details in Appendix A. Fur-
thermore, we assign rewards for all tasks to any generated
transition data in hindsight to improve data efficiency and
exploration (Andrychowicz et al., 2017; Riedmiller et al.,
2018; Wulfmeier et al., 2020; Cabi et al., 2017).

Across all tasks, except for simple positioning and reach
tasks (see Appendix A), action abstraction improves per-
formance (mixture policies via RHPO versus flat Gaussian
policies via MPO). In particular the more challenging stack-
ing tasks shown in Figure 5 intuitively benefit from shared
sub-behaviors with easier tasks. Finally, the introduction of
temporal abstraction (option policies via HO2 vs mixture
policy via RHPO) further improves both performance and
sample efficiency, especially on the more complex stacking
tasks. The ability to learn explicit termination conditions,
which can be understood as classifiers between two con-
ditions, instead of the high-level controller, as classifier
between all options, can considerably simplify the learning
problem.

Optimizing for Temporal Abstraction There is a differ-
ence between simplifying the representation of temporal
abstraction for the agent and explicitly maximizing it. The
ability to represent temporally abstract behavior in HO2 via
the use of explicit termination conditions consistently helps
in prior experiments. However, these experiments show
limited benefit when increasing temporal consistency (by
limiting the number of switches following Section 2.3) for
training from scratch.
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Figure 5: Results for option policies, and ablations via
mixture policies, and single Gaussian policies (respectively
HO2, RHPO, and MPO) with pixel-based ball-in-cup (left)
and pixel-based block stacking (right). All four tasks dis-
played use sparse binary rewards, such that the obtained
reward represents the number of timesteps where the cor-
responding condition - such as the ball is in the cup - is
fulfilled. See Appendix B for details and additional tasks.

In this section, we further evaluate temporal abstraction
for sequential transfer with pre-trained options. We first
train low-level options for all tasks except for the most
complex task in each domain by applying HO2. Next, given
a set of pre-trained options, we only train the final task and
compare training with and without maximizing temporal
abstraction. We use the domains from Section 3.2, block
stacking and BIC.As shown in Figure 6, we can see that
more consistent options lead to increased performance in the
transfer domain. Intuitively, increased temporal consistency
and fewer switches lead to a smaller search space from the
perspective of the high-level controller.

While the same mechanism should also apply for training
from scratch, we hypothesize that the added complexity
of simultaneously learning the low-level behaviors (while
maximizing temporal consistency) outweighs the benefits.
Finding a set of options which not only solve a task but also
represent temporally consistent behavior can be harder, and
require more data, than just solving the task.

3.3. Ablations: Off-policy, Robustness, Decomposition

In this section, we investigate different algorithmic aspects
to get a better understanding of the method, properties of
the learned options, and how to achieve robust training in
the off-policy setting.

Off-policy Option Learning In off-policy hierarchical
RL, the low-level policy underlying an option can change
after trajectories are generated. This results in a non-

Figure 6: The sequential transfer experiments for tempo-
ral abstraction show considerable improvements for limited
switches. Top: BIC. Bottom: Stack. In addition, we visual-
ize the actual agent option switch rate in the environment to
directly demonstrate the constraint’s effect.

stationarity for training the high-level controller. In addition,
including previously executed actions in the forward compu-
tation for component probabilities can introduce additional
variance into the objective. In practice, we find that re-
moving the conditioning on low-level probabilities (the πL
terms in Equation 3) improves performance and stability.
The effect is displayed in Figure 7, where the conditioning
of high-level component probabilities on low-level action
probabilities (see Section 2) is detrimental.

Figure 7: Results on OpenAI gym with/without option prob-
abilities being conditioned on past actions.

We additionally evaluate this effect in the on-policy set-
ting in Appendix A.4 and find its impact to be diminished,
demonstrating the connection between the effect and an
off-policy setting. While we apply this simple heuristic for
HO2, the problem has lead to various off-policy corrections
for goal-based HRL (Nachum et al., 2018b; Levy et al.,
2017) which provide a valuable direction for future work.

Trust-regions and Robustness Previous work has shown
the benefits of applying trust-region constraints for policy
updates of non-hierarchical policies (Schulman et al., 2015;
Abdolmaleki et al., 2018b). In this section, we vary the
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strength of constraints on the option probability updates
(both termination conditions β and the high-level controller
πC ). As displayed in Figure 8, the approach is robust across
multiple orders of magnitude, but very weak or strong con-
straints can considerably degrade performance. Note that
a high value is essentially equal to not using a constraint
and causes very low performance. Therefore, option learn-
ing here relies strongly on trust-region constraints. Further
experiments can be found in Appendix A.5.

Figure 8: Block stacking results for two tasks with differ-
ent trust-region constraints. Note that the importance of
constraints increases for more complex tasks.

Decomposition and Option Clustering To investigate
how HO2 uses its capacity and decomposes behavior into
options, we apply it to a variety of simple and interpretable
locomotion tasks. In these tasks, the agent body (“Ball”,
“Ant”, or “Quadruped”) must go to one of three targets in a
room, with the task specified by the target locations and a se-
lected target index. As shown for the “Ant” case in Figure 9,
we find that option decomposition intuitively depends on
both the task properties and algorithm settings. In particu-
lar information asymmetry (IA), achieved by providing task
information only to the high-level controller, can address
degenerate solutions and lead to increased diversity with
respect to options (as shown by the histogram over options)
and more specialized options (represented by the clearer
clustering of samples in action space). We can measure
this quantitatively, using (1) the Silhouette score, a mea-
sure of clustering accuracy based on inter- and intra-cluster
distances1; and (2) entropy over the option histogram, to
quantify diversity. These metrics are reported in Table 1 for
all bodies, with and without information asymmetry. The
results show that for all cases, IA leads to greater option di-
versity and clearer separation of option clusters with respect
to action space, state space, and task.

More extensive experiments and discussion can be found in
Appendix A.1, including additional quantitative and qualita-
tive results for the other bodies and scenarios. To summarize,

1The silhouette score is a value in [−1, 1] with higher values
indicating cluster separability. We note that the values obtained
in this setting do not correspond to high absolute separability, as
multiple options can be used to model the same skill or behavior
abstraction. We are instead interested in the relative clustering
score for different scenarios.

the analyses yield a number of relevant observations, show-
ing that (1) for simpler bodies like a “Ball”, the options
are interpretable (forward torque, and turning left/right at
different rates); and (2) applying the switch constraint intro-
duced in Section 3.2 leads to increased temporal abstraction
without reducing the agent’s ability to solve the task.

Figure 9: Analysis on Ant locomotion tasks, showing his-
togram over options, and t-SNE scatter plots in action space
colored by option. Left: without IA. Right: with IA. Agents
with IA use more components and show clearer option clus-
tering in the action space.

Scenario Option entropy s (action) s (state) s (task)

Ball No IA 1.80± 0.21 −0.30± 0.04 −0.25± 0.14 −0.13± 0.05
With IA 2.23± 0.03 −0.13± 0.04 −0.11± 0.04 −0.05± 0.00

Ant No IA 1.60± 0.08 −0.12± 0.02 −0.15± 0.07 −0.08± 0.03
With IA 2.22± 0.04 −0.05± 0.01 −0.05± 0.01 −0.05± 0.01

Quad No IA 1.55± 0.29 −0.07± 0.04 −0.12± 0.03 −0.11± 0.02
With IA 2.23± 0.04 −0.03± 0.03 −0.03± 0.00 −0.05± 0.01

Table 1: Quantitative results indicating the diversity of op-
tions used (entropy), and clustering accuracy in action and
state spaces (silhouette score s), with and without infor-
mation asymmetry (IA). Switching constraints are applied
in all cases. Higher values indicate greater separability by
option / component.

4. Related Work
Hierarchy has been investigated in many forms in reinforce-
ment learning to improve data gathering as well as data
fitting aspects. Goal-based approaches commonly define
a grounded interface between high- and low-level policies.
The high level acts by providing goals to the low level,
which is trained to achieve these goals (Dayan & Hinton,
1993; Levy et al., 2017; Nachum et al., 2018a;b; Vezhn-
evets et al., 2017), effectively generating separate objectives
and improving exploration. These methods have been able
to overcome very sparse reward domains but commonly
require domain knowledge to define the interface. In ad-
dition, a hand-crafted interface can limit expressiveness of
achievable behaviors.

Non-crafted, emergent interfaces within policies have been
investigated from an RL-as-inference perspective via poli-
cies with continuous latent variables (Haarnoja et al., 2018;
Hausman et al., 2018; Heess et al., 2016; Igl et al., 2019;
Tirumala et al., 2019; Teh et al., 2017). Related to these
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approaches, we provide a probabilistic inference perspec-
tive to off-policy option learning and benefit from efficient
dynamic programming inference procedures. We further-
more build on the related idea of information asymmetry
(Pinto et al., 2017; Galashov et al., 2018; Tirumala et al.,
2019) - providing a part of the observations only to a part
of the model. The asymmetry can lead to an information
bottleneck affecting the properties of learned low-level poli-
cies. We build on the intuition and demonstrate how option
diversity can be affected in ablations in Section 3.3.

At its core, our work builds on and investigates the option
framework (Precup, 2000; Sutton et al., 1999), which can be
seen as describing policies with an autoregressive, discrete
latent space. Option policies commonly use a high-level
controller to choose from a set of options or skills. These op-
tions additionally include termination conditions to enable
a skill to represent temporally extended behavior. Without
termination conditions, options can be seen as equivalent to
components under a mixture distribution, and this simpli-
fied formulation has been applied successfully in different
methods (Agostini & Celaya, 2010; Daniel et al., 2016;
Wulfmeier et al., 2020).

Recent work has also investigated temporally extended low-
level behaviours of fixed length (Frans et al., 2018; Li et al.,
2019; Nachum et al., 2018b), which do not learn the option
duration or termination condition. With HO2, enabling to
optimize the extension of low-level behaviour in the option
framework provides additional flexibility and removes the
engineering effort of choosing the right hyperparameters.

The option framework has been further extended and im-
proved for more practical application (Bacon et al., 2017;
Harb et al., 2018; Harutyunyan et al., 2019; Precup et al.,
2006; Riemer et al., 2018; Smith et al., 2018). HO2 relies
on off-policy training and treats options as latent variables.
This enables backpropagation through the option inference
procedure and considerable improvements in comparison
to efficient than approaches relying on on-policy updates
and on-option learning purely for executed options. Related,
IOPG (Smith et al., 2018) also considers an inference per-
spective but only includes on-policy results which naturally
have poorer data efficiency. Finally, the benefits of options
and other modular policy styles have also been applied in
the supervised case for learning from demonstration (Fox
et al., 2017; Krishnan et al., 2017; Shiarlis et al., 2018).

One important step to increase the robustness of option
learning has been taken in (Zhang & Whiteson, 2019) by
building on robust (on-policy) policy optimization with PPO
(Schulman et al., 2017). HO2 has similar robustness bene-
fits, but additionally improves data-efficiency by building on
off-policy learning, hindsight inference of options, and ad-
ditional trust-region constraints (Abdolmaleki et al., 2018b;
Wulfmeier et al., 2020). Related inference procedures have

also been investigated in imitation learning (Shiarlis et al.,
2018) as well as on-policy RL (Smith et al., 2018).

In addition to inferring options in hindsight, off-policy learn-
ing enables us to assign rewards for multiple tasks, which
has been successfully applied with flat, non-hierarchical
policies (Andrychowicz et al., 2017; Riedmiller et al., 2018;
Cabi et al., 2017) and goal-based hierarchical approaches
(Levy et al., 2017; Nachum et al., 2018b).

5. Conclusions
We introduce a robust, efficient algorithm for off-policy
training of option policies. The approach outperforms recent
work in option learning on common benchmarks and is able
to solve complex, simulated robot manipulation tasks from
raw pixel inputs more reliably than competitive baselines.
HO2 takes a probabilistic inference perspective to option
learning, infers option and action probabilities for trajecto-
ries in hindsight, and performs critic-weighted maximum-
likelihood estimation by backpropagating through the infer-
ence step. Being able to infer options for a given trajectory
allows robust off-policy training and determination of up-
dates for all instead of only for the executed options. It also
makes it possible to impose constraints on the termination
frequency independently of an environment’s reward scale.

We separately analyze the impact of action abstraction (via
mixture policies), and temporal abstraction (via options).
We find that each abstraction independently improves per-
formance. Additional maximization of temporal consistency
for option choices is beneficial when transferring pre-trained
options but displays a limited effect when learning from
scratch. Furthermore, we investigate the consequences of
the off-policyness of training data and demonstrate the bene-
fits of trust-region constraints for option learning. We exam-
ine the impact of different agent and environment properties
(such as information asymmetry, tasks, and embodiments)
with respect to task decomposition and option clustering;
a direction which provides opportunities for further inves-
tigation in the future. Finally, since our method is based
on (weighted) maximum likelihood estimation, it can be
adapted naturally to learn structured behavior representa-
tions in mixed data regimes, e.g. to learn from combinations
of demonstrations, logged data, and online trajectories. This
opens up promising directions for future work.
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