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Abstract
It is well-known that stochastic gradient noise
(SGN) acts as implicit regularization for deep
learning and is essentially important for both op-
timization and generalization of deep networks.
Some works attempted to artificially simulate
SGN by injecting random noise to improve deep
learning. However, it turned out that the injected
simple random noise cannot work as well as SGN,
which is anisotropic and parameter-dependent.
For simulating SGN at low computational costs
and without changing the learning rate or batch
size, we propose the Positive-Negative Momen-
tum (PNM) approach that is a powerful alternative
to conventional Momentum in classic optimizers.
The introduced PNM method maintains two ap-
proximate independent momentum terms. Then,
we can control the magnitude of SGN explicitly
by adjusting the momentum difference. We theo-
retically prove the convergence guarantee and the
generalization advantage of PNM over Stochastic
Gradient Descent (SGD). By incorporating PNM
into the two conventional optimizers, SGD with
Momentum and Adam, our extensive experiments
empirically verified the significant advantage of
the PNM-based variants over the correspond-
ing conventional Momentum-based optimizers.
Code: https://github.com/zeke-xie/
Positive-Negative-Momentum.

1. Introduction
Stochastic optimization methods, such as Stochastic Gra-
dient Descent (SGD), have been popular and even neces-
sary in training deep neural networks (LeCun et al., 2015).
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It is well-known that stochastic gradient noise (SGN) in
stochastic optimization acts as implicit regularization for
deep learning and is essentially important for both optimiza-
tion and generalization of deep neural networks (Hochreiter
& Schmidhuber, 1995; 1997a; Hardt et al., 2016; Xie et al.,
2021b; Wu et al., 2021). The theoretical mechanism behind
the success of stochastic optimization, particularly the SGN,
is still a fundamental issue in deep learning theory.

SGN matters. From the viewpoint of minima selection,
SGN can help find flatter minima, which tend to yield bet-
ter generalization performance (Hochreiter & Schmidhuber,
1995; 1997a). For this reason, how SGN selects flat minima
has been investigated thoroughly. For example, Zhu et al.
(2019) quantitatively revealed that SGN is better at selecting
flat minima than trivial random noise, as SGN is anisotropic
and parameter-dependent. Xie et al. (2021b) recently proved
that, due to the anisotropic and parameter-dependent SGN,
SGD favors flat minima even exponentially more than sharp
minima. From the viewpoint of optimization dynamics,
SGN can accelerate escaping from saddle points via stochas-
tic perturbations to gradients (Jin et al., 2017; Daneshmand
et al., 2018; Staib et al., 2019; Xie et al., 2020b).

Manipulating SGN. Due to the benefits of SGN, improving
deep learning by manipulating SGN has become a popular
topic. There are mainly two approaches along this line.

The first approach is to control SGN by tuning the hyper-
parameters, such as the learning rate and batch size, as the
magnitude of SGN has been better understood recently. It is
well-known (Mandt et al., 2017) that the magnitude of SGN
in continuous-time dynamics of SGD is proportional to the
ratio of the learning rate η and the batch size B, namely
η
B . He et al. (2019) and Li et al. (2019) reported that in-
creasing the ratio η

B indeed can improve test performance
due to the stronger implicit regularization of SGN. However,
this method is limited and not practical for at least three
reasons. First, training with a too small batch size is com-
putationally expensive per epoch and often requires more
epochs for convergence (Hoffer et al., 2017; Zhang et al.,
2019). Second, increasing the learning rate only works in
a narrow range, since too large initial learning rates may
lead to optimization divergence or bad convergence (Keskar
et al., 2017; Masters & Luschi, 2018; Xie et al., 2020a). In
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practice, one definitely cannot use a too large learning rate
to guarantee good generalization (Keskar et al., 2017; Mas-
ters & Luschi, 2018). Third, decaying the ratio η

B during
training (via learning rate decay) is almost necessary for
the convergence of stochastic optimization as well as the
training of deep networks (Smith et al., 2018). Thus, con-
trolling SGN by adjusting the ratio η

B cannot consistently
be performed during the entire training process.

The second approach is to simulate SGN by using artificial
noise. Obviously, we could simulate SGN well only if
we clearly understood the structure of SGN. Related works
(Daneshmand et al., 2018; Zhu et al., 2019; Xie et al., 2021b;
Wen et al., 2020) studied the noise covariance structure, and
there still exists a dispute about the noise type of SGD
and its role in generalization (Simsekli et al., 2019; Xie
et al., 2021b). It turned out that, while injecting small
Gaussian noise into SGD may improve generalization (An,
1996; Neelakantan et al., 2015; Zhou et al., 2019; Xie et al.,
2021a), unfortunately, Gradient Descent (GD) with artificial
noise still performs much worse than SGD (i.e., SGD can
be regarded as GD with SGN). Wu et al. (2020) argued that
GD with multiplicative sampling noise may generalize as
well as SGD, but the considered SGD baseline was weak
due to the absence of weight decay and common training
tricks. Thus, this approach cannot work well in practice.

Contribution. Is it possible to manipulate SGN without
changing the learning rate or batch size? Yes. In this work,
we propose Positive-Negative Momentum (PNM) for en-
hancing SGN at the low computational and coding costs.
We summarize four contributions in the following.

• We introduce a novel method for manipulating SGN
without changing the learning rate or batch size. The
proposed PNM strategy can easily replace conventional
Momentum in classical optimizers, including SGD and
Adaptive Momentum Estimation (Adam).

• We theoretically prove that PNM has a convergence
guarantee similar to conventional Momentum.

• Within the PAC-Bayesian framework, we theoretically
prove that PNM may have a tighter generalization
bound than SGD.

• We provide extensive experimental results to verify
that PNM can indeed make significant improvements
over conventional Momentum, shown in Table 1.

In Section 2, we introduce the proposed methods and the
motivation of enhancing SGN. In Section 3, we present
the convergence analysis. In Section 4, we present the
generalization analysis. In Section 5, we conduct empirical
analysis. In Section 6, we conclude our main work.

2. Methodology
In this section, we introduce the proposed PNM method and
explain how it can manipulate SGN.

Notation. Suppose the loss function is f(θ), θ denotes the
model parameters, the learning rate is η, the batch size is B,
and the training data size is N . The basic gradient-descent-
based updating rule can written as

θt+1 = θt − ηgt. (1)

Note that gt = ∇f(θt) for deterministic optimization, while
gt = ∇f(θt) + ξt for stochastic optimization, where ξt
indicates SGN. As SGN is from the difference between SGD
and GD and the minibatch samples are uniformly chosen
from the whole training dataset, it is commonly believed
that gt is an unbiased estimator of the true gradient ∇f(θt)
for stochastic optimization. Without loss of generality, we
only consider one-dimensional case in Sections 2 and 3.The
mean and the variance of SGN can be rewritten as E[ξ] = 0
and Var(ξ) = σ2, respectively. We may use σ as a measure
of the noise magnitude.

Conventional Momentum. We first introduce the conven-
tional Momentum method, also called Heavy Ball (HB),
seen in Algorithm 1 (Zavriev & Kostyuk, 1993). We obtain
vanilla SGD by β1 = 0 and β3 = 1, and obtain common
SGD with Momentum by β1 = 0.9 and β3 = 1. Algorithm
1 is the actual PyTorch SGD(Paszke et al., 2019), and can
be theoretically reduced to SGD with a different learning
rate. Adam uses the exponential moving average of past
stochastic gradients as momentum by β3 = 1 − β1. The
conventional Momentum can be written as

mt =

t∑
k=0

β3β
t−k
1 gk, (2)

which is the estimated gradient for updating model param-
eters. Then we approximately have E[m] ≈ β3

1−β1
∇f(θ).

The stochastic noise in momentum is given by

ξhbt =

t∑
k=0

β3β
t−k
1 ξk. (3)

Without loss of generality, we use the Adam-style Momen-
tum with β3 = 1−β1 in our analysis. Thus, the conventional
momentum does not control the gradient noise magnitude,
because, for large t,

Var(ξhb) = β3
1− βt+1

1

1− β1
σ2 ≈ σ2. (4)

We have assumed that SGN ξ is approximately independent.
Since this approximation holds well in the limit of B

N → 0,
this assumption is common in theoretical analysis (Mandt
et al., 2017).
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Table 1. PNM versus conventional Momentum. We report the mean and the standard deviations (as the subscripts) of the optimal test
errors computed over three runs of each experiment. The proposed PNM-based methods show significantly better generalization than
conventional momentum-based methods. Particularly, as Theorem 4.3 indicates, Stochastic PNM indeed consistently outperforms the
conventional baseline, SGD.

DATASET MODEL PNM ADAPNM SGD ADAM AMSGRAD ADAMW ADABOUND PADAM YOGI RADAM

CIFAR-10 RESNET18 4.480.09 4.940.05 5.010.03 6.530.03 6.160.18 5.080.07 5.650.08 5.120.04 5.870.12 6.010.10
VGG16 6.260.05 5.990.11 6.420.02 7.310.25 7.140.14 6.480.13 6.760.12 6.150.06 6.900.22 6.560.04

CIFAR-100 RESNET34 20.590.29 20.410.18 21.520.37 27.160.55 25.530.19 22.990.40 22.870.13 22.720.10 23.570.12 24.410.40
DENSENET121 19.760.28 20.680.11 19.810.33 25.110.15 24.430.09 21.550.14 22.690.15 21.100.23 22.150.36 22.270.22
GOOGLENET 20.380.31 20.260.21 21.210.29 26.120.33 25.530.17 21.290.17 23.180.31 21.820.17 24.240.16 22.230.15

Basic Idea. Our basic idea for manipulating SGN is simple.
Suppose that g(a) and g(b) are two independent unbiased
estimators of∇f(θ). Then their weighted average is

ḡ =(1 + β0)g(a) − β0g(b)

=∇f(θ) + ξ̄, (5)

where ξ̄ = (1 + β0)ξ(a) − β0ξ
(b). If β0 > 0, for the

generated noisy gradient ḡ, we have E[ḡ] = ∇f(θ) and
Var(ξ̄) = [(1 + β0)2 + β2

0 ]σ2. In this way, we can control
the noise magnitude by β0 without changing the expectation
of the noisy gradient.

Positive-Negative Momentum. Inspired by this simple
idea, we combine the positive-negative averaging with the
conventional Momentum method. For simplicity, we as-
sume that t is an odd number. We maintain two independent
momentum terms as{

m
(odd)
t =

∑
k=1,3,...,t β3β

t−k
1 gk,

m
(even)
t =

∑
k=0,2,...,t−1 β3β

t−k
1 gk,

(6)

by using two alternate sequences of past gradients, respec-
tively. Then we use the positive-negative average,

mt = (1 + β0)m
(odd)
t − β0m(even)

t , (7)

as an estimated gradient for updating model parameters.
Similarly, if t is an even number, we let mt = (1 +

β0)m
(even)
t − β0m(odd)

t . When β0 > 0, one momentum
term has a positive coefficient and another one has a negative
coefficient. Thus, we call it a positive-negative momentum
pair.

The stochastic noise ξpnmt in the positive-negative momen-
tum pair is given by

ξpnmt =(1 + β0)
∑

k=1,3,...,t

β3β
t−k
1 ξk−

β0
∑

k=0,2,...,t−1

β3β
t−k
1 ξk. (8)

For large t, we write the noise variance as

Var(ξpnm) ≈ [(1 + β0)2 + β2
0 ]σ2. (9)

The noise magnitude of positive-negative momentum in
Equation (7) is

√
(1 + β0)2 + β2

0 times the noise magnitude
of conventional Momentum.

While computing the gradients twice per iteration by using
two minibatches can be also used for constructing positive-
negative pairs, using past stochastic gradients has two ben-
efits: lower computational costs and lower coding costs.
First, avoiding computing the gradients twice per iteration
save computation costs. Second, we may implement the
proposed method inside optimizers, which can be employed
in practice more easily.

Algorithm 1 (Stochastic) Heavy Ball/Momentum
mt = β1mt−1 + β3gt
θt+1 = θt − ηmt

Algorithm 2 (Stochastic) PNM
mt = β2

1mt−2 + (1− β2
1)gt

θt+1 = θt − η√
(1+β0)2+β2

0

[(1 + β0)mt − β0mt−1]

Algorithm 3 AdaPNM
mt = β2

1mt−2 + (1− β2
1)gt

m̂t = (1+β0)mt−β0mt−1

(1−βt
1)

vt = β2vt−1 + (1− β2)g2t
vmax = max(vt, vmax)
v̂t = vmax

1−βt
2

θt+1 = θt − η√
(1+β0)2+β2

0(
√
v̂t+ε)

m̂t

Algorithms. We further incorporate PNM into SGD and
Adam, and propose two novel PNM-based variants, includ-
ing (Stochastic) PNM in Algorithm 2 and AdaPNM in Algo-
rithm 3. Note that, by letting β0 = − β1

1+β1
, we may recover

conventional Momentum and Adam as the special cases of
Algorithm 2 and Algorithm 3. Note that our paper uses
the AMSGrad variant in Algorithm 3 unless we specify it.
Because Reddi et al. (2019) revealed that the AMSGrad
variant to secure the convergence guarantee of adaptive gra-



Positive-Negative Momentum

dient methods. We supplied AdaPNM without AMSGrad in
Appendix.

Normalizing the learning rate. We particularly normalize
the learning rate by the noise magnitude as η√

(1+β0)2+β2
0

in

the proposed algorithms. The ratio of the noise magnitude
to the learning rate matters to the convergence error (see
Theorem 3.1 below). In practice (not the long-time limit), it
is important to achieve low convergence errors in the same
epochs as SGD. Practically, we also observe in experiments
that using the learning rate as η√

(1+β0)2+β2
0

for PNM can

free us from re-tuning the hyperparameters, while we will
need to re-fine-tune the learning rate without normalization,
which is time-consuming in practice. Note that PNM can
have a much larger ratio of the noise magnitude to learning
rate than SGD.

3. Convergence Analysis
In this section, we theoretically prove the convergence guar-
antee of Stochastic PNM.

By Algorithm 2, we may rewrite the main updating rules as{
mt = β2

1mt−2 + (1− β2
1)gt,

(θt+1 − η0β0mt) = (θt − η0β0mt−1)− η0mt,

where η0 = η√
(1+β0)2+β2

0

. We denote that θ−2 = θ−1 =

θ0, β = β2
1 , and α = η (1−β)√

(1+β0)2+β2
0

. Then PNM can be

written as{
xt = θt − β0mt−1,

xt+1 = xt − αgt + β(xt−1 − xt−2).
(10)

Note that xt+1 − xt = αmt. We may also write SGD with
Momentum as

θt+1 = θt − ηgt + β(θt − θt−1). (11)

Obviously, PNM maintains two approximately independent
momentum terms by using past odd-number-step gradients
and even-number-step gradients, respectively.

Inspired by Yan et al. (2018), we propose Theorem 3.1 and
prove that Stochastic PNM has a similar convergence rate
to SGD with Momentum. The errors given by Stochastic
PNM and SGD with Momentum are bothO( 1√

t
) (Yan et al.,

2018). We leave all proofs in Appendix A.

Theorem 3.1 (Convergence of Stochastic Positive-Negative
Momentum). Assume that f(θ) is a L-smooth function, f
is lower bounded as f(θ) ≥ f?, E[ξ] = 0, E[‖g(θ, ξ) −
∇f(θ)‖2] ≤ σ2, and ‖∇f(θ)‖ ≤ G for any θ. Let β1 ∈
[0, 1), β0 ≥ 0 and Stochastic PNM run for t+ 1 iterations.

If η√
(1+β0)2+β2

0

= min{ 1
2L ,

C√
t+1
}, we have

min
k=0,...,t

E[‖∇f(θk)‖2]

≤2(f(θ0)− f?)
t+ 1

max{2L,
√
t+ 1

C
}+

C1√
t+ 1

,

where

C1 = C
L(β + β0(1− β))2(G2 + σ2) + L(1− β)2σ2

(1− β)2
.

4. Generalization Analysis
In this section, we theoretically prove the generalization
advantage of Stochastic PNM over SGD by using PAC-
Bayesian framework (McAllester, 1999b;a). We discover
that, due to the stronger SGN, the posterior given by Stochas-
tic PNM has a tighter generalization bound than the SGD
posterior.

4.1. The posterior analysis

McAllester (1999b) pointed that the posterior given by
a training algorithm is closely related to the generaliza-
tion bound. Thus, we first analyze the posteriors given by
SGD, Momentum, and Stochastic Positive-Negative Mo-
mentum. Mandt et al. (2017) studied the posterior given by
the continuous-time dynamics of SGD. We present Assump-
tions 1 in Mandt et al. (2017), which is true near minima.
Note that H(θ) denotes the Hessian of the loss function f
at θ.

Assumption 1 (The second-order Taylor approximation).
The loss function around a minimum θ? can be approxi-
mately written as

f(θ) = f(θ?) +
1

2
(θ − θ?)>H(θ?)(θ − θ?).

When the noisy gradient for each iteration is the unbiased
estimator of the true gradient, the dynamics of gradient-
based optimization can be always written as

θt+1 = θt − η(∇f(θ) + C(θ)ξ), (12)

where C(θ) is the covariance of gradient noise and ξ obeys
the standard Gaussian distribution N (0, I). While recent
papers (Simsekli et al., 2019; Xie et al., 2021b) argued about
the noise types, we follow most papers (Welling & Teh,
2011; Jastrzkebski et al., 2017; Li et al., 2017; Mandt et al.,
2017; Hu et al., 2019; Xie et al., 2021b) in this line and still
approximate SGN as Gaussian noise due to Central Limit
Theorem. The corresponding continuous-time dynamics
can be written as

dθ = −∇f(θ)dt+ [ηC(θ)]
1
2 dWt, (13)
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where dWt = N (0, Idt) is a Wiener process.

Mandt et al. (2017) used SGD as an example and demon-
strated that, the posterior generated by Equation (13) in the
local region around a minimum θ? is a Gaussian distribution
N (θ?,Σsgd). This well-known result can be formulated as
Theorem 4.1. We denote that H(θ?) = H and C(θ?) = C
in the following analysis.

Theorem 4.1 (The posterior generated by Equation (13)
near a minimum (Mandt et al., 2017)). Suppose that As-
sumption 1 holds, the covariance near the minimum θ? is
C(θ?), the dynamics is governed by Equation (13). Then,
in the long-time limit, the generated posterior Q near θ? is
a Gaussian distribution N (θ?,Σ). and the Σ satisfies

ΣH(θ?) +H(θ?)Σ = ηC(θ?).

The vanilla SGD posterior. In the case of SGD, based
on Jastrzkebski et al. (2017); Zhu et al. (2019); Xie et al.
(2021b), the covariance C(θ) is proportional to the Hessian
H(θ) and inverse to the batch size B near minima:

Csgd(θ) ≈
1

B
H(θ). (14)

Equation (14) has been theoretically and empirically studied
by related papers (Xie et al., 2021b; 2020b). Please see
Appendix D for the details.

By Equation (14) and Theorem 4.1, we may further express
Σsgd as

Σsgd =
η

2B
I, (15)

where I is the n× n identity matrix and n is the number of
model parameters.

The Momentum posterior. By Equation (3), we know
that, in continuous-time dynamics, we may write the noise
covariance in HB/SGD with Momentum as

Chb(θ) =
β3

1− β1
Csgd = Csgd. (16)

Without loss of generality, we have assumed that β3 = 1−β1
in HB/SGD with Momentum. Then, in the long-time limit,
we further express Σhb as

Σhb =
β3

1− β1
Σsgd =

η

2B
I. (17)

This result has also been obtained by Mandt et al. (2017).
Thus, the Momentum posterior is approximately equivalent
to the vanilla SGD posterior. In the PAC-Bayesian frame-
work (Theorem 4.2), HB should generalize as well as SGD
in the long-time limit.

The Stochastic PNM posterior. Similarly, by Equation (8),
we know that, in continuous-time dynamics, we may write
the noise covariance in Stochastic PNM as

Cpnm(θ) = [(1 + β0)2 + β2
0 ]Csgd. (18)

whereCpnm(θ) = ((1+β0)2+β2
0)Csgd(θ) is the covariance

of SGN in Stochastic PNM.

By Equation (14) and Theorem 4.1, in the long-time limit,
we may further express Σpnm as

Σpnm = [(1 + β0)2 + β2
0 ]
η

2B
I. (19)

Thus, we may use the hyperparameter β0 to rescale the
covariance of the posterior. In the following analysis, we
will prove that the PAC-Bayesian bound may heavily depend
on the new hyperparameter β0.

4.2. The PAC-Bayesian bound analysis

The PAC-Bayesian generalization bound. The PAC-
Bayesian framework provides guarantees on the expected
risk of a randomized predictor (hypothesis) that depends on
the training dataset. The hypothesis is drawn from a distri-
bution Q and sometimes referred to as a posterior given a
training algorithm. We then denote the expected risk with
respect to the distribution Q as R(Q) and the empirical risk
with respect to the distribution Q as R̂(Q). Note that P
is typically assumed to be a Gaussian prior, N (0, λ−1I),
over the weight space Θ, where λ is the L2 regularization
strength (Graves, 2011; Neyshabur et al., 2017; He et al.,
2019).

Assumption 2. The prior over model weights is Gaussian,
P = N (0, λ−1I).

We introduce the classical PAC-Bayesian generalization
bound in Theorem 4.2.

Theorem 4.2 (The PAC-Bayesian Generalization Bound
(McAllester, 1999b)). For any real ∆ ∈ (0, 1), with proba-
bility at least 1−∆, over the draw of the training dataset
S, the expected risk for all distributions Q satisfies

R(Q)− R̂(Q) ≤ 4

√
1

N
[KL(Q‖P ) + ln(

2N

∆
)],

where KL(Q‖P ) denotes the KullbackâĂŞLeibler diver-
gence from P to Q.

We define that Gen(Q) = R(Q) − R̂(Q) is the expected
generalization gap. Then the upper bound of Gen(Q) can
be written as

Sup Gen(Q) = 4

√
1

N
[KL(Q‖P ) + ln(

2N

∆
)]. (20)
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Theorem 4.2 demonstrates that the expected generalization
gap’s upper bound closely depends on the posterior given
by a training algorithm. Thus, it is possible to improve
generalization by decreasing KL(Q‖P ).

The KullbackâĂŞLeibler divergence from P to Q. Note
that Q and P are two Gaussian distributions, N (µQ,ΣQ)
and N (µP ,ΣP ), respectively. Then we have

KL(Q‖P ) =
1

2

[
log

det(ΣP )

det(ΣQ)
+ Tr(Σ−1P ΣQ)

]
+

1

2
(µQ − µP )>Σ−1P (µQ − µP )− n

2
. (21)

Suppose that µQ = θ? and ΣQ(γ) = γΣsgd correspond
to the covariance-rescaled SGD posterior, and µP = 0
and ΣP = λ−1I correspond to L2 regularization. Here
γ = ((1+β0)2+β2

0) ≥ 1. Then KL(Q(γ)‖P ) is a function
of γ, written as

KL(Q(γ)‖P ) =
1

2
log

λ−n

γn det(Σsgd)
+

1

2
λ−1γ Tr(Σsgd)

+
λ

2
‖θ?‖2 − n

2
. (22)

For minimizing KL(Q(γ)‖P ), we calculate its gradient
with respect to γ as

∇γ KL(Q(γ)‖P ) =
n

2
(
η

2Bλ
− 1

γ
), (23)

where we have used Equation (15).

It shows that KL(Q(γ)‖P ) is a monotonically decreasing
function on the interval of γ ∈ [1, 2Bλη ]. Obviously, when
η

2Bλ < 1 holds, we can always decrease KL(Q(γ)‖P ) by
fine-tuning γ > 1. Note that Momentum is a special case
of PNM with β0 = − β1

1+β1
, and the Momentum posterior is

approximately equivalent to the vanilla SGD posterior.

Stochastic PNM may have a tighter bound than SGD.
Based on the results above, we naturally prove Theorem 4.3
that Stochastic PNM can always have a tighter upper bound
of the generalization gap than SGD by fine-tuning β0 > 0
in any task where η

2Bλ < 1 holds for SGD. In principle,
SHB may be reduced to SGD with a different learning rate.
SGD in PyTorch is actually equivalent to SHB. Thus, our
theoretical analysis can be easily generalized to SHB.
Theorem 4.3 (The generalization advantage of Stochastic
PNM). Suppose Assumption 2, the conditions of Theorem
4.1, and Theorem 4.2 hold. If η

2Bλ < 1 holds for SGD, then
there must exist β0 ∈ (0, 2Bλη ] that makes the following
hold in the long-time limit:

Sup Gen(Qpnm) < Sup Gen(Qsgd).

When does η
2Bλ < 1 hold? We do not theoretically prove

that η
2Bλ < 1 always holds. However, it is very easy to

empirically verify the inequality η
2Bλ < 1 in any specific

practical task. Fortunately, we find that η
2Bλ < 1 holds in

wide practical applications. For example, we have η
2Bλ ≈

0.039 for the common setting that η = 0.001 (after the final
learning rate decay), B = 128, and λ = 1e − 4. It means
that the proposed PNM method may improve generalization
in wide applications.

How to select β0 in practice? Recent work (He et al., 2019)
suggested that increasing η

B always improves generalization
by using the PAC-Bayesian framework similarly to our work.
However, as we discussed in Section 1, this is not true in
practice for multiple reasons.

Similarly, while Equation (23) suggests that γ = 2Bλ
η can

minimize Sup Gen(Qpnm) in principle, we do not think that
γ = 2Bλ

η should always be the optimal setting in practice.
Instead, we suggest that a γ slightly larger than one is good
enough in practice. In our paper, we choose γ = 5 as the
default setting, which corresponds to β0 = 1.

We do not choose γ = 2Bλ
η mainly because a too large γ

requires too many iterations to reach the long-time limit.
Theorem 3.1 also demonstrates that it will require much
more iterations to reach convergence if β0 is too large. How-
ever, in practice, the number of training epochs is usually
fixed and is not consider as a fine-tuned hyperparameter.
This supports our belief that PNM with γ slighter larger
than one can be a good and robust default setting without
re-tuning the hyperparameters.

5. Empirical Analysis
In this section, we empirically study how the PNM-based
optimizers are compared with conventional optimizers.

Models and Datasets. We trained popular deep models, in-
cluding ResNet18/ResNet34/ResNet50 (He et al., 2016),
VGG16 (Simonyan & Zisserman, 2014), DenseNet121
(Huang et al., 2017), GoogLeNet (Szegedy et al., 2015), and
Long Short-Term Memory (LSTM) (Hochreiter & Schmid-
huber, 1997b) on CIFAR-10/CIFAR-100 (Krizhevsky &
Hinton, 2009), ImageNet (Deng et al., 2009) and Penn Tree-
Bank (Marcus et al., 1993). We leave the implementation
details in Appendix B.

Image Classification on CIFAR-10 and CIFAF-100. In
Table 1, we first empirically compare PNM and AdaPNM
with popular stochastic optimizers, including SGD, Adam
(Kingma & Ba, 2015), AMSGrad (Reddi et al., 2019),
AdamW (Loshchilov & Hutter, 2018), AdaBound (Luo
et al., 2019), Padam (Chen & Gu, 2018), Yogi (Zaheer
et al., 2018), and RAdam (Liu et al., 2019) on CIFAR-10
and CIFAR-100. It demonstrates that PNM-based optimiz-
ers generalize significantly better than the corresponding
conventional Momentum-based optimizers. In Figure 1,
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Figure 1. The learning curves of popular models on CIFAR-10
and CIFAR-100, respectively. Left Column: Test curves. Right
Column: The scatter plots of training losses and test errors during
final 40 epochs. It demonstrates that PNM and AdaPNM yield
significantly better test results.
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Epoch60 Epoch120 Epoch150

PNM(Top1) 37.23 25.67 23.21
SGD(Top1) 45.10 28.66 23.28

PNM(Top5) 14.53 7.79 6.73
SGD(Top5) 19.04 9.30 6.75

Figure 2. The learning curves of ResNet50 on ImageNet. Left
Subfigure: Top 1 Test Error. Right Subfigure: Training Loss.
PNM not only generalizes significantly better than conventional
momentum, but also converges faster. PNM always achieves lower
training losses and test errors at the final epoch of each learning
rate decay phase.

Table 2. Top-1 and top-5 test errors of ResNet50 on ImageNet.
Note that the popular SGD baseline performace of ResNet50 on
ImageNet has the test errors as 23.85% in PyTorch and 24.9%
in He et al. (2016), which are both worse than our SGD baseline.
AdaPNM (with decoupled weight decay and no amsgrad) signifi-
cantly outperforms its conventional variant, Adam (with decoupled
weight decay and no amsgrad).

PNM SGD ADAPNM ADAMW

TOP1 23.21 23.28 23.12 23.62
TOP5 6.73 6.75 6.82 7.09
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Figure 3. The learning curves of LSTM on Penn Treebank. The
optimal test perplexity of AdaPNM, Adam, and AMSGrad are
64.25, 66.67, and 67.40, respectively. AdaPNM not only con-
verges much faster than Adam and AMSGrad, but also yields
lower test perplexity.
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Figure 4. We compare PNM and SGD (with Momentum) by train-
ing ResNet34 on CIFAR-10 with 40% asymmetric label noise
(Top Row) and 40% symmetric label noise (Bottom Row). Left:
Test Curve. Right: Training Curve. We observe that PNM with
a large β0 may effectively relieve memorizing noisy labels and
almost only learn clean labels, while SGD almost memorize all
noisy labels and has a nearly zero training error.
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Figure 5. We compare the generalization of PNM and SGD under
various learning rates. Left: ResNet18 on CIFAR-10. Right:
ResNet34 on CIFAR-100. The optimal performance of PNM is
better than the conventional SGD.

we note that PNM-based optimizers have better test perfor-
mance even with similar training losses.

Image Classification on ImageNet. Table 2 also sup-
ports that the PNM-based optimizers generalizes better than
the corresponding conventional Momentum-based optimiz-
ers. Figure 2 shows that, on the experiment on ImageNet,
Stochastic PNM consistently has lower test errors than SGD
at the final epoch of each learning rate decay phase. It
indicates that PNM not only generalizes better, but also
converges faster on ImageNet due to stronger SGN.

Language Modeling. As Adam is the most popular opti-
mizer on Natural Language Processing tasks, we further
compare AdaPNM (without amsgrad) with Adam (with-
out amsgrad) as the baseline on the Language Modeling
experiment. Figure 3 shows that AdaPNM outperforms
the conventional Adam in terms of test performance and
training speed.

Learning with noisy labels. Deep networks can easily
overfit training data even with random labels (Zhang et al.,
2017). We run PNM and SGD on CIFAR-10 with 40% label
noise for comparing the robustness to noise memorization.
Figure 4 shows that PNM has much better generalization
than SGD and outperforms SGD by more 20 points at the
final epoch. It also demonstrates that enhancing SGN may
effectively mitigate overfitting training data.

Robustness to the learning rate and weight decay. In
Figure 5, we show that PNM can consistently outperform
SGD under a wide range of learning rates. Figure 6 further
supports that PNM can be more robust to learning rates and
weight decay than SGD, because PNM has a significantly
deeper and wider basin in terms of test errors. This makes
PNM a robust alternative to conventional Momentum.

Robustness to the new hyperparameter β0. Finally, we
empirically study how PNM depends on the hyperparame-
ter β0 in practice in Figure 7. The result in Figure 7 fully
supports our motivation and theoretical analysis. It demon-
strates that PNM may achieve significantly better general-
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Figure 6. The test errors of ResNet18 on CIFAR-10 under various
learning rates and weight decay. PNM has a much deeper and
wider blue region near dark points (≤ 4.83%) than SGD.
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Figure 7. We train ResNet18 on CIFAR-10 under various β0
choices. It demonstrates that PNM may achieve significantly better
generalization with a wide range of β0 > 0, which corresponds
to a positive-negative momentum pair for enhancing SGN as we
expect. With any β0 ∈ [−1, 0], the test performance does not
sensitively depend on β0, because this case cannot enhance SGN.
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ization by choosing a proper β0 > 0, which corresponds
to a positive-negative momentum pair for enhancing SGN
as we expect. With any β0 ∈ [−1, 0], the test performance
does not sensitively depend on β0. Because the case that
β0 ∈ [−1, 0] corresponds to a positive-positive momentum
pair and, thus, cannot enhance SGN.

Supplementary experiments. Please refer to Appendix C.

6. Conclusion
We propose a novel Positive-Negative Momentum method
for manipulating SGN by using the difference of past gra-
dients. The simple yet effective method can provably im-
prove deep learning at very low costs. In practice, the PNM
method is a powerful and robust alternative to the conven-
tional Momentum method in classical optimizers and can
usually make significant improvements.

While we only use SGD and Adam as the conventional
base optimizers, it is easy to incorporate PNM into other
advanced optimizers. Considering the importance and the
popularity of Momentum, we believe that the proposed
PNM indicates a novel and promising approach to designing
optimization dynamics by manipulating gradient noise.
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