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Abstract

Human beings acquire the ability of image classi-
fication through visual concept learning, in which
the process of concept formation involves inter-
twined searches of common properties and con-
cept descriptions. However, in most image classi-
fication algorithms using deep convolutional neu-
ral network (ConvNet), the representation space
is constructed under the premise that concept
descriptions are fixed as one-hot codes, which
limits the mining of properties and the ability
of identifying unseen samples. Inspired by this,
we propose a learning strategy of visual concept
formation (LSOVCF) based on the ConvNet, in
which the two intertwined parts of concept for-
mation, i.e. feature extraction and concept de-
scription, are learned together. First, LSOVCF
takes sample response in the last layer of Con-
vNet to induct concept description being assumed
as Gaussian distribution, which is part of the train-
ing process. Second, the exploration and expe-
rience loss is designed for optimization, which
adopts experience cache pool to speed up conver-
gence. Experiments show that LSOVCF improves
the ability of identifying unseen samples on ci-
far10, STL10, flower17 and ImageNet based on
several backbones, from the classic VGG to the
SOTA Ghostnet. The code is available at https:
//github.com/elvintanhust/LSOVCF.

1. Introduction

Image classification is an important task in computer vision
that aims to classify the unseen samples into the correct
categories. In the era of deep learning, the general idea to
this problem is to assign a unique code to each category, and
then learn a mapping between training samples and codes in
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order that unseen samples also fit this mapping. But for hu-
mans, the ability of classification is gained through concept
learning, which learns the generalized concept description
from sample observations such that a given observation can
be identified as a learned concept (Seel, 2012). During con-
cept learning, the process of concept formation involves two
intertwined searches: one for the best common properties of
instances, and the second for the best concept descriptions
based on that properties. To generalize the idea of con-
cept formation to deep learning, the common properties are
considered as progressively abstracted deep features while
concept descriptions correspond to output response in the
last layer. These two parts should be explored together as a
whole according to human concept formation, which means
we shouldn’t optimize the feature extraction parameters by
presetting output response of training sample. However, in
literature almost all the algorithms of image classification
based on deep learning violate the principle: each training
sample is given a description code, such as one-hot code.
Inspired by this fact, we try to explore the visual concept
formation by optimizing both parts in training process of
image classification based on deep learning.

Concept learning has been an important research area in
machine learning, but rarely scholars consider both two
part of concept formation. The research goal of the most
works is to construct the representation space by finding
the best common properties of instances. For example, a
model that combines reinforcement learning and clustering
assumption is proposed to extract better deep features for
concepts separation (Shi et al., 2019). Recently, the other
research direction is to build cognitive structures of concepts
by lots of labeled samples, and then new concepts can be
obtained with few samples based on the existing cognitive
structures. The typical example of this type of research
is few-shot learning (Snell et al., 2017). In this paper, we
focus on the learning of concept description motivated by
visual concept formation, which is carried out in image
classification based on deep convolutional neural network
(ConvNet).

Existing image classification algorithms based on ConvNet
only concern about the properties of instances while the
learning of concept descriptions is ignored. Even though
many effective preprocessing methods, network architec-
tures and loss functions have been proposed (DeVries &
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Taylor, 2017; Li et al., 2019; Cao et al., 2019), one-hot
codes are directly assigned to categories as the concept de-
scriptions (He et al., 2016; Hu et al., 2020; Han et al., 2020b).
One-hot codes strictly correspond to the points on the coordi-
nate axes in the output space of ConvNet so that relationship
between different categories are exactly equal. Another kind
of method that takes fixed hard-code as concept descriptions
during property exploration is label distribution learning
(LDL) (Geng, 2016), in which descriptions correspond to
non-axes points which has taken relationship between cate-
gories into account by human experience. However, label
distribution in LDL is actually obtained by some predefined
rules, which is separated from the feature extraction pro-
cess without learning. Both one-hot code based algorithms
and LDL take concept descriptions as known knowledge
during learning while ignoring that common properties and
concept descriptions are explored as a whole in human’s
concept formation. In fact, there are some internal relations
between concepts while they are separated from each other.
For example, bicycle and car are two visual concepts in
the image classification, but they have the same property
wheels. These relations imply different losses when sam-
ples are misclassified into different categories. However, the
relation between categories is also fixed when the concept
descriptions are fixed. For example, one-hot coding makes
the sample misclassified into any category contribute the
same loss, which will limit the mining of some important
properties and lead to the decline of the ability to identify
new samples. Even though LDL considers the different
loss of misclassification in such case, label distribution is
only designated by experience in some special applications.
Concept formation is a process of interwoven exploration
of both two parts, in which the concept description should
dynamically adjusted with common properties.

In this paper, we explore visual concept formation based
on ConvNet, in which common properties (feature extrac-
tion) and concept descriptions will be optimized as a whole.
Therefore, the first question to be addressed is what the con-
cept description should look like. Since concept description
corresponds to output response in the last layer of the Con-
vNet which is the induction of the attributes of the samples
belonging to the same concept, the output response should
follow the clustering assumption. It means the responses
of the congeneric samples in response space should gather
in the same area while the heterogeneous samples gather in
the different areas. For simplicity, we assume the response
follows Gaussian distribution with a fixed variance. The
second question we have to face is how we drive the vi-
sual concept formation. During training, the responses of
batch samples can be obtained through forward propagation
of ConvNet, which is indicated as the temporary concept
descriptions (formally as exploration response). With ex-
ploration response in each iteration, the network parameters

can be optimized by minimizing the difference between the
sample responses and the exploration response. By repeat-
ing these steps over and over again, the two intertwined
searches of visual concept formation will be performed con-
tinuously. Moreover, the dynamic change of exploration
response will bring convergence difficulty. To overcome
this problem, the using of experience is adopted which is
inspired by the fact that exploration and experience coexist
in human’s learning.

According to above analysis, a learning strategy of visual
concept formation (LSOVCEF) is proposed in this paper.
First, the exploration and experience loss (EE-Loss) based
on temporary concept descriptions following clustering as-
sumption is designed to drive the visual concept formation,
which refers to the weighted summation of exploration loss
and experience loss. Specifically, exploration loss of a sam-
ple means the KL divergence between its sample response
and the corresponding exploration response while experi-
ence loss considers experience response from the past expe-
riences. To calculate experience loss, the experience cache
pool (ECP) is adopted to save experiences. Second, stochas-
tic gradient descent is adopted here for optimization. Fi-
nally,the effectiveness of experience has been demonstrated
in ablation experiments. Furthermore, the improvement of
identifying unseen samples of the overall LSOVCEF has been
proved by several backbones and datasets in the experiment
section.

Contributions: To handle the image classification task, we
try to explore visual concept formation by learning deep
features and output response together, considering humans’
concept learning process. Our contributions can be summa-
rized as follows:

* We propose LSOVCF for image classification that
learn both deep features and output response together,
which is inspired by the human concept learning pro-
cess

* We propose to use ECP to store experience, and then a
EE-Loss is designed for rapid and stable formation of
visual concept.

* We demonstrate the effectiveness of our LSOVCF
through experiments based on several backbones and
datasets.

* The experimental results and the limitations of pro-
posed LSOVCEF are discussed.

Section Arrangement: The rest of the paper is organized
as follows. Section 2 introduces the related work. Section
3 details the methodology of proposed LSOVCE. Section
4 shows the experiments and results. Section 5 discusses
the experiment results and limitations of proposed LSOVCF.
Section 6 makes a conclusion.
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2. Related Work

Deep Classification: Image classification are basically re-
alized based on ConvNet since the rise of deep learning in
the past decade. The existing researches of ConvNet based
image classification can be basically divided into three parts.
The first one mainly improves the model’s generalization
ability by increasing sample diversity (DeVries & Taylor,
2017; Cubuk et al., 2019). The second part is the most re-
searched one, many impressive network architectures have
been proposed, including the design of basic modules (Jeon
& Kim, 2017; Kobayashi, 2019), connection between lay-
ers (He et al., 2016; Huang et al., 2017), reorganization of
feature maps (Hu et al., 2020; Han et al., 2020b), attention
mechanism (Wang et al., 2017; Kim et al., 2020; Zoran et al.,
2020), neural structure search (Zoph et al., 2018; Li et al.,
2020; Howard et al., 2019), etc. And the last one focuses
on the design of loss function, mainly about the data im-
balance (Cao et al., 2019; Lin et al., 2020). However, such
algorithms mainly focus on exploring better deep features
with fixed concept descriptions. It is common to directly
assign one-hot code to each category, which restricts that
relationship between categories must be same. Of course,
there are also some studies named LDL taking the connec-
tions between categories into account. But there is still a
fixed code assigned to each sample during learning which is
generated by some predefined rules. In addition, the LDL is
only appropriate for some special classification tasks, such
as emotion classification (Yang et al., 2017), age estimation
(He et al., 2017), skin disease severity grading (Wu et al.,
2019), etc.

Deep Clustering: Clustering is one of the basic tasks of
unsupervised learning and the proposed strategy adopts
the similar assumption as clustering. The response of con-
generic samples in output space should gather in same area
while heterogeneous samples gather in different areas. In
age of deep learning, various traditional clustering algo-
rithms are combined with deep features while features are
learned alone or optimized together with clustering. For
deep features extraction, auto encoder, variational auto en-
coder and other variants are most common choice, for ex-
ample, they are combined with subspace clustering (Dang
et al., 2020), K-means (Xie et al., 2016), hierarchically clus-
tering (Shin et al., 2020), etc. In addition, ConvNet is also
a popular choice for representation learning (Hsu & Lin,
2018; Zeng et al., 2020; Zhan et al., 2020). Although having
to abide by clustering assumption, the goal of this paper is
to classify unseen samples by exploring visual concept for-
mation with supervised learning while clustering algorithms
aim to find a reasonable division of unlabeled samples.

Concept Learning: Concept learning has been an impor-
tant research area in machine learning. The formation of a
concept involves two intertwined searches in human concept

learning, that is, feature expression and concept description.
However, almost all literatures concern about better feature
expression only rather than both two parts, such as the al-
gorithms that try to learn visual concepts with hierarchy
(Jia et al., 2013; Divvala et al., 2014) and algorithm that
combines reinforcement learning and clustering assump-
tion for normal image classification task (Shi et al., 2019).
Another direction of concept learning aims to acquire new
concepts based on the relevant concepts originally existing
in the cognitive structure. The main strategy is to gather
statistics of labeled samples for cognitive structure construc-
tion, and then to take this as prior information to handle
new concepts. In addition, the cognitive structure is usually
expressed as Bayesian probability (Lake et al., 2015) or neu-
ral network (Han et al., 2020a; Yang et al., 2020). In fact,
such research of concept learning has several terms with
different task descriptions which are well known, including
one-shot learning (Xue & Wang, 2020), few-shot learning
(Snell et al., 2017), new categories discovering (Han et al.,
2020a), etc. In this paper, we try to explore visual concept
formation by learning both two intertwined parts, and to
acquire new concepts based on formed concepts will be the
future work.

3. Methodology

3.1. Preliminaries

Existing ConvNet based image classification algorithms
only concern about deep features of instances while the
learning of concept descriptions is ignored. One-hot code is
usually directly adopted as figure 1. For C categories, the
concept description of each category is fixed to a C-bit bi-
nary code. As for the ConvNet, the last layer is a linear layer
with C neurons which takes softmax as activation function.
The optimization goal of such algorithms is that samples
of same category will activate one specified neuron. So the
output response of each category is limited to a point on the
coordinate axis, making the relationship between categories
completely equal. Noting that neurons of the last layer is
unordered, so it can be considered as a C-dimension space.
Further, although there are some advanced loss functions

airplane 1000000000
automobile 0100000000
trunk 0000000001

Figure 1. The one-hot codes of cifar10 dataset.

according to data distribution (Cao et al., 2019; Lin et al.,
2020), cross entropy loss (CE-Loss)is the most commonly
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used here. And in section 4, CE-Loss and One-hot code
are selected for comparison. The CE-Loss is calculated as

follows:
c

Leg=— Y pelogge )
c=1

in which p means one-hot code of the sample and q is the
output response.

Although keeping the same form with existing ConvNet,
we consider the last linear layer as one-dimension space
with size K in our proposed learning strategy, that is, the
neurons are in order. The location of target output response
is not fixed until concepts formed and only the clustering
assumption is required. We assume the total response inten-
sity of output as 1 which is achieved through the softmax
activation function. Since the total response intensity is
limited to 1, the response intensity in each position can be
viewed as probability that response center locates in here,
then expectation of response position can be calculated. In
the proposed LSOVCEF the expectation of response position
in output space is viewed as the response center, which is
calculated as ( 2).

K K
=Y ek, Y u=1 )
k=1 k=1

in which y is the output response. Thus, the target re-
sponse of LSOVCEF is determined by such expectation of
congeneric samples.

3.2. Learning Strategy of Concept Formation
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Figure 2. The proposed learning strategy of concept formation.
The backbone here can be any ConvNet, and response space is the
last linear layer of the selected ConvNet.

The proposed strategy aims to explore the formulation of
concepts which mainly focuses on the output response,
so the backbone can be any ConvNet. The main idea of

LSOVCEF is shown in figure 2. Besides ConvNet, another
key component ECP is proposed to store recent exploration
results. As mentioned earlier, the last layer of the network
can be considered as one-dimension space and samples re-
sponse can be obtained through forward propagation in each
iteration during training. Then we can get the response
center RC(C;) of each category C; as follows:

RC(Cy) = & Y00 E(y)), v € C; 3)

where ¢ is the output response of single sample which be-
longs to C; and there are N samples for C; in such batch.
After all response centers are obtained, they are shifted by
a certain distance when response centers of different cate-
gories are too close, according to the clustering assumption.
Furthermore, for simplify, the target response of category
C; is assumed to follow a Gaussian distribution that takes
RC(C;) as the mean value. In addition, the variance of
the Gaussian distribution is set to a constant. The target re-
sponses of categories obtained from each batch images are
called exploration response. And such exploration response
will be pushed into the ECP as an experience sample. The
capacity of ECP depends on the size of training dataset, and
we need to fill the pool before network parameters updating.
At each iteration of training, exploration response can be
obtained based on sample response and experience response
can be calculated through randomly sample from ECP. Then
the EE-Loss can be calculated and both common properties
and concept descriptions will be optimized by stochastic
gradient descent during the visual concept formation. The
detail of ECP and EE-Loss will be presented later.

As for classification of the unseen sample, the average re-
sponse P of each category C; in the training set needs to
be calculated first, then KL divergence between P? and the
output response of unseen sample will be calculated, the
unseen sample will be finally assigned into the category
with minimum KL divergence. P? and KL divergence are
calculated as follows:

N
. 1 . .
p:7§yg C; 4
Nﬁywe €]

K

KL(P',y) =Y Pilog(P}/(yx +€)),e = le =8 (5)
k=1

in which, 77 is output response of single sample from cate-
gory C; and the sample count of C; is N.

3.3. Experience Cache Pool

In each iteration of the training process, the samples of each
category need to be fitted into a target response. But the
target response of proposed LSOVCEF is calculated based
on samples response of each batch images rather than fixed
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codes. So the target response of each iteration is different
before the concepts formed. Due to the uncertainty of fitting
target, it is difficult for the model to converge stably and
quickly, despite the tendency of concept formation. There-
fore, the ECP is proposed to cope with this challenge, which
is inspired by the fact that exploration and experience co-
exist in human’s learning. In each iteration, exploration
response can be calculated, and we take it as the temporary
target response so that we can obtain the prediction accuracy
of current batch samples. Then the accuracy will be saved
when the exploration response is pushed into the ECP. In
addition, the earliest sample in the ECP will be popped if
the pool is full when new sample is pushed. During train-
ing, a batch of samples will be randomly selected from the
ECP in each iteration and the weighted average of them will
be calculated as experience response with the accuracy as
weight.

3.4. Exploration and Experience Loss

We expect that sample’s output response satisfies the clus-
tering assumption, so the target response of each iteration
can be calculated and loss function is designed based on
it. According to the statement above, we can obtain the
exploration response and the experience response in every
iteration. Considering the design motivation for the ECP,
the target response of each sample contains both exploration
response and experience response. And such two parts of
target response can be obtained respectively based on the
sample’s label, denoted as Py, and P.,,. Then the designed
EE-Loss is defined as follows:

Lgg = aKL(Pepl,y) + (1 - CV)KL(Pepra y) (6)

in which v means exploration ratio (ER) and aims to trade-
off between exploration and experience, which is related
to the learning ability of selected ConvNet. Furthermore,
the EE-Loss is differentiable, so stochastic gradient descent
can be used for optimization. The overall process of the
proposed LSOVCEF is shown in algorithm 1.

4. Experiments

Datasets: Experiments are conducted on four datasets, in-
cluding cifar10 (Krizhevsky, 2012), STL10 (Coates et al.,
2011), flower17 (Nilsback & Zisserman, 2006) and a subset
of ImageNet (Russakovsky et al., 2015). Cifarl0 dataset
consists of 60000 images in 10 classes, with 6000 images
per class and 5000 of them are for training. And in our
experiments, we randomly select 500 images from each
class’s training set for validation. STL10 dataset have 1300
labeled images per class, for each class, the training set, test
set and validation set are divided with a ratio of 750:500:50.
Flower17 dataset consists of 1360 labeled images that be-
long to 17 kinds of flowers, we take 70 images of each

Algorithm 1 Learning Strategy of Concept Formation
Initialization: fill the ECP.
for i = 1 to epoches do
for j = 1 to iterations do
Get output response ¥;
Calculate exploration response FP,,; and take it as
target response to calculate accuracy of this batch;
Pop the earliest sample in ECP;
Push exploration response and accuracy into ECP;
Random sampling from ECP and calculate experi-
ence response FPep,;
Calculate EE-Loss;
Optimized by stochastic gradient descent;
end for
end for

class as training set and 10 image as test set, there is no
validation set in flower17 dataset. As for Imagenet, 100
categories are randomly selected for experiments because
the time consumption on the complete dataset is too high.
And 100 samples of each category are randomly selected as
test set.

Approaches: There are seven backbone ConvNets being
selected for experiments, including VGG (Simonyan & Zis-
serman, 2015), ResNet (He et al., 2016), SENet (Hu et al.,
2020), MobileNet v3 (Howard et al., 2019), ShuffleNet
v2 (Ma et al., 2018), EfficientNet (Tan & Le, 2019) and
GhostNet (Han et al., 2020b). VGG is one of the most clas-
sical ConvNet for image classification while GhostNet is
one of the SOTA which is proposed last year. ResNet and
SENet are famous for the widely used residual structure
and “Squeeze-and-Excitation” block. As for MobileNet v3,
ShuffleNet v2 and EfficientNet, such models based on differ-
ent ideas are representatives of models that aspire to speed
and lightness, note that MobileNet v3 is one of the best
examples of neural architecture search techniques. Except
ShuffleNet v2 and GhostNet, there are several architectures
for each backbone to choose. For VGG, the 11-layer model
with batch normalization is adopted here. And 18-layer
ResNet is selected while SENet is based on it. In addition,
mobileNetV3-Small and efficientnet-b0 is selected here.

Settings: According to the count of categories, the size
of last linear layer is set to 256 on the cifar10, STL10
and flowerl7, and it is set to 1800 on the subset of Ima-
geNet. The response centers of different categories should
be shifted to a certain distance D = 13 if they are too close,
because we assume that the response follows a Gaussian
distribution with a variance of 1. D = 13 is reasonable
considering the effective length of response region, and the
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Table 1. Train ResNet on cifar10 with/out ECP.

ECP 1 2 3 4 5

X 93.45 92.76 89.07 93.56 93.79 92.53 1.76
4 93.65 93.88 93.63 93.78 93.71 93.73 0.09

MEAN STD

target response intensity lists as:

[0.000134, 0.00443, 0.0540,
0.242,0.399, 0.242, (7)
0.0540, 0.00443, 0.000134]

The capacity and sampling batch size of ECP are set to
(1500, 500) for cifar10, (600, 200) for STL10, (300, 100)
for flower17 and (1300, 500) for ImageNet. And the train-
ing batch size of cifar10, STL10, flower17 and ImageNet
are set to 100, 100, 170, 500. The proposed LSOVCF will
be compared with the selected backbones which adopt the
one-hot code and cross-entropy. All models will be opti-
mized by stochastic gradient descent and the initial learning
rate is set to 0.1, except that learning rate of VGG is set to
0.01 for convergence. In addition, all models will be trained
200 epochs with the same data preprocessing, and the learn-
ing rate will decay by a factor of 10 in 100th and 150th
epoch. Finally, all experiments are based on the PyTorch
and performed on RTX 2080 Ti GPU.

4.1. Ablation Experiments

With/out ECP: Take ResNet and cifar10 as example, we
have demonstrated the effect of the ECP. In figure 3, the
model can converge quickly and stably with the ECP accord-
ing to sub-figure (c) and (d). Although the model without
ECP achieves good results at the end of the training in sub-
figure (b), there is a lucky element because it keeps stable
for only a small segment. Furthermore, with and without the
ECP, the ResNet has been trained five times on the cifar10
dataset and the accuracy has been calculated on the test set,
the results are shown in table 1. According to the result,
higher and more stable accuracy can be obtained via ECP.

Exploration Ratio: Different neural architectures leads
to different learning abilities just like that different person
behaves differently in learning, so the most appropriate ER
values are different for selected backbones. To find the
most appropriate values, take ER range from 0.1 to 0.9
with step of 0.1, the models based on each backbone have
been trained 5 times with each ER value, and flowerl7 is
selected for this experiment to save time. The result of
ResNet is shown in table 2, and the most appropriate ER is
0.3. Although it gets highest accuracy when ER is set to 0.7,
but the standard deviation of 0.7 is nearly three times as that
of 0.3. Furthermore, the most appropriate ER values of all
backbones are shown in table 3, and them will be used in
the following experiments.

train

%
S
L

val
34 W

| el

404
1
201 val

T T T T T T T T T
0 50 100 150 200 50 100 150 200
Epoches Epoches
(a) (b)

=
S
L

Exploration loss
Accuracy

=y

train

| val

\L N .

0 50 100 150 200 50 100 150 200
Epoches Epoches
(0) (@

)
L
%
S
L

EE loss
Accuracy
N

3

=

Figure 3. Training process of model. The ER is set to 1.0 in (a) and
(b) while 0.3 in (c) and (d), FR = 1.0 means that ECP doesn’t
work. (a) and (c) show the loss curve of training set and validation
set, (b) and (d) show the accuracy curve of validation set.

Table 2. Find most appropriate ER of ResNet on flower17.

ER 1 2 3 4 5

0.1 75.29 77.06 75.29 75.88 73.53 75.41 1.14
0.2 73.53 78.82 72.94 79.41 73.53 75.65 2.85
0.3 75.88 76.47 75.88 77.06 77.06 76.47 0.53
0.4 77.06 74.12 75.88 78.24 74.71 76.00 1.51
0.5 74.71 77.06 74.12 77.06 74.12 75.41 1.36
0.6 76.47 7529 72.94 74.71 73.53 74.59 1.26
0.7 77.65 74.12 78.24 77.65 75.88 76.71 1.52
0.8 74.71 78.24 70.00 78.24 65.29 73.30 5.02
0.9 70.59 67.65 68.24 73.53 69.41 69.89 2.08

MEAN STD

4.2. Experiments with Different Backbones

The models based on all selected backbones will be trained
on cifar10, STL10 and flower17, and the proposed LSOVCF
will be compared with the strategy that based on one-hot
code and CE-Loss. As for the subset of ImageNet, ex-
periments are carried out based on ResNet, ShuffleNet v2,
EfficientNet and GhostNet. Each experiment has been per-
formed 5 times and the mean and standard deviation of
accuracy on the test set have been calculated, results are
shown in table 4, table 5, table 6 and table 7.

On the cifar10 dataset, the accuracy of all backbones in the
proposed strategy is improved compared with the previous
algorithms, especially ResNet and ShuffleNet v2. In ad-
dition, the LSOVCEF is more stable in most cases. As for
STL10 dataset, we can get similar conclusion, except that
the accuracy of VGG network is lower. Flowerl7 is a dataset
of fine-grained recognition which is more difficult to learn
concepts, and the lack of labeled samples further enhances
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Table 3. Selected ER values of backbones.

BACKBONE VGG RESNET SENET
ER 0.1 0.3 0.7
BACKBONE MOBILENET SHUFFLENET
V3 v2
ER 0.2 0.2
BACKBONE EFFICIENTNET GHOSTNET
ER 0.3 0.2

Table 4. Experiments with different backbones on cifar10.

BACKBONE CE-Loss EE-Loss
VGG 92.85+0.19 9297 £0.10
RESNET 93.23 £0.22 93.73 £0.09
SENET 93.51 =£0.15 93.66 £0.18
MOBILENET V3  90.00 +£0.23 90.07 =0.13
SHUFFLENET V2 90.31 £0.35 90.78 +£0.20
EFFICIENTNET 93.354+0.08 93.62+0.12
GHOSTNET 91.63 +£0.25 91.97 £0.17

the difficulty. Nevertheless, the proposed LSOVCF per-
forms better on all backbones except VGG and GhostNet.
ImageNet is the most commonly used large-scale image
recognition dataset. The complex background of the im-
ages will interfere with our LSOVCF which aims to learn
single concept of each sample. In spite of this, the pro-
posed LSOVCEF performs better on ResNet, EfficientNet
and GhostNet, in particular, it improves accuracy by 1.89
percentage on ResNet. In conclusion, the experimental re-
sults demonstrate the effectiveness of LSOVCEF and indicate
that concept formation is more conducive to the identifica-
tion of unseen samples than the artificial hard codes.

5. Discussion

The above experiments have proved the classification ability
of LSOVCE, and there have been some improvements on
almost all backbones and datasets. Furthermore, exhilarat-
ingly, an interesting phenomenon emerged in the results,
which is shown in figure 4. Conceptually similar categories
also have close response locations in the concept space while
we don’t impose any constraints in such aspect, which is
spontaneous in the process of concept formation. In cifar10
dataset, airplane, automobile, ship and truck belong to a
higher hierarchy concept of “transportation” while other cat-
egories belong to “animal”. The results of dozens of experi-
ments show that there is no overlap between “transportation”
and “animals” in output space, although the spatial order of
lower hierarchy concepts is not fixed. In addition, cat and
dog are almost always adjacent in concept space, so does the
automobile and truck, airplane and ship. On the other hand,

Table 5. Experiments with different backbones on STL10.

BACKBONE CE-Loss EE-Loss
VGG 84.39 £0.48 84.12 +0.31
RESNET 78.74 £ 0.80 80.92 £0.29
SENET 79.06 £ 0.35 80.51 +£0.23
MOBILENET V3  75.88 +20.49 76.63 £0.34
SHUFFLENET V2 75.12 £ 0.51 75.73 £0.54
EFFICIENTNET 81.58 £0.77 84.104+0.31
GHOSTNET 82.12 £0.25 82.434+0.25

Table 6. Experiments with different backbones on flower17.

BACKBONE CE-Loss EE-Loss
VGG 75.41 £20.94 74.70 £1.29
RESNET 70.71 £1.87 76.47 £0.53
SENET 7224 +1.14 7635+t 1.72
MOBILENET V3  73.65 +£2.12 74.94 £+ 2.09
SHUFFLENET V2 68.24 +£1.66 72.47 +2.12
EFFICIENTNET 7494 +£3.04 76.71 £1.42
GHOSTNET 75.18 £1.36 74.82 £1.55

the confusing samples are more likely to be misclassified
into similar concepts by humans, so does the LSOVCF. The
category that most misclassified into in cifar10 is shown in
table 8. For each category, the “most err” in table means the
predicted category that appears most frequently in the mis-
classified samples while “ratio” means its percentage in all
the misclassified samples. Considering cat and dog which
have the minimum accuracy and adjacent output response,
about half of cat’s misclassified samples are predicted as
dog, so does dog. In summary, the LSOVCEF is intended
to simulate the process of human concept formation and
the results also show similar phenomena with human cog-
nition, which means that our strategy successfully achieves
the expected results.

Limitations and Future Work: Although the effectiveness
of LSOVCEF has been demonstrated through lots experi-
ments and surprising phenomenon emerged in results, there
are still many limitations for it to overcome. The limitations
are summarized as follows:

» The size of output space is set to 256, which is too
small to hold many concepts. And one dimension is
not enough too, considering the 1000 categories of
ImageNet, at least 10000 neurons is needed in the last
linear layer of ConvNet.

* We use KL divergence to measure the difference of
response in output space, but the response should be
sparse because it is confined to a small area. For such
sparse responses, KL divergence is not appropriate very
well. Considering three responses without overlap, KL
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Table 7. The average accuracy of 100 categories from ImageNet.

BACKBONE CE-Loss EE-Loss
RESNET 79.62 +£0.48 81.514+0.52
SHUFFLENET V2 76.66 £0.34 75.53 £0.29
EFFICIENTNET 83.34 £0.29 83.76 £ 0.24
GHOSTNET 79.57 £0.27 79.83 £0.29

*There are only partial results of supplementary experiment be-
cause of the lack of time. The input image size is set to 128*128
and batch _size is set to 512 considering the graphic memory of
GPU. The results of ResNet, SeNet, EfficientNet and GhostNet
show that the proposed LSOVCEF is also work on the large-scale
dataset.
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Figure 4. The average output response of cifar10’s training set, and
backbone is ResNet. The image examples are the same order as
the category response centers.

divergence cannot distinguish the relationship between
them.

» The output response is constrained to unimodal Gaus-
sian distribution, but some different categories may
have common properties in the real world, so mul-
timodal distribution with main peak may be a more
appropriate response form.

* The use of ECP here is just a rudimentary form, and
it can be improved by referencing to the researches in
reinforcement learning, such as ECP with priority.

* We directly calculate the KL divergence based on the
statistical results of training set and predict unseen sam-
ple as category with minimum KL divergence. There
are actually many methods that can be used to predict
unseen samples which are not analyzed in this paper,
for example, using data in ECP instead of statistical
results of the training set.

Table 8. Misclassification statistics. The backbone is ResNet and
dataset is cifar10.

CATEGORY ACCURACY MOST ERR RATIO
AIRPLANE 95.7 SHIP 28
AUTOMOBILE 97.3 TRUCK 67
BIRD 91.3 DEER 23
CAT 86.2 DOG 48
DEER 94.8 CAT 25
DOG 87.9 CAT 61
FROG 95.3 BIRD 38
HORSE 95.1 DEER 31
SHIP 96.6 AIRPLANE 41
TRUCK 95.3 AUTOMOBILE 53

In view of these limitations, future work will be carried out
from the following aspects:

» To grasp more concepts, the concept space should be
extended to higher dimensions, such as 2D, 3D, etc.

¢ Find an effective metric to measure the difference be-
tween sparse distributions, take 2D, 3D, etc. into ac-
count.

* Look for a more reasonable response form, such as
multimodal distribution.

* Explore more about how to use experience, such as
experience form and sampling method.

* Find a more reasonable method to classify unseen sam-
ples using learned concepts.

Although the proposed strategy has many limitations, it is
still an important direction for concept learning. And we
believe machines will actually grasp concepts someday with
the breakthrough of these limitations and further research.

6. Conclusion

We have proposed LSOVCEF for image classification task.
Considering the process of humans’ visual concept forma-
tion involves intertwined searches of common properties
and concept descriptions, the proposed strategy aims to learn
both two parts together while previous algorithms directly
adopts fixed codes as concept descriptions. In the LSOVCE,
ECP is proposed for stable convergence of the model, and
then the EE-Loss is designed based on the ECP and cluster-
ing assumption. The experiment results have demonstrated
the effectiveness of proposed LSOVCF. And the interest-
ing clustering phenomenon of similar concepts shows the
prospect of this work that machines have the possibility to
grasp concepts rather than just memorize samples. Although
there are still many limitations, the proposed strategy is an
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important direction of concept learning. In addition, our
future research will focus on breaking these limitations.
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