Supplementary Materials for
“A Bit More Bayesian: Domain-Invariant Learning with Uncertainty”

Zehao Xiao Jiayi Shen Xiantong Zhen Ling Shao Cees G. M. Snoek

A. Derivation
A.1. Derivation of the Upper Bounds of Probabilistic Domain-invariant Learning

To implement Eq, [pe(y¢|x¢)] in a tractable way, we derive the upper bound in Section 2.2, which is achieved via Jensen’s
inequality:
Dicr, [po (vi [%i) | [[po (V¢ %)I] = Ep(yfx,) [10g po(yilxi) — log Eg, [pa(ye|xc)]]

< Epg(yifxi) [108 Do (vilxi) — Eq [log po(yexc)]] (1)
= By [P [po(yifx:)Ipo(yelxc)] .

A.2. Derivation of Variational Bayesian Approximation for Feature Extractor (¢) and Classifier (/) layers

We consider the model with two Bayesian layers ¢ and 1) as the last layer of the feature extractor and the classifier. The
prior distribution of the model is p(¢, 1)), and the true posterior distribution is p(¢, ¥|x,y). Following the settings in
Section 2.1, we need to learn a variational distribution ¢(¢, 1)) to approximate the true posterior by minimizing the KL

divergence from ¢(¢, ¥) to p(¢, ¥ |x,y):
¢*7,¢J* = arig’linDKL [q(¢a¢)|‘p(¢aw|X7Y)} (2)

By applying the Bayesian rule p(¢, ¥|x,y) « p(y|x, ¢, ¥)p(¢, 1), the optimization is equivalent to minimizing:

q(,)
(&, ¥)p(y|x, @,)

With ¢ and) being independent,

LBayes = —Eq(y)Eq(g [log p(y %, %,)] + Dk [g(¥)[[p(4)] + Dkw[g() ().)

EBayes = /q(¢a ’l[J) IOg d¢d¢ = DKL [Q(¢7 ¢)|‘p(¢a "/’)} - EQ(d),"p) [1ng(y|x7 ¢7 1/’)] : (3)

B. Details of Bayesian Domain-invariant Training

In domain generalization, the given domains D={D; } Lzll are divided into the source domains S and the target domains 7.
During training, as the data from 7 is never seen, only the source domains S are accessible. In each iteration, as shown in
Figure B.1, we randomly choose one source domain from S as the meta-target domain D, and the rest of the source domains

{DS}SS:1 are treated as the meta-source domains, where S=|S| — 1. We randomly select a batch of samples x; from D;.

VN . . .
We also select N samples {x; }izl’ which are in the same category as x;, from each of the meta-source domains D;. All

these samples are sent to the Bayesian invariant feature extractor ¢ after a ResNet18 backbone to get the representations z;
and {zls }ivzl which are then sent to the Bayesian invariant classifier @ to get the predictions y; and {yg }ivzl We obtain
the Bayesian invariant objective function for the feature extractor £;(¢) by calculating the mean of the KL divergence of
p(z¢|x¢, @) and each p(zi|x%, @) as (9) in the main paper. The Bayesian invariant objective function for feature classifier

L () is calculated in a similar way on p(y;|z;, %) and {p(y?|2L, 1,[))}?]:1 as (7) in the main paper. In addition to the
Bayesian invariant objective functions, there are also a cross-entropy loss Lc g on p(y¢|X¢, 1, ¢) and two Kullback-Leibler

terms between the posteriors and priors of ¢ and ¢ as detailed in (11) in the main paper.

Supplementary Materials for “A Bit More Bayesian: Domain-Invariant Learning with Uncertainty”

test

— | T X ResNetts—— ¢ —— [@ ,

<

D — ((Dy —> x4 —»[ResNet18 }—>| @ }—» Z

- v] Ve l Log
Lr(#) L1 ()

{=}, T II—%yi}fflJ
{zf;}fil Il—ﬁé}fil

Dy ——{xi}" —{ResNetts | —{ ¢
Dy ——>{xi}" —>{ResNet18 —] ¢

G

Ds—{xi} —lResNetts|— ¢ | {z} —> ¥ —{yi}],
\train /

Figure B.1. Illustration of the training phase of our Bayesian domain-invariant learning. S denotes the source domains, 7 denotes the

target domains, and D = SU 7. x, z and y denote inputs, features and outputs of samples in each domain. £;(v) and L;(¢) denote the
domain-invariant obiective functions for the classifier and feature representations as detailed in (7) and (9) in the main paper.

82.0
—_—
90.0 90.0
> 81.0
§ 85.0 85.0
3
& 800 80.0 80.0
—— Target data
750 — Validation data 75.0 | 790
0.01 0.1 1 10 100 1 10 100 1000 10000 0.0 0.2 0.4 0.6 0.8 1.0
A Ay T
(a) (b) (c)

Figure C.2. Performance on “cartoon” domain in PACS with different hyperparameters Ay, Ay and 7. The red line denotes the accuracy
on validation data while the blue line denotes accuracy on target data. The optimal value of Ay, Ay, and 7 are 1, 100 and 0.5.

C. Ablation Study for Hyperparamters

We also ablate the hyperparameters Ay, Ay and 7 to show their effects. The experiments are conducted on PACS by using
cartoon as the target domain. The results are shown in Figure C.2. Specifically, we produce Figure C.2 (a) by fixing A, as
100 and adjusting A\g, Figure C.2 (b) by fixing Ay as 1 and adjusting Ay, and Figure C.2 (c) by adjusting 7 while fixing other
settings as in Section 4.1. A\ and Ay, balance the influence of the Bayesian learning and domain-invariant learning, and their
optimal values are 1 and 100, respectively. If the values are too small, the model tends to overfit to source domains as the
performance on target data drops more obviously than on validation data. By contrast, too large values of harm the overall
performance of the model as there are obvious decrease of accuracy on both validation data and target data. Moreover, 7
balances the two components of the scale mixture prior of our Bayesian model. According to (Blundell et al., 2015), the two
components cause a prior density with heavier tail while many weights tightly concentrate around zero. Both of them are
important. The performance is the best when 7 is 0.5 according to Figure C.2 (c¢), which demonstrates the effectiveness of
using two components in the scale mixture prior.

D. Additional Ablations on PACS

To further demonstrate the effectiveness of the Bayesian inference and Bayesian invariant learning, we conduct some more
supplementary experiments with other settings on PACS as shown in Table D.1. For more comprehensive comparisons, we
add four more settings with IDs (k), (1), (m), and (n) to the settings in Table 1.

Comparing (k) and (1) with (d), we find that when employing the Bayesian invariant classifier ¢ in the model, introducing
Bayesian or deterministic invariant learning into the last layer of the feature extractor ¢ both further improves the overall

Supplementary Materials for “A Bit More Bayesian: Domain-Invariant Learning with Uncertainty”

Table D.1. More detailed ablation study on PACS. Compared to Table 1 we add four more settings with IDs (k), (1), (m) and (n). Bayesian
inference benefits domain generalization. Our Bayesian invariant learning achieves better performance than the deterministic ones.

Classifier Feature extractor ¢ PACS

ID Bayesian Invariant Bayesian Invariant Photo Art-painting Cartoon Sketch Mean

(a) X X X X 92.85 +021 75.12 +048 77.44 +026 75.72 +0.47 80.28 +0.42
(b) v X X X 93.89 +029 77.88 +053 78.20 039 77.75 +075 81.93 +0.22
(©) X v X X 93.95 +051 80.03 +072 78.03 +0.77 77.83 +052 82.46 +0.67
(d) v v X X 95.21 +026 81.25 +076 80.67 +£0.73 79.31 +094 84.11 +0.39
(e) X X v X 92.81 035 78.66 +056 77.90 +040 78.72 +0.86 82.02 +0.26
® X X X v 94.17 +035 79.75 +068 79.51 +098 78.31 +1.11 82.94 +0.53
(2) X X v v 95.15 +026 80.96 +0.69 79.57 +0.85 79.15 4098 83.71 +0.65
(m) v X v v 95.87 +048 81.15 +049 79.39 +033 80.15 +1.16 84.14 +0.41
(n) X v v v 95.39 +0.12 82.32 +037 80.27 £0.58 79.61 +0.93 84.40 +0.45
(h) v X v X 93.83 +0.19 82.13 +041 79.18 +048 79.03 +078 83.54 +0.34
@) X v X v 94.12 +022 80.52 +061 80.39 +0.81 78.53 +095 83.39 +o0.52
G) v v v v 95.97 +024 83.92 +071 81.61 +0.59 80.31 +091 85.45 +o0.24

performance. Moreover, introducing Bayesian invariant learning into ¢ achieves the best improvements as shown in row
(). A similar phenomenon occurred on the classifier as comparing (m), (n) and (j) with (g). When there is a Bayesian
invariant layer in the last layer of the feature extractor, introducing Bayesian learning or deterministic invariant learning both
improves the performance, while Bayesian invariant learning achieves the best result. This further indicates the benefits of
introducing uncertainty into the model and the invariant learning under the Bayesian framework.

E. Extra Visualizations

To further observe and analyze the benefits of the Bayesian invariant learning, we conduct more detailed visualizations of the
features in Figure E.3 and Figure E.4. Visualizations in Figure E.3 show the features of all categories from the target domain
only, while visualizations in Figure E.4 show features of only one category from all domains. Similar to Figure 2 in Section
4.2 of the main paper, the visualization is conducted on the PACS dataset and the target domain is “art-painting”. The chosen
category in Figure E.4 is “horse”. We also visualize the features on the rotated MNIST and Fashion MNIST datasets in
Figure E.5. The results further demonstrate the effectiveness of our Bayesian invariant learning on both in-distribution data
and out-of-distribution data.

E.1. Visualizations on the Target Domain of PACS

Figure. E.3 provides a more intuitive observation of the benefits of Bayesian domain-invariant learning on the target domain.

* Bayesian learning benefits classification on the target domain as shown in the “Bayesian” column of subfigures.
Comparing (b), (c) to (a), it is obvious that by introducing uncertainty into the model, both the Bayesian learning
on the classifier and feature extractor enlarge the inter-class distance on the target domain. Samples from different
categories tend to align on a thinner line, which makes them easier to classify. This phenomenon is more obvious when
introducing Bayesian invariant learning into both the classifier and the feature extractor, as shown in (h).

* Bayesian invariant learning is better than deterministic invariant learning. Comparing the subfigures in the “Bayesian
invariant” column to those in the “Deterministic invariant” column demonstrates the benefits of our Bayesian invariant
learning. The Bayesian invariant classifier achieves larger inter-class distances than the deterministic invariant one, as
shown in (d) and (c). The Bayesian invariant feature extractor pushes the features in all categories away from the center
as shown in (g), which also results in larger inter-class distance. Moreover, employing the Bayesian invariant learning
to both the classifier and the feature extractor conducts more obvious improvements, as comparing (j) to (i).

* Bayesian invariant learning benefits generalization to the target domain by introducing uncertainty into both model and
domain-invariant learning. It is interesting to look at subfigures (b), (d), and (h). The visualizations in (d) are similar to
(h), which also occurs in Figure 2 in the main paper. Compared to (b), (h) introduces more uncertainty by employing

Supplementary Materials for “A Bit More Bayesian: Domain-Invariant Learning with Uncertainty”

Bayesian Deterministic invariant Bayesian invariant

S

2

=

2

8-

O.

Baseline

60 ~S~
w© i . M S
.3‘61%:.‘,- P |51

T el -?rexﬂ% . £
o Lk N
Fank (5}
I g s
i E
™ L 4 (@) w -

~40 =20 0 20 40 60

<

S

= 9

Q

5o &

3 TS

5%
£ e
o 2.

i

Figure E.3. Visualization of feature representations of the target domain. The subfigures have the same experimental settings as the
experiments in Table 1 and Figure 2 in the main paper. To obtain more obvious contrast between the subfigures, we use different colors to
denote different categories. The target domain is “art-painting”, the same as in Figure 2. We obtain a similar conclusion to Section 4.2,
where by introducing uncertainty into both the model and the domain-invariant learning, our Bayesian invariant learning achieves better
performance and generalization to the target domain.

Bayesian inference in the feature extractor, while (d) applies the Bayesian invariant learning based on the Bayesian
classifier. The similar observation in comparing (d) to (h) indicates that the benefits of our Bayesian invariant learning
can be attributed to the uncertainty introduced into the domain-invariant learning. The objective function in (6) in the
main paper also indicates this conclusion. Note that although both introduce uncertainty into the domain-invariant
learning, visualization in (g) is different from (d). This is due to the uncertainty in the domain-invariant classifier and
domain-invariant features having different effects on the feature space. As shown in (d) and (g), both the Bayesian
invariant classifier and feature extractor enlarge the inter-class distance on the target domain, though from different
directions.

E.2. Visualizations of Samples in One Class from Different Domains on PACS

Figure E.4 provides a deeper insight into the intra-class feature distributions of the same category from different domains.

* Introducing uncertainty into the model gathers features from different domains to the same manifold. By comparing (b),
(e), and (h) to (a), we find that introducing Bayesian inference into the model tends to gather the features to a certain
manifold. This is even more obvious with more Bayesian layers as shown in (h). The same phenomenon can be found
in subfigure (d), where uncertainty is introduced in both the classifier and the domain-invariant learning. Gathering the
features into a certain manifold is beneficial to domain generalization as it facilitates classification, both on the source
domains and the target domain.

* Bayesian invariant learning enables better generalization to the target domain than the deterministic counterpart. The
deterministic invariant learning minimizes the distance between deterministic samples from different source domains.
That tends to be overfitting on the source domains. As shown in (c), (f), and (i), the samples from source domains are
clustered well, while some samples from the target domains tend to be out of the cluster. There is even an obvious gap

Supplementary Materials for “A Bit More Bayesian: Domain-Invariant Learning with Uncertainty”

Bayesian Deterministic invariant Bayesian invariant
20
15 :::‘" . (d)
ﬁ_ o CORARS
S 5
2
Y 0
©
6 -10
Baseline
o <.
‘6 30
10 “CJ'
S
S
0 ; 10
(<5} 0
N Ty h
w0 % ° {{:‘E A
At A
g Twhueae | |
i Rk |
-40 =20 0 20 40 =20 0 20 40 60 -20 -10 0 10 20 -40 =20 0 20 40
‘e‘ L Aatn, g . 10
Sal paetBEaO |
S‘ ..9 m I RS ™y
3] WS- e .
— @ o° W . o
22
E © L =20 °
‘_(g % 10
o] -
g o G
L " e

Figure E.4. Visualization of feature representations of one category. All samples are from the “horse” category with colors denoting
different domains. The target domain is “art-painting” (violet). The “Bayesian” column shows Bayesian inference benefits domain
generalization by gathering features from different domains to the same manifold. Comparing the subfigures in the “Bayesian invariant”
column to those in the “Deterministic invariant” column indicates that our Bayesian invariant learning has better generalization to the
target domain than the deterministic one.

when applying deterministic invariant learning on both classifier and feature extractor, as shown in (i). By contrast, our
Bayesian invariant learning introduces uncertainty into domain-invariant learning. Thus, it achieves better mixture
of features from the source domains and the target domain as shown in (d), (g), and (j). This indicates the Bayesian
invariant learning enables better generalization to the target domain than the deterministic one.

E.3. Visualizations on Rotated MNIST and Fashion-MNIST

To further demonstrate the effectiveness of our Bayesian invariant learning, we also visualize the features on rotated MNIST
and Fashion MNIST, as shown in Figure E.5. Different shapes denote different categories. Red samples denote features from
the in-distribution set and blue samples denote features from the out-of-distribution set. Compared with the baseline, our
method reduces the intra-class distance between samples from the in-distribution set as well as the out-of-distribution set,
and clusters the out-of-distribution samples of the same categories better, especially in the rotated Fashion-MNIST dataset.

F. Computational Cost Analysis of Different Number of Bayesian Layers

To quantify the effect of the Bayesian framework on the computations and parameters of the model, we show the FLOPs
and parameters for different numbers of Bayesian layers in Table F.2. The parameters of Bayesian layers are irrelevant to
the batch size and the number of Monte Carlo samples. As the number of Bayesian layers increases, the extra parameters
brought by the Bayesian layers grow smoothly, which will not cause much trouble. However, the extra FLOPs will have a
significant increase with more Bayesian layers in the model. In addition, the FLOPs are related to the number of Monte
Carlo samples and batch size. As shown in the third column, a bigger number of Monte Carlo samples leads to much higher
FLOPs, especially with more Bayesian layers in the model. The extra FLOPs in the table are based on one image with size
(224, 224, 3). When the batchsize becomes bigger, the FLOPs will also increase.

Supplementary Materials for “A Bit More Bayesian: Domain-Invariant Learning with Uncertainty

9

40

20 A

—60

40

20 4

o

-20

-40

MNIST

i

X

- Q-

40

20 -

=<

x

0 20

0

Fashion-MNIST

-20 0 20 40

Bayesian invariant learning

40

20 -

| A

“

LR

o
=

v

0 20

-40

+
-20 0 20

Bayesian invariant learning

40

Figure E.5. Visualization of feature representations in rotated MNIST and rotated Fashion-MNIST datasets. Samples from the in-
distribution and out-of-distribution sets are in red and blue, respectively. Different shapes denote different categories. Compared to the
baseline, our Bayesian invariant learning achieves better performance on both the in-distribution and out-of-distribution sets in each

dataset, and especially on the out-of-distribution set from the Fashion-MNIST benchmark.

Table F.2. Computational cost in FLOPs, parameters and GPU memory usage for different number of Bayesian layers in the model.

Number of Bayesian layers Monte Carlo samples Extra FLOPs (M) Extra parameters (M) Memory usage (G)

0 0 0 0 19.4
1 10 0.04 0.004 19.4
2 10 2.98 0.530 19.5
3 10 3242 1.060 22.6
1 15 0.05 0.004 19.4
2 15 4.74 0.530 19.8
3 15 75.01 1.060 25.5
1 20 0.07 0.004 19.4
2 20 6.68 0.530 20.4
3 20 138.77 1.060 > 31.7

To be more intuitive, we also show the GPU memory usage of different numbers of Bayesian layers. The experiments are
conducted on the PACS dataset based on a single Tesla V100 GPU. The batch size is 128, and the number of samples per
category and meta-source domain is 32. The GPU memory increases slightly when employing one or two Bayesian layers

Supplementary Materials for “A Bit More Bayesian: Domain-Invariant Learning with Uncertainty”

Photo

Dog: 0.346

(a)

q

{ Elephant: 0.447
Giraffe:0510 . Giraffe: 0.502 A Dog: 0.552

(b) (c) (d) (@)

Figure G.6. Some failure cases of our Bayesian invariant learning on PACS. The numbers associated with each image are the top two
prediction probabilities of our method, with ground truth labels in red. Our method fails to make the correct predictions, but provides high
probabilities for the true label, indicating the effectiveness of introducing uncertainty.

into the model, especially when the number of Monte Carlo samples is small. However, when introducing three Bayesian
layers into the model, there will be a significant increase in GPU memory usage. When the number of Monte Carlo samples
is bigger, such as 20, the model with three Bayesian layers will even run out of the GPU memory during training, as shown
in the last row.

Based on Table F.2, we finally apply the Bayesian invariant learning only in the last feature extraction layer and the classifier.
The batch size in our experiment is set to 128 and the number of Monte-Carlo sampling in each Bayesian layer is 10.

G. Failure Cases

Finally, we consider several failure cases of our method. As shown in Figure G.6, a complex scene makes it challenging
to make correct predictions, e.g., (b), (d) in the “photo” domain and (d) in the “cartoon” domain. The failure cases in the
“art painting” domain show the generalization performance of the method still needs further improvements, especially for
samples with a very special and specific domain appearance. Our method also gets confused when samples have objects of
different categories in the same image, e.g., (a) and (c) in the “photo” domain, or cluster the characteristics of different
categories to the same sample, e.g., (a) and (b) in the “cartoon” domain and “sketch” domain. Although our Bayesian
invariant learning fails to make the correct predictions in these challenging cases, it does provide reasonable probabilities for
possible categories, which we attribute to the introduced model uncertainty and domain-invariant learning.

References

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. Weight uncertainty in neural networks. ArXiv, abs/1505.05424,
2015.

