Supplementary Material for ‘“Learning While Playing in Mean-Field Games:
Convergence and Optimality"'

A. Proof of Lemmall]

Proof. By the definition of A, we have

[[A (1) = A (1)l
=T (T3 (), ) = T2 (T3 (1), 1) ||,
<||T2 (T (1), 1) — T2 (TF (W), 1) HH + ||T2 (TY(), 1) — T2 (I‘i\(u’),,u’)HH triangle inequality
<da D (T3 (1), T2 (1)) + d [l = /|15, Assumption [3]
<didz ||lp— p'll3 +ds [l — 1]l Assumption[2]
which proves the lemma. O

B. Technical Lemmas

The proofs of our main Theorems [T]and ] involve several common steps. We summarize these steps as several lemmas,
which are proved below.

B.1. Properties of KL-Divergence
We start with two lemmas about boundedness and Lipschitzness of KL-divergence.
Lemma 2. Let p* andp € A(A) andp = (1 —n)p+ n%. Then

Al

Dxy, (p*|Ip) < log R

Dxy, (p*|Ip) — Dki (p*||p) < 27.

Proof. By definition we have

Dxr. (07[[p) = > p*(a) log & 5 ))
acA
p*(a)
- Z p( 1og ]
= —mpla) + g
1
< (@)log g
acA |A‘
= log w,
n
thereby proving the first inequality.
Note that
% p(a
Dy (p*|1P) — Dk (0°|lp) = > p*(a 10g< Eai) (14)

acA
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~,

For each a such that p(a) < p(a), we have
log (M) <0< 2,
b

for each a’ such that p(a’) > p(a’), we have

(5 /)k’g( n) +n/A|>

1
< —<2
=< 1 =
where the third step follows from the fact that log(z) < z — 1 for all z > 0 and the last step holds as 5 € [0, %] Applying
the above two inequalities to (T4) completes the proof. O
The following Lemma states that the KL-divergence is Lipschitz w.r.t. || - ||; under certain conditions.

Lemma 3. Let z,y and z € A(A). If z(a) > a3, y(a) > aq and z(a) > ag forall a € A, then

1
Dxy(z]|z) — Dku(ylz) < (1 + log HM) Nz =yl -

Proof. Under the lower bound assumption of the lemma, we have

dD 1
dDxu(z|2) :1+1og@ < 1+log—
dz(a) z(a) @2
and
_ dDkw(z2) )
—-1-1 .
dx(a) oe
It follows that
dD 1
D@2 | 14 10g L 21— logan b <1410g——
o - i o)
Hence the function x + Dk, (7| 2) is Lipschitz w.r.t. ||-||,, the dual norm of ||-|| _ - -

B.2. Policy Improvement

To analyze the convergence of policy sequence, we need the following lemma, which characterizes the policy improvement
step.

Lemma 4. For any distributions p*,p € A(A),state s € S and function G : S x A — R, it holds for p' € A(A) with
() < p(-) - exp [aG(s, )] that

Dxw (0 IP') < Dxw (0" [lp) — a(G(s, ), p" — p) + a® | G(s, )|, /2.

Proof. For any function ¢ : A — R and distribution p € A(A), let z : A — R be a constant function defined by

z(a) = log (Z pla’) - exp (ag(a’))> :

a’€eA

Note that for any distributions p*, p’ € A(A),(z,p* — p') = 0. Since

P'() o< p(-) - exp (ag(-))
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we have ag(-) = z(-) + log(p'(-)/p(+)). Hence

alg,p* —p') = (z+1og(®'/p),p" —p')
= (z,p" = p') + (log(p"/p),p*) + (log(p'/p*),p") + (log(p'/p), —1")
= Dk, (p*|lp) — Dxu (p*[|p") — Dk (?[lp) -

Therefore, for each state s € S, we have

a(G(s,-),p" —p) = a(G(s,-),p" —p') + a(G(s,-),p = p)
= Dxr, (p"[lp) — Dk (p*[lP') — Dk (9'|lp) + a (G(s,-),p" —p)
< Dkw (p*|lp) — Dxw (p*llp") — Dk (¢ [[p) + |G (s, )l - ll2 = 'l -

Rearranging terms yields
D (p*[IP') < Dxv (p*[lp) — a(G(s,*),p" = p) — Dxr (¢'llp) + e |G(5, )l o~ I — P/l - (15)
Meanwhile, by Pinsker’s inequality, it holds that

D, (¢'llp) > Ip = #'II; /2- (16)
By combining (I5) and (T6), we obtain
* * * 2
Dk (p*|lp") < Dxw (p*||p) — a(G(s,-),p" —p) — [lp—0'II; /2 + a||G(s, )|l - [Ip =PIl
< Dy, (p*|[p) — @ (G(s,-),p* — p) + |G (s, )12, /2,

which concludes the proof. O

C. Proof of Theorem (1]

In order to obtain an upper bound on the optimality gap

oy, =l — 1l (17)

where 11* is the embedded mean-field state of the entropy regularized NE, we also need to estimate the gap between 7, and
the optimal solution 7 to the entropy regularized MDP ,,. We define

07 1= By [Dxw (7 ([5)[[me(-]5))] (18)

to quantify the convergence of policy sequence.

Before proceeding, we establish the following properties of entropy regularized MDPs, which are central to the convergence
analysis.

Properties of Regularized MDP. The following lemma quantifies the performance difference between two policies for a
regularized MDP — measured in terms of the expected total reward — through the Q-function and their KL-divergence.
The proof is provided in Appendix

Lemma 5 (Performance Difference). For each i € M and policies m : S — A(A), it holds that

Ja(m') = Tu(m) + T Bemep [Pt (' ([) I (-]5))]

:ﬁESNPﬂl [<Qﬁ’”(s, ) - >‘10g7r('|5)77r/('|5) - 7T(|$)>] ’ (19)

where pzl is the discounted state visitation distribution induced by the policy " on MDP,,.
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We can characterize the optimal policy ﬂﬁ’* in terms of the optimal Q-function Ql);’* as a Boltzmann distribution of the form
(Cen et al.,[2020; Nachum et al., 2017

A,
772’*(a|s) X exp <W> . (20)

For the setting where the reward function is bounded, we then can obtain a lower bound on 7'(';"*, as stated in the following
lemma. The proof is provided in Appendix [C.2]

Lemma 6. Suppose that there exists a constant Rmax > 0 such that 0 < sup, o ,)esx.AxMm r(s,a, 1) < Rmax. For each
1w € M, and each policy 7 : S — A(A), we have

Rmax + '7>\ IOg |~’4|

||Q2’WHOO < Qmax = 1— ~

Also, the optimal policy 7rl’>’* for the regularized MDP , satisfies

1
Ak
7, " (als) > O N A] |,Vs €S,ac A

Convergence Analysis. We now move to the convergence analysis. For clarity of exposition, we use E, [||7 — 7’|, ]
as shorthand for E,., [||7(:]s) — 7'(-|s)||;], where p € A(S); we also use E,[Dxy, (7||7")] as shorthand for
Eswp [Dkr (7(-|s)||7’(-|s))]. We recall that the step sizes are chosen as

== caT*Q/‘E’, Br=p= CBT74/5,
where the parameters c,, and cg satisfy that:
caT72°) < 1, cpT~4%d < 1. 1)

Here d := 1 — dydy — d3 > 0, where d; appears in Assumption and ds, d3 appear in Assumption

Step 1: Convergence of Policy. ~ We first characterize the convergence behavior of the policy sequence {7, };>0. Recall
that of, = By, [Dky (77 (-] s)[|7¢(-|s))] . We start with establishing a recursive relationship between ¢! and o, as
stated in the following lemma. The proof is provided in Section [C.3]

Lemma 7. Under the setting of Theorem[l] for each t > 0, we have

A 2
ol < (1= ay)ol + <d0 log 7]| + HC’pdl) i1 — prell5 + 26y + Q2 02 + 21, )

Recall that ;11 = (1 — B)pe + By - Doy, e ). Under Assumption we have

[pes1 — pellay = Bellpe — Talme, o)y < 28 (23)
Lemma [7]implies that
41 t A Qhax 2
0. < (1= day)o, + CiB + 2eqay + ’;ax o + 2n, (24)
where we define
CL:=2 (do log L': + /1de1> )

With oy = o, B¢ = 3, from Equation (24)) we have that

1 CiB 2 Q> 2n
te — (5t _ gtt1 “cQ max il 25
vl R el wl s Yel b v 3
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Summing over t = 0,1,...7 — 1 on both sides of (25)) and dividing by ¢ gives

T—1 —
1 t 1 0 T C18 | 2eq r2nax 2n
— < _ Dt A nitl
TtZOW—TAa(" 2 vl S TR v
1 61ﬂ 2eq Q2 2n
<= 04 2P 20 Wmax o 2T 26
ST T e TTx T oy “T e (26)

When choosing o = O(T~2/%), 3 = O(T~*/°) and n = O(T~1), we have C; = O(log T). Therefore, we obtain

1 — o _ logT  2eq
= < —. 27
T?:%U”NAT?/SJr ) @7
If we let T be a random number sampled uniformly from {0, ..., T — 1}, then the above equation can be written equivalently
as
logT"  2eq
Er [cr } SESVelE 1 (28)

Step 2: Convergence of Mean-field Embedding. = We now proceed to characterize the optimality gap for the embedded
mean-field state. We obtain the following upper bound on the optimality gap o, = ||¢ — 1*||5,. The proof is provided in

Section[C.4l

Lemma 8. Under the setting of Theorem|[I} we have
O'Z+1S (l—ﬁt )O’ + do p/BtV Vit € [T‘]7
where d =1 — dydy — d3 > 0.

Lemma [§]implies that

1 doC
t < ﬁ(aZ—UZ'H)—I—Tp\/E. (29)

With 8, = 8 = O(T"‘/E’), averaging equation over iteration ¢t = 0,...,T7 — 1, we obtain

where the last inequality follows from Cauchy-Schwarz inequality.

From Eq. (27), we have

1 = 10 72 /5 d2C, [logT 2eq
= = 2/5
T~ d d T2/ A
logT  2eq
~ oV AT?/5 A
1 [(+logT
s (e V).

This equation, together with Jensen’s inequality, proves equation (T3) in Theorem T}
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Turning to equation (I2)) in Theorem [I] we have

T-1
1 " *
T Z D (my,m}) = Er [D (77, 77)]
t=0

= E1Eoup- [|175(-]5) — 71 (-|3)]4]

_EE.., [28 i (ls) — m<~|s>||1}

7 *(s 2

(S) ]ET]ESNP-)F [ Z#((S; : ETESNP? |:||7T-T—(|S) - WT("S)”?

()
< Cp . ETESNP; [QDKL (W'?(|5)||WT(|5))]

=2
= Cp . 2]ET [O’I]
Gi)) 1 /\/logT
< N5 <T1/5 + \/5Q> ;

where step (¢) follows from Cauchy-Schwarz inequality, step (i¢) follows from Assumption E| and Pinsker’s inequality,
and step (i4¢) follows from the bound in equation . The above equation, together with Jensen’s inequality, proves
equation (T2). We have completed the proof of Theorem T}

C.1. Proof of Lemmal[3]

Proof. The proof follows similar argument as that of Lemma 1 in (Cen et al.l 2020). We provide the full proof for
completeness. By the definition of Vlf"” in l) we have

A7’
Vi (s)

:EatNW/(St),St+1NP('\st,at,p) [Z ,yt [Tﬁ’ﬂ (S, a) + V#)\77T(St) — VIL/\,TF(St)] | So = S] .
t=0

=K, mn/(51),5001~P(-|50,ae,1) [Z ~t [rﬁ’” (s,a) + WVH’\’”(StH) — V,j’”(st)] | so =s
t=0

+ VM (s). (30)

Recall that the Q-function fo of a policy = for the regularized MDP, is related to VMA”’ as

VH)\’W(S) =Eqn(s) [ f;’”(s, a) — Alogw(a|s)] = < AT (s, ),7T(|S)> + MH (7(+]5)) , Vs € S,

o
,1);’7‘-(57 a) = T’(S, a,p) + 7ES1NP(‘|s,a,u) [Vu)\’ﬂ-(sl)] ) V(Sa a) eESxA

‘We have
(@27 (5,27 (18)) = Bamr) [Q17(s,0)]
= Ear(s) [7(5:0, 1) + VBsynp( sy [Vio ™ (51)]]
= ]Ea~7r/(s)751~P(-\s,a7#) [r;}w’(& (l) + 'VV;L)\J(Sl) + Alog ﬂ-/(a|8)}
_ EaNﬂ_/(s)vsl,\/P(.‘ggaJL) |:r;>;7ﬂ' (87 a) + ’YV#)\’W(Sl)] — \H (7‘1”("8)) .
Therefore,

(Qu7(s,-),7'(]s) =7 (:]s))
:anﬂ’(s),sl~P(-|s,a,u) |:r>\7ﬂ’,(87 a, ,u) + PYVH)\’W(Sl)} — AH (77/('|S)) - VM)\’W(S) + AH (7T(|S))

(s Clsia [P (5,0, 1) + V27 (51) = VA (5)] “AH (1) ~ H(=()]. @D
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Plugging (31)) into (30), we have
A7 b
Vu (S) - V,u, (S)

:]Eat’\‘ﬂ/(st)yst+1NP('|5t,at“u) [Z ’yt <Q;)\L7W(St7 ')77TI('|st) - 7T(|st)> | S0 = S‘|

t=0

t oo (s0),5041~P Clstsarp) [Z VA (7' ([s¢) = H (7 (]50))) | s0 = 8] :
t=0

Recall the definition of J S(W) in (EI) Taking expectation with respect to s ~ v on both sides of yields

T (') = T ()

:ESONVO7(1tN7T/(St)15t+1NP(‘|5t7at7M) [Z fYt < ;);m(st’ ')77T/(’|St> - 7T("St)>‘|
t=0

+ Eogoni s (50),5001~P Clstsanoi) [Z YN (HL (7 (-]s1)) — H<w<-|st>>>]
t=0

By (@17 (50,7 (ls) = w(15)) + A (B (+'(}s) = H (1))
For the entropy term in (33), we have
B,y [H (7' (+]5)) = H (m(]5))]

£,y [ {tow s (o)) = (low ) )]
(
(

=K, :<log W(_l‘s) - 1og7: _"j)),wf(.s)> — <10g ﬂ_(.l|8),7r(~|5)>}

[ 1
smpr | {108 ===, 7' (:[s) = m(-]s) ) — Dxw (7' (:|s)[|7(:|s)) | -
¢ \5 )

Taking (34) into (33) yields the desired equation in Lemma3}

=E

C.2. Proof of Lemmal6l

Proof. Note that the value function Vl;\’” can be written as

V,j’”(s) =E lz Wtrﬁ’”(st,atﬂso = s] .
t=0

By the definition of 7)™ in , we have 0 < Ex [r)™ (s¢,a1)] < Rmax + Alog | A]. Therefore,

< Riax + Alog | A|

< , Vs € S,
1—v

0 < V7 (s)

and

Ruax + Alog |A|  Ruyax +yAlog | Al

0 < Qy7(s,a) < Ruax +7 T T—

Vs e S,a € A

For the second inequality, we have
exp (Q) (s,a) /)

Speacxp (0 (s,)/2)
1 _ 1

>
" 2 ben €D (Qmax/A) eQmax/A| A

Wﬁ’*(a|s) =

(32)

(33)

(34)
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as claimed. O

C.3. Proof of Lemmal(7l

Recall that at the ¢-th iteration, the policy is improved as follows:

Fori(fs) o mi(:1s) - exp [ (Q1(s,) = Mogm(1s)) ]
Applying the Lemma ] of policy improvement, we have for each s € S,
Dict (7} (1) [Fr+1(13))
<D, (7 (19)lIme(ls)) = ai (3 (5.7) = Mog mi(-|s), w7 (1s) = ma(-|s)) + | @2
=D, (7 (19)lIme(C1s)) = a1 (Q3(s, ) = Mlogmi(-[s), 7 () = ma(-]s))
(@M ) — Qs 1w (ls) — mls)) + @2 o22
<Dt (77 (19)lIme(ls)) = i (Q(s,7) = Mog mu(-1s), i (1s) = mu(-]5))

Q) - @+ @ a2

a?/2

2
o)

+ QOLt

Recall that 741 (|s) = (1 = n)Te11(|s) + g lja)- Lemmaimplies that
Dy, (w7 (-[8) |71 (-[5))
<Dxw (7 ()41 (-|s)) + 2. (35)
<Dxr (w7 ([9)[[me(:[5)) — e (@7 (s, ) = Mog me(-[s), i () — mi(:[5))
Qi (s.) = Qs )|+ @

Yi(s)

2
a?/2+2n. (36)

—+ QOét

Taking expectation over p; on both sides of (36) yields

Ep; [Dkw (7 [[7e41)]
<Ep; [Dxr (7 |[70)] = auBnp; [(Q7(5,7) = Mogme(-]s), w7 (-|s) = me(:[s))] + Esnpy [Vi(s)]

9E,; Dk, (xllm)] — (L= 7)oy [T, (xF) = T, (70)] — e XBy; [Dict, (5 7)) + B [Yi(5)]

(b)
<1 = NEp; [Dxr (7)) + By [Yi(s)] G7

where step (a) follows from Lemma step (b) follows from the fact that J l/l\t (me) < J l/l\t (7}), as w; = '} (p1¢) is the optimal
policy for the regularized MDP,,, .
Next we bound the difference between E - | [Dkr (771 | me41)] and By [Dky, (77 ||7e41)]. By triangle inequality, we
have

EPZH [DKL (”:+1H7Tt+1)]

<E;,, [Dkwr (7] ||me+1)] + ‘]EP;H [Dx (771 me41) — Dk (WfHﬂtﬂ)H

—Ey; [Dic. (77 |me0)] + (Epr,, = Egp ) D (77 Ime)] + B, [Pt (ialimes) = Dice (i Imes)] |- 38)

Bl B2

We now bound the first and second terms on the RHS of (38) separately.
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¢ For the first term B1: We have

Piya(s) — pi(s X
By =E.,- {Hl()t() - Dk, (7} ||7Tt+1)]

p*(s)
@g [l —niOl]
p*(s)
(b)
S KLmax : dO ||,U/t - Mt71||7.[ ) (39)

where step (a) uses the fact that Dy, (ﬂ}HmH) < KLpax := log ‘Al (cf. Lemma and step (b) follows from
Assumption 3]

* For the second term Bs: Note that 7}, ; and 7} are the optimal policy for the regularized MDP,,, , and MDP

respectively. Define
- i exp (_ Rax + ’Y)\ IOg |A|>
A AL =) '
By Lemmal6] for all (s,a) € S x A, we have

o

7/ 1(als) > 7, and 7/ (als) > 7.

Applying Lemma 3] yields
By < iEanpy,, [[|77 (1s) = i ( BIN
Pt+1(5) *
= KkE 7w (+|s) — 7}
st st
< KCEgmpe |77 (1) — i1 Cls) ], } Assumption[d]
= rCy,D (F{\(/’Lt)a Fl (Mﬁ-l))
< KCpdy ||t — fre41ll4 5 Assumption 2] (40)
where
1
k:=1+log ————
: o
min {7’, \AI}
A 2 Rinax
< 2max log—,i og| Al + —
{ 1—vy 4 AL =)
|A\ 2Rmax
< ——log—+
1- n o AMl—=7)
4 2Rmax
= KLmax R B
1- AL =7)

Combining (37). (38). (40) and (39), we have
E”fﬂ [DKL (Wz+1||7rt+l)]

<E,; [Dxr (77 | 741)] + KLlmax - do [[pre41 — pelly + £Cpda |16 — pesallyy

<(1- at/\)EpZ [DKL (W?H?Tt)} + ESNPI [Yt(s)] + (do - KLpax + chdl) ||Ut+1 - Mt”H . (41)
Note that
oz
Eur [Yi(5)] = 200Eumy; [[Q2(5) = @26, ]+ 7 =0 + 21
. 1@
< 2at\/ﬂzs~p; aas. - @] + Fsa 2

2
< 2eqoy + r;ax o? 4 2n, (42)
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where the last step holds by the assumption on the policy evaluation error and the fact that @f‘ : S X A = [0, Quax] satisfies
H@f‘ H < @Qmax by definition. Combining (1)) and (2)) proves the lemma.
oo

C4. Proof of Lemma 8]

Proof. According to the update rule (7) for the embedded mean-field state, we have

(| p241 —M*HH
=[|(1 = Be)pue + Bela (e, pe) — 1"l
=|(1 = B) (e — p*) + Be (T2 (T3 (pe)s pe) — 1) = Be [Ta (T3 (e), pae) — Do e, )] HH
<(1 - 515) ||:U’t - /~L*||7-[ + 6t HFZ (Fi\(ﬂt)’ut) - M*HH + Bt ||F2 (Fi\(/it)yﬂt) — FQ(,}Tt’/”Lt)HH
S0 = B) lle = 1l + B |[T2 (T3 (1), 1) = Do (T3, 127) |
(a)
+ B¢ [T (U7 (e)s 1e) — Lo (e, par) |5 (43)
(b)

=
=

where the equality (i) follows from the fact that y* = I'y (T} (u*), pu*).
Lemmaimplies that A(p) = Ty (T (p), pt) is didz + dg Lipschitz. It follows that

(a) <(didy +d3) |[e — 1| - 44)
By Assumption[3] we have
(b) < doD (T} (p1z), ) - (45)
Combining Eqs. (@3)-({@3) yields
lter = 1Ml < (1= Bed) [lpe — " ll3y + d2BeD (T3 (s10) 1) (46)

where d = 1 — didy — d3 > 0.
Let us bound the second RHS term above. By the definition of policy distance D in equation (TI), we have
D (Fi\(ﬂt)aﬂt) =E,- [HFi\(Mt) - 7Tt||1]
= Eopr [l ([s) = m([s)]l]

k., m; I Cls) — m<-|s>1}

. {EM; l ()

Py (s
< Cp\/Eump; D (n7 (19)lIme )], “7)

2

hS)

1/2
Eonpr I Cls) - m(-s>||i]}

~—

where the first inequality holds due to Cauchy-Schwartz inequality, the last inequality follows from Assumption {] and
Pinsker’s inequality.

Combining (@6)-([@#7) gives

lper1 — 1 lly < (1= Bed) [lpe — p* |5, + d2ﬁt6p\/Epf [Dkr (7f[|7e)]-

This completes the proof. O
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D. Proof of Corollary ]|

Proof. Note that for each ¢t € [T' — 1], we have

D(my, %) < D (mg, 7)) + D (7, 7%)
< D (me,mp) +dy ||pe — 1" |5 5

where the last step follows from Assumption[2|on the Lipschitzness of I'}. Tt follows that

= =
D<T 7Tt77T>+ Tzut—ﬂ
t=0 t=0

H
| Tl | Tl
ST D(ﬂ'tﬂT*)-i-TZHNt_N*”fH
t=0 t=0
| T =
<7 2 (D(mm) +d ||ut—u*||H)+fZ|lut—u*||H
t=0 P
1 [(+logT
57 < T1/5 +\/5Q) )
where in the last step we apply the bounds and in Theorem I} O

E. Guarantees under Weaker Assumption On Concentrability

In this section, we show that the /., condition on concentrability coefficient in Assumption |4| can be relaxed to an {5
ﬂ,k‘* ~
condition of the form {E[|p." (s)/p*(s) ‘2] }1/ ? < C,. under which we can establish an O(T~1/9) convergence rate.

We now provided the details. Consider the following distance metric between two policies w, 7’ € II:

W(m, ') = JEN [IimCls) = Cls)I]- (48)

Similarly as before, we assume certain Lipschitz properties for the two mappings I'? : M — ITand I'y : IT x M — M
defined in Section [2.3] In particular, we impose the following two assumtpions, both stated in terms of the new distance
metric W (-, -) defined in (48] above.

Assumption 6. There exists a constant dy > 0, such that for any p, ' € M., it holds that

W (D (1), T (1) < du lli— 1l -

Assumption 7. There exist constants dy > 0,ds > 0 such that for any policies w, 7' € Il and embedded mean-field states
w, ' € M, it holds that

Do (m, 1) = To(n', )|l < doW (m,7'),
[T (7, 1) = Do, i)l < ds | — 1/l -

Assumptions E] andimmediately imply Lipschitzness of the composite mapping A* : M — M, which we recall is defined
as A*p) = Ta (0 (1), 1) -
Lemma 9. Suppose Assumptions@and [?] hold. Then for each u, 1/ € M, it holds that

[AAN () = A (W), < (dada +ds) ([ — 1|l -

We also consider the following relaxed, 5-type assumption on the concentrability coefficients.
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Assumption 8 (Finite Concentrability Coefficients). There exist two constants C,, C, > 0 such that for each i € M, it
holds that

o 2 1/2 9 1/2
I * —
- pu*i(S) <C) and E o pA,ES) < C.
SNPM‘L P (S) SNPuu pZ” (s)

With the above assumptions and the distance metric 1V, we can establish the following convergence result for Algorithm [T}

Theorem 2. Suppose that Assumptions[I} B} [6] [/ and[8hold and dyd> + d3 < 1 and that the error in the policy evaluation
step in Algorithm|[I| satisfies

Esnp: [HQt — Q) (s, )H;l <eh, VtelT]

With the choice of
n= ch_l, o =a=c 7Y, By =0 = cBT_S/g,

for some universal constants c;; > 0, co, > 0and cg > 0in AlgorithmEI the resulting policy and embedded mean-field state
sequence {(mt, ,ut)}tT:O satisfy

T—1 T—1 —
1 1 . 1 ((logT)"/* 1/4

w (3 g Tort) < 3 S W ey e (V5 ) ®
t=0 t=0

T—1 T—1

1 1 log T')1/4

TE [ — * < ((Og ) + 1/4>.
t=0

1
T ||IU/t — K ||7-L ~ \1/4 T1/9 6Q (50)

H t=0

The following corollary of Theorem|Z| shows that after T iterations of our algorithm, the average policy-population pair
( Zt o Ttr Zt o ,ut> isan O (T—1/°)-approximate NE.

Corollary 2. Under the assumptions of Theorem[2] we have
=
w (T ; e, T ) Z Mt —

of Theorem[2] The proof follows similar lines as those of Theorem [I]and Corollary [T} with all appearances of the distance
D replaced by the new distance W. Below we only point out the modifications needed.

SN T1/9 cQ

1 ((logT)1/4+ 1/4)

Lemmal7|remains valid as stated. For the proof of this lemma, the only different step is bounding the term B in equation (38).
In particular, the bounds in equation (#0) should be replaced by the following:

32 < '%ESNP:JA [Hﬂ-:(l - ﬂ-t-l-l H l
— i | i) )| ]
pia(s) 1
x| (55 ) B[00 =it}
< kC,- \/ESNP* [Hwt* — 5 (19| } Assumption [§]
= KC,W (T3 (1), T3 (pra41))
< KCpdy |1t — pres1ll4 - Assumption [6] (5D

Lemma §|should be replaced by the following lemma.
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Lemma 10. Under the setting of Theorem[2] for each t > 0, we have

0,7 < (1= Bed) of, + dan/C o (o 1/4,

where d = 1 — didy — d3 > 0.

The proof of Lemma is similar to that of Lemma The only different step is the term D (I‘i‘(,ut), 7rt) in equation
should be replaced by W ('} (14¢), ;) , which can be bounded as follows:

W (03, 7) = 4By [I72C15) = mCI9)IE]

_ \/]Eswp;‘ {;8 72 (|9) m(.|s)||ﬂ

1/4
< {EN Eonyp [I77 (ls) = mills)] ]}

2 B B [0 -t}

u) L
< T (B [Drcw (i Cls) i)} 52)

where step (¢) holds by Assumptlonl and the fact that ||v — v/||; < 2,Vv," € A(A), and step (iz) follows Pinsker’s
inequality.

We now turn to the proof of Theorem 2]

We first establish the convergence for o by following the exactly same steps from equation up to equation (26). We
restate the bound on = Zt o oL in li as follows:

615 2€Q Q2 27]
< 0 ~i Q@ max =27
o a0”+ o + \ + 2\ +)\a (53)

When choosing o« = O(T~4/9), 8 = O(T~3/%) and n = O(T~ 1), we have C; = O(log T). Therefore, we obtain

If we let T be a random number sampled uniformly from {0, ..., T — 1}, then the above equation can be written equivalently
as
Br [oT] S g + 2. (55)
We now proceed to bound the average embedded mean-field state = Zt 0 O e Lemmalmphes
A L\/a CARMS (56)

dpy d
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With 8, =3 = O(T’S/g), averaging equation over iteration ¢t = 0,...,7 — 1, we obtain

1 i S 1 ( 0 T d27\/ ép Til (O_;g.r)l/él

where steps (¢) and (i¢) follow from Cauchy-Schwarz inequality.

From equation (54)), we have

-1 el
LNS o< Ty 2V (losT  2e9) !
T2~ A GVECISY
1/4
< (losT | 22¢ /
~ AT A
1 (logT)1/4 1/4
N \i/4 ( Ti/5 T )

This equation, together with Jensen’s inequality, proves equation (50) in Theorem 2}

Turning to equation (49) in Theorem 2] we have

— ZW m, ) = Er [W (77, 77)]
_E wEN (It 1s) = wrCls)]
2 JErEoep: {;’8 ||7r$<-|s>m<~|s>|lﬂ
P @) | g [I731s) = 71 (1)1 h
> Ts~py ,Dikr(S) TEs~p7 |77 ([ mr(:|s) 1

Cy ExBa I (ls) = meClo)E] }

< @ {ETEM [Dict, (5 (1) e (1)1}

\/g {ET 1/4

© 1 (1ogT)1/4 »
5)\1/4( Ti/5  TEQ >’

1/4

where step (4) holds due to Jensen’s inequality, step (u) follows from Cauchy-Schwarz inequality, step (i¢7) follows from
Assumption (8] I and the fact that ||v — V/||; < 2,Vv,v/ € A(A), step (iv) comes from Pinsker’s inequality, and step (v)

follows from the bound in equation (53). The above equation, together with Jensen’s inequality, proves equation (@9). We
have completed the proof of Theorem [2]
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The proof of Corollary 2]is the same as that of Corollary [T]and is omitted here.



