
RNNRepair: Automatic RNN Repair via Model-based Analysis

Xiaofei Xie
1 2

Wenbo Guo
3

Lei Ma
4 5 2

Wei Le
6

Jian Wang
1

Lingjun Zhou
7

Xinyu Xing
3

Yang Liu
1

Abstract

Deep neural networks are vulnerable to adversar-
ial attacks. Due to their black-box nature, it is
rather challenging to interpret and properly re-
pair these incorrect behaviors. This paper focuses
on interpreting and repairing the incorrect behav-
iors of Recurrent Neural Networks (RNNs). We
propose a lightweight model-based approach (RN-
NRepair) to help understand and repair incorrect
behaviors of an RNN. Specifically, we build an
influence model to characterize the stateful and
statistical behaviors of an RNN over all the train-
ing data and to perform the influence analysis for
the errors. Compared with the existing techniques
on influence function, our method can efficiently
estimate the influence of existing or newly added
training samples for a given prediction at both
sample level and segmentation level. Our empiri-
cal evaluation shows that the proposed influence
model is able to extract accurate and understand-
able features. Based on the influence model, our
proposed technique could effectively infer the in-
fluential instances from not only an entire testing
sequence but also a segment within that sequence.
Moreover, with the sample-level and segment-
level influence relations, RNNRepair could fur-
ther remediate two types of incorrect predictions
at the sample level and segment level.

1. Introduction

In spite of many state-of-the-art applications and high test
accuracy, Deep Neural Networks (DNNs) still make mis-
takes and output wrong predictions. To fix an incorrect
prediction, it is important to understand the root cause of
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the wrong prediction (Koh & Liang, 2017). Once the root
cause is identified, users may fix the errors by removing
harmful training data or adding specific data to improve
model accuracy (Hara et al., 2019). However, due to the
black-box nature of the DNN, it is challenging to identify
the “most responsible” training samples and explain the
wrong predictions. As a result, wrong predictions are diffi-
cult to be corrected. Recently, influence functions have been
widely studied for interpreting the predictions of DNNs by
estimating the effect of removing training samples (Koh &
Liang, 2017; Khanna et al., 2019; Koh et al., 2019; Hara
et al., 2019). However, using it as a method to remediate
misclassification or wrong prediction is still challenging.

First, existing influence-function based methods are mostly
designed for feed-forward neural networks (FNNs). Given
Recurrent Neural Networks (RNNs), they usually suffer
from the vanishing gradient and long-distance dependency.
As a result, existing techniques could not be easily applied
for RNNs . Second, different from FNNs, RNNs often come
with stateful structures for processing sequential inputs (e.g.,
audio, natural language). For a sequential test input, we
need to study the effect of its segments more precisely. For
example, in automatic speech recognition, we want to iden-
tify which training samples are most responsible for the
poor recognition of a specific pronunciation (i.e., segment).
Existing methods mainly performed influence analysis for
the whole test input but not at the segment level. Third, to
use influence analysis based interpretation for repairing a
wrong prediction, one needs to select helpful samples from
a large number of collected or generated new samples. How-
ever, existing influence analysis based methods inevitably
introduce intensive computation, making the selection of
useful samples inefficient. As a result, it greatly limits their
potentiality to be used as a mechanism to repair the errors
of a model.

In this work, we propose a light-weight model-based influ-
ence analysis for RNNs, named RNNRepair1. To capture
the stateful behaviors of training data, we first construct an
influence model from concrete prediction traces of all train-
ing data. This model extracts accurate features of inputs
from RNNs via state clustering. We then calculate the in-
fluential training samples for the segment of an input under

1https://bitbucket.org/xiaofeixie/rnnrepair
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a state (i.e., the context of the input). As part of this work,
we also demonstrate the utility of the proposed influence
analysis in multiple applications, such as ∂ understanding
the behaviors of the RNN, ∑ fixing influential mislabeled
data, ∏ pinpointing Trojan backdoor in an RNN model, and
π repairing incorrect predictions.

2. Related Work

Model Extraction. Existing research has developed vari-
ous approaches to extract DFA (Deterministic Finite Au-
tomaton) from the known RNN architectures. Specifically,
early-stage explorations focused on extracting DFA from
the second-order RNNs (Omlin & Giles, 1996; Giles et al.,
1990; 1992). More recent works extend the preliminary tech-
niques to GRUs and LSTMs, which have higher practicality
than the second-order RNNs (Weiss et al., 2018; Cho et al.,
2014; Chung et al., 2014; Weiss et al., 2019; Okudono et al.,
2019; Ayache et al., 2018; Zhang et al., 2021). In terms
of the state vector partition strategy, existing techniques
mainly follow two different methods – (1) equipartition-
based approach (Omlin & Giles, 1996; Weiss et al., 2018),
which divides each dimension of the latent representations
into k equal intervals, and (2) unsupervised learning-based
approach (Zeng et al., 1993; Cechin et al., 2003), which ap-
plies the existing clustering method (e.g., K-means, GMM)
to cluster the state vectors into different groups. DeepStel-
lar (Du et al., 2019) extracts a discrete-time Markov chain
(DTMC) from an RNN. Then the DTMC is used for the
testing and adversarial example detection. As introduced
later in Section 3, we follow the second strategy and apply
GMM for state partition. Despite using the same partition
strategy, our method is fundamentally different from the ex-
isting DFA extraction techniques in that none of the existing
methods could derive the influence of training samples upon
a given testing sample (i.e., influence relations). In addi-
tion, to precisely simulate the behaviors of a target RNN,
most of the existing methods need to exhaustively search
for the state transitions in a target RNN, which limits their
scalability in some applications. However, our method only
requires a coarse-grained approximation for deriving the
influence relationships, which is much lighter-weight than
the existing model extraction methods.

Influence Analysis. Koh et al. (Koh & Liang, 2017) stud-
ied the influence of training samples upon a given testing
sample for DNNs. Specifically, they utilized the influence
function to identify the most representative training samples
for a given testing sample. Following (Koh & Liang, 2017),
recent efforts have been made to either enable the influ-
ence analysis for non-optimal models trained by using non-
convex losses (Hara et al., 2019) or analyze the influence of
a group of training samples upon a given prediction (Koh
et al., 2019). Despite deriving meaningful influence rela-
tions for feed-forward networks (i.e., MLP and CNN), the

existing methods might not be effective for RNNs due to
the infamous gradient vanishing/explosion problem. In this
work, our proposed method does not depend on the gradi-
ent calculation and could capture the stateful behaviors of
the RNN accurately with the state clustering. In addition,
our method is much lighter-weight as shown in Section 4.
Furthermore, our method could provide a finer-grained in-
fluence relation than the existing methods or, in other words,
we can, at the segment level, pinpoint the most influential
training samples to the segments within a testing sample.

DNN Repair. Wang et al. offset errors made by logistic
regressions by integrating an additional layer into the model
to pre-process the error inputs (Wang et al., 2019). Differ-
ent from this work, our method does not modify the model
architecture and targets more complex networks – RNN. Yu
et al. proposed a style-guided repair for the unknown failure
pattern in DNNs with a style transfer method (Yu et al.,
2020). Some works (Sotoudeh & Thakur, 2019; Zhang
& Chan, 2019) propose to repair the model by changing
the network weights. Differently, our method focuses on
repairing the specific failed samples for the RNN with a
model-based influence analysis. It should be noted that our
method is different from the techniques about adversarial
defenses (Boopathy et al., 2019; Weng et al., 2018; Singh
et al., 2018) and noisy learning/data cleaning (Zhang et al.,
2018) in that these techniques aim for improving the robust-
ness against adversarial attacks or data poisoning attacks.
Whereas, our remediation mechanism locally offsets testing
errors of an RNN.

3. Approach

Overview. At a high level, we first adopt the clustering to
capture the stateful behaviors of all training data. Based on
the state transitions, we then identify the influential training
samples of a given testing input or a segment of the test
input. Specifically, we first extract the abstract states by
grouping state vectors (i.e., hidden representations of the
RNN) of all training data (Section 3.1). Then, based on the
state abstraction, we can extract the trace for a given input.
We construct the influence function based on the transitions
in the traces and further perform the segment-level and
sample-level influence analysis. (Section 3.2). Last but
not least, based on the influence analysis, we develop an
remediation mechanism to analyze and offset the test errors
(Section 3.3).

3.1. Semantic-guided State Abstraction

Definition 1 (RNN) An RNN is defined as a 5-tuple R =
(GR, d,m,h0,YR): GR is a recursive function ht =
GR(xt,ht�1), where ht 2 Rd is a d-dimensional state
vector, xt 2 Rm is the m-dimensional input vector at time
t; d and m are the dimensions of the state vector and the
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input vector, respectively. h0 2 Rd is the initial state; The
output function YR : Rd ! R maps an internal state-vector
to the output value.

Given a sequential input x = (x1, . . . ,xn), an RNN gen-
erates a sequence of state vectors (h0,h1, . . . ,hn) with
the application of GR. To simplify the notation, we use
Gx
R to denote the state vector sequence of the input x. YR

calculates different types of outputs based on different appli-
cations. In this paper, we mainly focus on the classification
problem, where the output function maps each state vector
to a specific class (i.e., Yn

R : Rd ! {0, . . . , n � 1}, n is
the total number of classes). Specifically, for the sequence
classification problem (e.g., semantic analysis), the output
of the last state vector (i.e., Yn

R(hn)) is the classification
result of the whole input sequence. As for the sequence to
sequence problem, such as speech recognition, YR trans-
forms each state vector hi into a character/word in the target
language, and all the output characters/words form the trans-
lated sentences. It should be noted that different from the
feed-forward neural networks, an RNN takes an input se-
quentially. That is, at each time i, the RNN only processes
the current segment xi of the input x = (x1, . . . ,xn). As
such, the influence analysis of the RNN is not only to iden-
tify the training samples that are most responsible for the
whole sample x (i.e., sample-level influence analysis), but
also the most influential training samples to a segment of
the input xi (i.e., segment-level influence analysis).

Definition 2 (Influence Model) Given an RNN R and its
training data set T , the Influence Model is a 4-tuple A =
(Q,

P
, q0, I), where Q is a finite set of states,

P
is the set

of alphabet, q0 is the initial state, I : Q ⇥
P

! P(T ) is
the influence function, where P(T ) is the power set of T .

The influence function identifies the training samples that
contribute most to the RNN’s prediction of a specific input.
For example, I(q,xi) = T 0 represents that the training
samples T 0 ✓ T have larger influence on the prediction of
the input xi under the state q. If the input of the RNN is
discrete data (e.g., the text x), the words of the text (e.g., xi)
can be the symbol of the alphabet. If the input is continuous
data (e.g., a sequence of pixels xi in an image x), we could
perform the input abstraction that maps xi to an abstract
input x̂i and treat x̂i as the symbols of the alphabet.

To help identify influential training samples, the influence
model should capture the statistical behaviors of the RNN
over all the training data. As such, we firstly feed all the
training samples in T into the RNN and collect all the state
vectors (denoted as SV = {h|8x 2 T, 8h 2 Gx

R} [ {h0}).
Then, a partitioning function p : Rd ! N is applied to group
the similar state vectors into one abstract state, which is used
as the states of the influence model (i.e., Q = {p(h)|h 2
SV }). Here, the initial state is denoted as q0 = p(h0). We

assume that the abstract states can show different behaviors
of the RNN.

Different from the existing research that extracts automa-
ton to mimic the prediction of an RNN (Weiss et al., 2018;
2019), our influence model aims to capture the RNN’s in-
ternal behaviors for the subsequent influence analysis. To
efficiently represent a large number of state vectors, we
use Gaussian Mixture Models (GMM), an unsupervised
clustering method to group the state vectors. The unsuper-
vised clustering requires a pre-specified cluster number K,
which directly decides the number of abstract states and
thus affects the accuracy of the influence analysis. However,
since there is no explicit ground truth for measuring the
correctness of a partition result for influence analysis, it is
challenging to find the correct K through cross-validation.
To tackle this challenge, we propose a semantic-guided strat-
egy to select an accurate K. The key insight behind is that
the state vectors in one group should have similar semantics
or, in other words, the RNN should produce a similar output
or prediction for the vectors in the same group. Based on
this insight, we propose a metric to evaluate the partition
result and select the K based on the metric. Here, we in-
troduce confidence score, the metric developed to measure
the semantics of the abstract state, followed by the selection
strategy.

Definition 3 (Confidence Scores) Given an RNN classi-
fier R = (GR, d,m,h0,YR) and a partition result Q,
the confidence score of each state q 2 Q is defined as
Cq = [c0, . . . , cn�1], where

ci =
|{h|h 2 SVq ^ Yn

R(h) = i}|
|SVq|

.

SVq is a set of state vectors of training samples in T that
are clustered into the state q, n is the total number of classes
for the classifier.

Intuitively, Cq shows the distribution of the output classes
of the state vectors in the state q. ci is defined as the ratio
of the state vectors in the abstract state q that are predicted
as i by the RNN. A high ci indicates that most of the state
vectors, clustered in one abstract state, share similar seman-
tics. Given the confidence score, we further define the state
stability as follows:

Definition 4 (State Stability) For a state q as well as its
confidence score Cq = [c0, . . . , cn�1], the state is defined
as �-stable, where � = max(Cq).

The state stability is measured by the concentration of the
output classes of the state vectors in the abstract state. �
is used to measure the concentration of the correspond-
ing group (the abstract state). That is, a high value of �
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Figure 1: The prediction process of an image and the cor-
responding abstract states. The row prediction shows the
prediction results including the label (i.e., Yn

R(hi)) and the
probability. We also highlight the confidence scores of the
predicted labels in each abstract states (see the read values).

indicates a well-clustered state with regards to the concen-
tration of output classes. Most state vectors in the cor-
responding abstract state are predicted as the same label
i = argmax0i<n ci, indicating that similar behaviors are
captured in the abstract state. A new input falling into this
state is more likely to be classified into i than the other
classes. Whereas a low � indicates that the output classes
are not concentrated, i.e., the abstract state tends to be cause
a confusion. As a result, the confidence score is low for the
testing samples belong to this state although the prediction
probability can be high.

State Abstraction. In addition to the stability, we also
desire a small number of total abstract states for a better
generalizability (Weiss et al., 2018). To achieve these two
goals at the same time, we define the semantics-guided
abstraction to decide the K

minimize K , (1)
s.t. � > ✓,where � = avg({�q1 , . . . , �qn}) . (2)

� is the average stability of all states (i.e. �), which rep-
resents the stability of a partition result. ✓ is the target
threshold of the clustering refinement. A higher ✓ gives a
more stable partition result. Given a pre-specified ✓, we in-
crease the cluster size K, starting from 1, and terminate the
increment once � reaches the threshold ✓. As is shown later
in Section 4, this selection strategy can guide the clustering
for extracting accurate features.

Figure 1 shows the prediction of an image. At each time,
the RNN reads one row from the image and outputs the
hidden state. The sequential abstract states as well as the
confidence scores are also shown in the third row. In each
abstract state, the first column shows the labels and the sec-
ond column shows the confidence scores. For convenience,
the confidence scores are sorted in descending order. We
can observe that: 1) except at time 11, all prediction outputs

correspond to the largest confidence score in the abstract
states; 2) As the prediction confidence (i.e., the probability)
of RNN is usually low when seeing only parts of the input, it
enters into the non-stable states (with low confidence score)
in the front. For example, from the human perspective, we
are uncertain to say whether the images at time 13 and 15
are 3 .

3.2. Light-Weight Influence Analysis

Definition 5 (Trace) Given an input x = (x1, . . . ,xn),
the trace ⌧x = (q0,x1, q1, . . . ,xn, qn) is obtained from
the state vector sequence Gx

R = (h0, . . . ,hn), where qi =
p(hi), p is the partitioning function.

For an input x, we extract a trace that represents its state
vector sequence. Based on the abstract states constructed
above, we build the transitions as well as the influence
function for the influence analysis. Specifically, given the
trace ⌧x = (q0,x1, q1, . . . ,xn, qn) of each training sample
x 2 T , the influence function I are updated as follows:

80 < i  n, I(qi�1,xi) = I(qi�1,xi) [ {x} . (3)

where the influence function I could capture the effect of
training samples at each abstract state.

After updating the influence function based on the state
vectors of all the training samples, we perform the influence
analysis for a segment of a given test input xi (i.e., segment-
level influence analysis) or the entire testing sequence x
(i.e., sample-level influence analysis) using the following
methods.

Segment-level Influence Analysis. Given a segment xi

in ⌧x = (q0,x1, q1, . . . ,xn, qn) , we identify the influential
training samples of xi as I(qi�1,xi). It represents the set
of training samples that have the same segment xi at the
state qi�1 and thus are accountable for the prediction of xi.
Note that other training samples, which could also include
xi at states other than qi�1, may have low influence or no
influence upon the prediction of xi and thus are not taken
as the influential samples of xi. Taking text as an example,
there could be many sentences containing the same word
point, but with totally different semantics, e.g., ‘The pencil
has a sharp point’ and ‘It is not polite to point at people’.
These training sentences may have very different influences
dependent on the test inputs. Our segment-level influence
analysis is designed to distinguish such differences and only
identify the training samples that are truly influential to a
testing segment.

Sample-level Influence Analysis. To quantify the influ-
ence of training samples upon an entire testing sequence x,
we define the temporal feature as follows:
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Figure 2: (a) The overview of the fault localization and repair. Red circle represents the failed input. (b) Four examples of data generation
for repairing, where each group contains four images (i.e., x, Tmx , Ttx , rx).

Definition 6 (Temporal Feature) Given an RNN R, an
input x = (x0, . . . ,xn), and its trace ⌧x =
(q0,x1, q1, . . . ,xn, qn), the temporal feature is defined as
Fx = (f0, . . . , fn), where fi = (ID(qi), Cqi ,Yn

R(hi)).
qi = p(hi) is the abstract state to which xi belongs and
ID(qi) is the unique identifier of the state qi. Cqi represents
the confidence scores (see Definition 3) and Yn

R(hi)) is the
prediction label at the time i.

With the definition of the temporal feature, we quantify the
influence of a training sample on a test input. Specifically,
given a training sample xtrain and a test sample xtest, the
influence is quantified as the similarity between the temporal
features of the training sample and the testing sample:

inflscore(xtrain,xtest) = similarity(Fxtrain ,Fxtest) . (4)

The higher the similarity, the higher influence of the training
sample xtrain upon xtest. In other words, due to the high
influence by the training sample xtrain, the prediction of
xtest is very similar to that of xtrain. Note that different
similarity metrics can be selected for different applications.
For example, lp norm distance can be used for the fixed-
length input sequences (e.g., image). For the inputs with
varying lengths (e.g., natural language texts), one could
select the Jaccard distance.

Considering Figure 1 again, we extract the temporal feature
of the input explored by RNN and show it in the third row.
Intuitively, the feature is aligned with the human perception.
For example, at time 9, the predicted label is 7 and the
current input looks like the start of a 7. The confidence
score of 7 in the abstract state is not high (0.35). As the
input increases, it looks like 3, 2, 3, 0, 9 and 8. At time 17,
we can see that it really looks like 0 and the confidence is
higher (0.645). Actually, it is still not very high due to that
this 0 is not similar to the zeros in training data. At last, it
has a very high confidence to predict it as 8.

3.3. Fault Localization and Remediation

With the influence analysis method introduced above, we
then develop a remediation mechanism to repair the mis-
classifications of the target RNN. Specifically, we mainly
focus on two kinds of misclassification: 1) misclassification
caused by a whole input instance and 2) misclassification

caused by an input segment. In the following, we elaborate
on our mechanisim of repairing these two different errors.

3.3.1. REMEDIATION WITH SAMPLE-LEVEL INFLUENCE
ANALYSIS

To repair the first type of errors, we first identify the respon-
sible training samples. Then, we randomly generate new
samples by manipulating the identified ones and apply the
influence analysis to filter out the error-triggered training
samples. Finally, we retrain the target RNN with the newly
generated samples.

Fault Localization. Let x be an input misclassified as
mx with the ground truth label tx, i.e., tx 6= mx. By
applying the sample-level influence analysis, we identify
the top-n training samples (denoted as �x

n) that are most
responsible for the misclassification of x. We use Ttx and
Tmx to denote the training samples in �x

n, whose ground
truth labels are tx and mx, respectively. Our empirical study
shows that, Tmx has much more training samples than Ttx ,
i.e., the overall influence of Tmx is higher than Ttx (more
detailed results can be found in the supplementary material).
This observation explains the reason why x is classified as
mx. That is, the training samples in Tmx have a higher
influence upon x than those in Ttx . The left sub-figure in
Figure 2(a) shows an example of the fault localization. The
red circle is a test input, which is mainly influenced by the
green triangle (i.e., high similarity) than the other circles.
As a result, it is misclassified as a triangle.

Remediation. To repair the misclassification, we synthe-
size new samples whose truth labels are tx but have higher
influence on x than the existing training samples. The right
sub-figure in Figure 2(a) shows the basic idea of our re-
mediation method. As shown in the figure, we intend to
generate new samples (e.g., blue circles) that are more in-
fluential than the green triangle. By retraining the model
with these synthesized samples, the decision boundary can
be fine-tuned such that the misclassified input can be cor-
rected. For a failed input x, the samples used for retrain-
ing are represented as: rx = {x0|x0 2 X 0 ^ tx0 = tx ^
inflscore(x0,x) > max({inflscore(x0,x)|x0 2 Tmx})},
where X 0 is a set of generated inputs whose truth labels are
the same with x. The candidate set X 0 can be generated
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by multiple techniques (e.g., random augmentation, genera-
tive adversarial network). In this work, we synthesize new
samples (i.e., X 0) through data augmentation:

X 0 = {x0|x0 = aug(x00) ^ x00 2 Ttx} , (5)

where aug is the data augmentation technique (e.g., image
rotation and shearing). Note that, during the remediation,
we do not perform the augmentation on the failed input x.
Instead, we apply the random augmentations on the train-
ing samples in Ttx , which already have a strong influence
upon x. Manipulating these samples will be more likely
to generate highly influential samples that are more useful
for remediation than perturbing other samples. Figure 2(b)
shows some examples of x, Tmx , Ttx , and rx. From the
perspective of human perception, in each of the 4 groups,
the second image (i.e., Tmx) looks very similar with the
failed input (i.e.,x). Moreover, after manipulating the third
image (i.e., Ttx), we could get a more influential sample
(i.e., rx).

3.3.2. REMEDIATION WITH SEGMENT-LEVEL
INFLUENCE ANALYSIS

Similar with repairing the sample-level error, we also follow
a three-step procedure to repair the second type of errors that
are caused by the rarely seen segments in the training data.
Differently, we design the following method to identify the
root cause input segment rather than identifying whole input
samples.

Fault Localization Given an input x = (x1, . . . ,xn) as
well as its trace ⌧x = (q0,x1, q1, . . . ,xn, qn), we identify
segments of the input that are more likely to be the root
cause of the misclassification as follows:

S = {xi|1  i  n ^ |I(qi�1,xi)| < �}

where � is a pre-defined parameter. Intuitively, if the seg-
ment xi has less influential training samples (i.e., less than
�), indicating that the segment xi is rarely seen under the
state qi�1 during training, it is more likely to cause the
incorrect prediction.

For example, we show one failed input in the sentiment
analysis (which is misclassified as negative):

¨
Just(1,43)�������! ≠

noticed(1,11)��������! Æ
who(1,19))�������! Ø

gave(1,5)������!
∞

that(1,89)������! ±
out(1,6)�����! ≤

lulz(0,0)�����! ≥
.(0,807)�����! ¥

The prediction result and the number of the influential train-
ing samples are shown after each word. For example, after
reading Just, 1 represents that the RNN outputs positive. 43
represents that Just appears 43 times after the state ¨ in the
training samples (i.e., |I(¨, Just)| = 43). We observe that,
after the word lulz, the RNN returns negative (i.e., 0) be-
cause the word lulz never appeared after the state ≤, which
causes the incorrect prediction.

Remediation To repair the misclassification, we need to
insert such segments into the influential training samples
such that the missing knowledge (i.e., the appearance of xi

under the state qi�1) could be learned. Specifically, for a
localized segment xi 2 S, we conduct the remediation with
the following steps:

• We randomly select m training samples Xm from
I(qi�1,xi), where 8x0 2 Xm, tx = tx0 .

• For each selected training sample x0 2 Xm, we insert xi

into the corresponding position (i.e., after the state qi�1).
Our assumption is that the insertion of xi will not change
the truth label of x0 since the selected training sample
x0 has the same truth label with the failed input x (i.e.,
tx = tx0 ).

• Finally, we get a set of augmented training samples and
train the model to repair the misclassification on x.

4. Evaluation

In our experiments, we evaluated ∂ the correctness of the
temporal features (Sec 4.1), ∑ the effectiveness of our in-
fluence analysis (Sec. 4.2) and ∏ the effectiveness of the
repair (Sec. 4.3). More evaluation can be found in the sup-
plementary material.

Datasets and Models. We selected two widely-used public
datasets (i.e., MNIST, and Toxic) to evaluate the influence
analysis. MNIST (LeCun & Cortes, 1998) is selected for
evaluating the sample-level influence analysis by comparing
it with the existing baselines. We train an LSTM network
with hidden size 100 for this task. At each time, the RNN
reads one row (i.e., 28 pixels) from the image. Toxic Com-
ment Dataset (abbrev. Toxic) 2 is selected for evaluating
the segment-level influence analysis. The task is to clas-
sify whether the comment is toxic or not. We train a GRU
network with hidden size 300. In addition, we introduce
another dataset Standard Sentiment Treebank (SST) (Socher
et al., 2013) for the segment-level repair and a LSTM net-
work with hidden size 300 is trained.

4.1. The Correctness of Temporal Features

Setting. The accuracy of the influence model directly af-
fects the influence analysis. As such, we evaluate the ac-
curacy of the influence model by measuring the fidelity of
the temporal features extracted by the state clustering. We
trained a simple linear classifier (denoted as SimNN) with
the different components of the temporal features (see Defi-
nition 6) extracted from the training samples and compare
their performance with that of the the original RNN. We

2https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge.

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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Table 1: Results of feature analysis (%)

SimNN OriR_L ID (ID, R_L) CSs (ID, R_L, CSs)
MNIST 85.61 80.01 92.35 97.34 97.50 98.45
TOXIC 86.62 63.00 87.81 88.90 89.04 92.08

repeated the experiment 10 times and report the average re-
sults in Table 1, where column Ori shows the test accuracy
of the original RNN while other columns use the correspond-
ing temporal features as input of the SimNN. Note that RL

denotes the predicted labels at each time and we train the
SimNN with a sequence of predicted labels (i.e., Yn

R(hi))).

We can observe that using only ID or R_L, SimNN achieves a
lower accuracy than combing them together on both datasets.
With only the confidence scores, the test accuracy reaches
97.34% and 88.90%, much higher than only using ID. It
indicates that our semantic-based abstraction captures more
information than clustering ID. Finally, models trained with
the full temporal features achieve the most comparable per-
formance with the original RNN, which indicates the fidelity
of extracted features.

It is worth mentioning that CSs and ID have the one-to-
one relation, i.e., there can be a mapping from ID to CSs.
However, their results are very different in Table 1, the
performance of ID is much lower than CSs. One may guess
whether the one-layer linear model is too simple to learn the
feature by ID. We conduct another experiment by evaluating
CSs and ID on more complicated DNNs (i.e., Multi-layer
Perceptron with 1/2/3 hidden layers). The results in Table 2
show the similar trend, i.e., CSs can achieve better results
than ID.

We further conducted an experiment which tries to reverse
the image from the extracted feature. In particular, we con-
structed a generative adversarial network (GAN) to generate
images with the given features. We found in most of the
cases, our method is able to reverse perceptionally similar
images based on our extracted features. The detailed settings
and the results are shown in the supplementary material.

4.2. Sample-level Influence Analysis for Identifying

Influential Mislabeled Training Data

Setting. Similar to the configuration in (Koh & Liang,
2017; Khanna et al., 2019), we randomly mislabeled some
training samples and identified such mislabeled samples
with influence analysis. Specifically, we took a subset of
MNIST with all the images of digit 1 and 7. Then, we ran-
domly selected 30% images of 7 in the training set, flipped
their labels to 1, and trained a binary classifier. We ranked
the training samples based on their influence on the test er-
rors of the classifier. We measured the number of mislabeled
samples identified (selected based on the influence order)

Table 2: Results of CSs and ID with different MLPs

MNIST TOXIC
ID CSs ID CSs

MLP-1 93.07% 97.25% 63.56% 91.46%
MLP-2 93.91% 97.14% 63.61% 91.60%
MLP-3 91.48% 97.27% 62.04% 91.51%

in a certain number of training samples and the number of
errors repaired by fixing the identified mislabeled samples.
Two state-of-the-art technique – K&L (Koh & Liang, 2017)
and SGD(Hara et al., 2019), and the random strategy are
selected as the comparison baselines.

Fig. 3(a) shows the results of identifying flips by check-
ing labels of training samples, following the order of the
influence-based prioritization. The horizontal axis repre-
sents how many training samples are selected while the
vertical axis represents how many flips are identified from
the selected samples. Overall, SGD method performs better
to quickly identify flips–with the gradient-based estima-
tion, they may identify those training samples that even
have only small influence on the loss. However, not all
flipped/mislabeled training samples are responsible for the
test errors. We found that, although many training samples
are mislabeled (i.e., from 7 to 1), most of them are still
predicted as 7 after training. Intuitively, such mislabeled
samples may have low influence on the errors because they
can still be predicted correctly. We consider the mislabeled
samples predicted as 1 after training as influential flips. In
Fig. 3(b), the vertical axis represents how many influential
flips are identified in the selected training samples using the
influence analysis. The results show that our method and
K&L could identify more influential flips than the other two
approaches. Fig. 3(c) shows the repaired results by fixing
all flips in the selected training samples. The results further
confirmed that the influential flips have more influence on
the errors and our method could identify them effectively.
However, although SGD identified more flips at an early
stage (see Fig. 3(a)), many of them may have lower influ-
ence on the errors (Fig. 3(b) and Fig. 3(c)).

Performance. The average running time the model extrac-
tion is 76.37s, which is a one-time cost. Once the influence
model is constructed, our influence analysis is very efficient
and takes much less time (an average of 1.16s on all errors)
than the existing methods (70.13s for K&L and 5690.66s
for SGD), indicating that our influence analysis tends to be
more scalable than existing techniques.

4.3. RNN Repair via Sample-level Influence Analysis

Setting. We used the MNIST dataset in this experiment.
To filter out the errors caused by the randomness, we only
select misclassified samples that frequently occur in mul-
tiple training runs. Specifically, we trained seven models
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(a) Fixing all mislabels (b) Fixing influential mislabels (c) Repairing errors

Figure 3: Comparison on repairing errors by identifying influential mislabeled samples over 10 runs

Table 3: Results of Repairing Erroneous Behavior on MNIST

# Faults #AvgFixed Distribution of Errors Under the Repair Success Rate
0 (0, 0.1] (0.1, 0.2] (0.2, 0.5] (0.5, 0.7] (0.7, 1) 1

Ori_Train 23 1.3 (5.7%) 8 10 5 0 0 0 0
Rand_Train 23 4.3 (18.7%) 4 9 3 3 3 1 0

RNNRepair_Train 23 11.7 (50.9%) 0 3 4 3 7 1 5

with different epochs and found 23 commonly failed inputs.
Then, we applied random rotation and translation (Engstrom
et al., 2019) to generate augmented data (see Eq. 5). We
identified the most influential sample from the generated
images for each error. As such, we obtained 161 new im-
ages and added them to the training set. By using different
training epochs, we trained 10 models with the original and
augmented training set, respectively. To further knockoff the
randomness, we repeated this process 5 times and obtained
50 models from the original and the augmented training set.
We compared the accuracy of these models on the 23 failed
inputs. We used the random strategy as the baseline, i.e.,
randomly selecting 161 images from the synthesized images
without the influence guidance.

Table 3 summarizes the comparisons among the models
trained with the original training data (Row Ori_Train),
the training set augmented with randomly selected samples
(Row Rand_Train), and the training data including samples
selected by our method (Row RNNRepair_Train). Column
#Faults lists the number of errors needed to be repaired. Col-
umn #AvgFixed shows the average number of errors that are
correctly repaired by the 50 models. Column Distribution of
Errors Under the Repair Success Rate gives the distribution
of errors within different repair success rate intervals. Here,
the success rate of each error is the percentage of (50) mod-
els that could correct it. The results show that our method
can effectively repair 50.9% of errors by adding only 161
new training samples. Meanwhile, we can see that these
errors are difficult to be correctly predicted using the origi-
nal training set (only 5.7%) and the training set selected by
the random strategy (18.7%). In addition, the repair success
rate of the original training set and the randomly selected
data are extremely low (i.e., from 0 to 0.2). However, our

method performs much better in that it corrected the errors
that are consistently misclassified (e.g., 8 and 4 in Ori_Train
and Rand_Train) and overall obtain higher success rates.

4.4. RNN Repair via Segment-level Influence Analysis

Setting. We used the Toxic dataset and SST to evaluate
the segment-level repairing. Specifically, we focus on the
errors caused by segments, i.e., positive cases predicted
as negative rather than negative-to-positive errors that are
usually caused by wrong semantics of the whole sentence.
Here are some examples:

• positive-to-negative: “Who the heck is Ramona any-
way ? ? ? ?”

• negative-to-positive: “ There are rumors that Boss Ross
was gay , are there any proof to these claims ? People ,
wake up ... ” I will state here then that she is very pretty ”

For the positive-to-negative one, we highlight the word (i.e.,
heck) that causes the misclassification (after this word, the
prediction of the RNN becomes negative). For the negative-
to-positive one, it is always predicted as positive during the
RNN processing. We observe that even humans are hard to
judge it. The key reason could be that there is no a clear
word that definitely makes it negative. Hence, it is classified
as positive.

In addition, some positive-to-negative errors are caused by
the un-supported embedding (i.e., the word is embedded
as 0) and we ignored such errors. Finally, we selected 23
and 115 positive-to-negative test data that are misclassified
on Toxic and SST. For each test case, we set the parameter
� (refer to Section 3.3.2) as 5. To repair such errors, we
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Table 4: Results of Repairing on Toxic and SST

Num. (m) 5 15 25 35 45

Toxic Random 43.63% 63.18% 65.91% 66.36% 61.36%
RNNRepair 50% 65.64% 72.73% 81.82% 81.82%

SST Random 26.09% 21.74% 47.83% 47.83% 60.86%
RNNRepair 30.43% 52.17% 60.87% 65.22% 65.22%

insert the identified words into some positive sentences in
the training data. As a baseline, we use the random strategy
to select the same number of sentences for the insertion.
Finally, we use the augmented training data for training
with 40 epochs (the same with the original model). To
mitigate the randomness, we repeat the experiments with 10
seeds.

Table 4 shows the results of the segment-based repair. Row
Number shows the number of training data that are selected
for insertion. Specifically, we select 5, 15, 25, 35, 45 train-
ing samples (i.e., m in Section 3.3.2) for the augmentation,
respectively. Row Random and Row RNNRepair represent
the average success rate of repairing erroneous cases. We
can see that, as the number of training samples increases,
the success rate also increases. With the random insertion,
some errors can be repaired. However, with the segment-
influence analysis, we could find the more influential cases
that achieve better results.

5. Conclusion

This paper presented a novel model-based technique for
influence analysis of RNNs. Different from existing tech-
niques that perform loss change estimation, our method is
less computation intensive and more efficient. We could
identify the most influential training samples on given test
inputs at both segment level and sample level. Based on
our RNN influence analysis, we further proposed a method
for repairing two types of misclassified samples of RNN.
We showed that our techniques are effective in identifying
important mislabled training samples, and repairing RNNs.
In future work, we plan to improve the GMM-based parti-
tioning with more fine-grained refinement. We also consider
introducing more diverse types of data augmentation tech-
niques (e.g., GAN, morphing) to generate candidate data for
repairing. Finally, we plan to extend our fault localization
and repair on more different errors such as the negative-to-
positive cases.
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