CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee

Supplementary Materials

A. Experimental Setting

In our constrained Cartpole environment, the cart is restricted in the area [—2.4, 2.4]. Each episode length is no longer than
200 and terminated when the angle of the pole is larger than 12 degree. During the training, the agent receives a reward +1
for every step taken, but is penalized with cost +1 if (1) entering the area [—2.4, —2.2], [-1.3, —1.1], [-0.1,0.1], [1.1, 1.3],
and [2.2, 2.4]; or (2) having the angle of pole larger than 6 degree.

In our constrained Acrobot environment, each episode has length 500. During the training, the agent receives a reward
+1 when the end-effector is at a height of 0.5, but is penalized with cost +1 when (1) a torque with value +1 is applied
when the first pendulum swings along an anticlockwise direction; or (2) a torque with value +1 is applied when the second
pendulum swings along an anticlockwise direction with respect to the first pendulum.

For details about the update of PD, please refer to (Achiam et al., 2017)[Section 10.3.3]. The performance of PD is very
sensitive to the stepsize of the dual variable’s update. If the stepsize is too small, then the dual variable will not update
quickly to enforce the constraints. If the stepsize is too large, then the algorithm will behave conservatively and have low
return reward. To appropriately select the stepsize for the dual variable, we conduct the experiments with the learning rates
{0.0001, 0.0005, 0.001,0.005,0.01,0.05} for both tasks. The learning rate 0.005 performs the best in the first task, and the
learning rate 0.0005 performs the best in the second task. Thus, our reported result of Cartpole is with the stepsize 0.005
and our reported result of Acrobot is with the stepsize 0.0005.

Next, we investigate the robustness of CRPO with respect to the tolerance parameter 7. We conduct the experiments under
the following values of n {10, 5,2, 1,0.5} for the Acrobot environment. It can be seen from Figure 4 that the learning curves
of CRPO with the tolerance parameter 7 taking different values are almost the same, which indicates that the convergence
performance of CRPO is robust to the value of 77 over a wide range. Thus, the tolerance parameter 77 does not cause much
parameter tuning cost for CRPO.
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Figure 4. Comparison of CRPO in Acrobot with tolerance parameter 7 taking different values.

B. Proof of Theorem 1: Tabular Setting
B.1. Supporting Lemmas for Poof of Theorem 1

The following lemma characterizes the convergence rate of TD learning in the tabular setting.

Lemma 2 ((Dalal et al., 2019)). Consider the iteration given in eq. (4) with arbitrary initialization 96. Assume that the
stationary distribution [, is not degenerate for all w € RISIXIAL Let stepsize B, = @(t%) (0 < o0 < 1). Then, with
probability at least 1 — §, we have
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Note that o can be arbitrarily close to 1. Lemma 2 implies that we can obtain an approximation Q such that HQ@ - Q5. H 9 =
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O(1/+/K;,) with high probability.
Lemma 3 (Performance difference lemma (Kakade & Langford, 2002) ). For all policies w, 7' and initial distribution p, we
have

1

JP(W) - Jip(ﬁl) = ﬁ

K2

ESNVPEG,NW("S) [A}n" (37 a)]

where J! () and v, denote the accumulated reward (cost) function and visitation distribution under policy T when the
initial state distribution is p.

Lemma 4 (Lemma 5.1. (Agarwal et al., 2019)). Considering the approximated NPG update in line 7 of Algorithm 1 in the
tabular setting and © = 0, the NPG update takes the form:

exp(aQi(s, a)/(1 7))

o -
Wi41 = Wy + :Q;’ and 7th+1(a|s) = T, (a|s)

Zy(s) 7
where
2 = 32 o) exp (2T,
acA
Note that if we follow the update in line 10 of Algorithm 1, we can obtain similar results for the case i € {1,--- ,p} as

stated in Lemma 4.

Lemma 5 (Policy gradient property of softmax parameterization). Considering the softmax policy in the tabular setting
(eq. (3)). For any initial state distribution p, we have

vaZp(w) = ESNVpEaNﬂur(‘ls) [(llas - Z ﬂ—w(a’/|8)]]'a,5> Q’Z)l'rw (S7Q)] ’

a’eA

and

IV P (w)]l <
where 145 is an |S| x | A|-dimension vector, with (a, s)-th element being one, and the rest elements being zero.

Proof. The first result can follows directly from Lemma C.1 in (Agarwal et al., 2019). We now proceed to prove the second
result.

IV Jf (w)l, = |[E [(ﬂas - Z 7Tw(al|5)]la’s> Q;w (57a>‘|

a’eA 2

<E ‘(nas -> ww(a/|s)]la/8> Q% (s,a) ]
a’'€A 2

< E ﬂas - Z 7Tw(al|5)]la’s ij (s,a)]

a’€A 2
<2E [Q% (s,a)] < ZCmox
>~ T\ =91 ~

O

Lemma 6 (Performance improvement bound for approximated NPG). For the iterates T, generated by the approximated
NPG updates in line 7 of Algorithm 1 in the tabular setting, we have for all initial state distribution p and when © = 0, the
following holds

J§ (wi1) — Jg (wy)
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Proof. We first provide the following lower bound.
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Thus, we conclude that
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We then proceed to prove Lemma 6. The performance difference lemma (Lemma 3) implies:
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where () follows from the update rule in Lemma 4 and (i7) follows from the facts that ||, /p|| ., > 1 — v and log Z;(s) —
VV;%( )+ 155 Xaea T, (al ‘Qt s, a) —Q;wt(s,a)‘ > 0. O

Note that if we follow the update in line 10 of Algorithm 1, we can obtain similar results for the case i € {1,--- ,p} as
stated in Lemma 6.

Lemma 7 (Upper bound on optimality gap for approximated NPG). Consider the approximated NPG updates in line 7 of
Algorithm 1 in the tabular setting when © = 0. We have

Jo(*) = Jo(mw,)

1 IS[A] | 3(1+ acmax
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Proof. By the performance difference lemma (Lemma 3), we have
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where (¢) follows from Lemma 4, (i4) follows from Lemma 6 and (444) follows from the Lipschitz property of J¥ (w) such
that J¥ (wi1) — J¥ (wy) < 26"““‘ |we+1 — wel|,, which is proved by Proposition 1 in (Xu et al., 2020b). O
Note that if we follow the update in line 10 of Algorithm 1, we can obtain the following result for the case ¢ € {1,--- ,p} as
stated in Lemma 7:
Ji(mw,) = Ji(77)
1 2ac2, |SIIA] 31+ OéCnnx ~i
< 7E‘;NV* D * _ D * max H _ X3
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Lemma 8. Considering CRPO in Algorithm 1 in the tabular setting. Let K;, = O(T"/? log2/‘7(|$|2 |A]® TY+2/7 /).
Define N as the set of steps that CRPO algorithm chooses to minimize the i-th constraint. With probability at least 1 — 6,
we have

Y (o) = Jo(mu,)) +any_ N

teNo i=1
IS||A|T  aVT(2+ (1 —7)? + 20Cmay)
< ESND*D * ” max )
< KL (T ||y + (1 )3 + (1—7)2
Proof. If t € Ny, by Lemma 7 we have
a(Jo(m") = Jo(mw,))
* * ISIA] | 3a(l + acmax H
<Euop-(D ) =D . Cona 12
< (D ("7, ) = D (7" |7, 1)) 42 (1 e = Q% — (12)
If t € \V;, similarly we can obtain
a(Ji(mw,) — Ji(7"))
* * max S A 1+ OéCmaX
< Egvs (Dxu (7|, ) — Dr (7" || T,y 1)) + (1 = ’|Y)3 A ((1 HQMt (13)
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Taking the summation of eq. (12) and eq. (13) from¢ = 0to T" — 1 yields

« Z (Jo(ﬂ' Jo 771111 +OZZ Z ﬂ'wf - 7T*))

teNo i=1teN;
. 202c2 S]] A T 1 + acmax ~;
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(1 =) =0 teN; ?
Note that when t € N; (i # 0), we have J;(0) > d; + 7 (line 9 in Algorithm 1), which implies that
Ji(mw,) = Ji(m*) = Ji(0y) — Ji(7") *|j (’i *J'(M,,)|
>di+n—Ji(w |J Ji(ﬂwt”
21— @, - tH2' (15)
Substituting eq. (15) into eq. (14) yields
o 3" (olm*) = Jo(mu,) +anZIN\ —a2 Y o, - .
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" 202c2, |S||A|T 3o 1 + acmax ~
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By Lemma 2, we have with probability at least 1 — 4, the following holds
~ log(|S|* |A )
i, - @i = o (losSP A gy
2 (1=K,
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T L T3+
K,=06 () log= ,
" ( =2 IST1A IENEETIE
then with probability at least 1 — § /7', we have
S (1 =) IS[]A|
-Qj| £ —F=. 17
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Applying the union bound to eq. (17) from ¢ = 0 to T' — 1, we have with probability at least 1 — § the following holds

Z Z HQ’“’% Qi 2
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which further implies that, with probability at least 1 — J, we have

0 3 Uol®) = Jolma ) + a0 Y NG
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which completes the proof. O
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Lemma9. If

200 S| [AIT | ay/ISTIATT(2 + (1 = )? + 3acinas) )

= - |

then with probability at least 1 — 6, we have the following holds

1
5cmT > Esms Dir (777w, ) +

1. Ny # 0, i.e., Wy is well-defined,
2. One of the following two statements must hold,

(a) [No| > T2,
(b) 21 (Jo(m) = Jo(wy)) < 0.

Proof. We prove Lemma 9 in the event that eq. (18) holds, which happens with probability at least 1 — ¢. Under such an
event, the following inequality holds, which is also the result of Lemma 8.

az Jo(7*) — Jo(7w,)) +04772|N|

teNo i=1

e ISIAIT | av/ISTIAIT(2+ (1= 7)? + 2a60s)
B e = | 0

We first verify item 1. If Ny = 0, then >_°_, |[N;| = T, and eq. (20) implies that
20°¢3 0 [SIJAIT | ay/IS[JAIT(2 + (1 = 7)* + 2aCmax)
3 + 15 )
(1 ) (1=7)
which contradicts eq. (19). Thus, we must have Ny # 0.

We then proceed to verify item 2. If 3, \~ (Jo(7*) — Jo(w;)) < 0, then (b) initem 2 holds. If } 0, -\ (Jo(7*) — Jo(wy)) <
0, then eq. (20) implies that

< Espx DKL(W* | ‘ﬂ'wo) +

anT < Egwy Dx (77| T, ) +

p

* 2a max S||A|T « |S| "A| T(2 + (1 - ’7)2 + 3OZCm x)

0SNG € Bons D 1) + 2 SUAIT @/ ISLIAITE 022 )
1=1

Suppose that [No| < T/2,i.e., >.7_, |[N;| > T/2. Then,

1 p
ST < any N

i=1
G ISIAIT | ay/ISTIAIT(2 + (1 = 7)? + 3acimas)
e T »

which contradicts eq. (19). Hence, (a) in item 2 holds. ]

< ES~V*DKL(7T*||7Two) +

B.2. Proof of Theorem 1

We restate Theorem 1 as follows to include the specifics of the parameters.
Theorem 3 (Restatement of Theorem 1). Consider Algorithm I in the tabular setting. Let o = (1 —~)'?/\/|S||A| T,

lSHAl (3 + ]ESNV*DKL( *||’/Tw0) + 3Cmax + Cmax)’ and

- (1 (1-)13VT
T R TZ+1
( (1_,-)/) |SHA| (6(1_’7)§|SU_2 |.A|‘T_2>>
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Suppose the same setting for policy evaluation in Lemma 2 hold. Then, with probability at least 1 — 0, we have

24/|8] A
Jo(m*) = E[Jo(wou)] = e )1| |5\|F( s D (|| Ty ) + 3 + 2205 + 3Cmax) »

and for alli € {1,--- ,p}, we have

2y/ISTA . L 2/ DRI
ElJ;(7my, )] —di < —————(34+ Egup«D *|[wo) + 3Cmax + Cmax .
i ()] Ty (G K0 7T + B+ Ch) + =L

To prove Theorem 1 (or Theorem 3), we still consider the following event given in eq. (18) that happens with probability at
least 1 — §:

< V(=) [SIIA|T,

Z Z HQ’T“% B Q; 2

=0 teN;

which implies

az Jo(m*) = Jo(mw,) +04772|N|

teNy i=1

2« max |S| |"4| T « V ‘S| |A| T(2 + (1 - ’7)2 + 3acmax)
3 + 1.5 :
(1 -7) (1—=7)

We first consider the convergence rate of the objective function. Under the above event, the following holds

< B Dy (||, ) +

202¢2, ISIAIT | a/IS||A| T2+ (1 —7)* + 3Cmax)
3 + 15 .
(1 -) (1-)

If Zte/\/g (Jo(m*) — Jo (7w, )) < 0, then we have Jo(7*) — Jo(Tw,, ) < 0. If ZteN—O(J()(TF*) — Jo(7w,)) > 0, we have
|No| > T'/2, which implies the following convergence rate

JQ(TF*)— [JO(T"wom)]
|N| Z Jo JO th))

< ESNV*DKL<7T* | ‘ﬂ-wu) +

teNo
2 " doct |S| Al | 2V/ISTIA[2 + (1 = 7)? + 3aCmax)
< 7ESNU*DKL(7T ||'/Tw0) + 3 +
ol (1=7) (1—7)t5yT
VISIIA] 2
< ————— (2E;p+ Dk (7" |y ) + 6 4 4¢ 0k + 6Cmax) -
(1_7)1.5\/T( KL( H 0) )
We then proceed to bound the constrains violation. For any ¢ € {1,--- , p}, we have
E[Ji (g, )] — di = > Ji(ww,) — di
|NO| teNo
2 2 i) = (@)
|N0| teNo |N | teNo

| Tl o
+ W Z |Ji(7fwt) - Ji(9§)|

|N0| Z > flen., -,

=0 teN;
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L2 u .
T2 |, -,

Under the event defined in eq. (18), we have 7 e, — Q1 LSV (1 —~)|S||A| T. Recall the value of the
tolerance 1) = — ‘ﬁllf‘/‘» (3 4 Esmp Dxp (7| |Twy ) + 3cmax + €2,.x)- With probability at least 1 — 6, we have
2+/|S||A 24/(1 — S||A
Bl (ru)] — i < O (5 4 B D (71 ) + B+ ) + 20— DAL

= W—)VT VT

C. Proof of Lemma 1 and Theorem 2: Function Approximation Setting

For notation simplicity, we denote the state action pairs (s, a) and (s', a’) as  and 2/, respectively. We define the weighted

norm || f||p = 1/ [ f(x)2dD(x) for any distribution D over |S| x |.A|. We will write 6}, as 6, whenever there is no confusion
in this subsection. We define

fo(x.0) \szﬂ (0,0 (x) > 0)6, 9 (x)

as the local linearizion of f(z,0) at the initial point y. We denote the temporal differences as do(z,z'.0;) =
Jo((s',a");0k) — 7vfol(s,0);0k) — r(s,a,s') and by (z,2".0r) = [f((s',a");0k) — 7f((s,a);0k) — 7(s,a,5). We
define the stochastic semi-gradient gy(0r) = Ox(xk,z).0k)Vof(xk,0k), and the full semi-gradients go(6x) =
E,. [0o(z, 2" .0k) Vo fo(z,0r)], and §x(0x) = E,, [0kx(x, 2’ .0k) Ve f(z,0r)]. The approximated stationary point 6* sat-
isfies go(0) T (0 — 6*) > for any § € B. We define the following function spaces

Fom = {jﬁ ;brwarwm > 0)8, () : (16 —boll, < R} ,
and
Fom = {\/% D010 (5) > 08T ) 16 — ol < R/m} ,

and define fy(z,0%) as the projection of Qr(z) onto the function space Fo,p, in terms of [|-|| , norm. Without loss of
generality, we assume 0 < 6 < = m the sequel.

C.1. Supporting Lemmas for Proof of Lemma 1

We provide the proof of supporting lemmas for Lemma 1.

Lemma 10 ((Rahimi & Recht, 2009)). Let f € Fo o0, where Fy o is defined in Assumption 2. For any § > 0, it holds with
probability at least 1 — § that

2 4R%log(})
O

m

where D is any distribution over S X A.

For the following Lemma 11 and Lemma 12, we provide slightly different proofs from those in (Cai et al., 2019), which are
included here for completeness.

Lemma 11. Suppose Assumption 1 holds. For any policy w and all k > 0, it holds that

m

% SO (07, () > 0) = 1 (6],46(x) > 0)|

r=1

< CoR
=4

By

H
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Proof. Note that 1 (@Iﬂﬂ(ﬂf) > O) # 1 (6g,,¢(x) > 0) implies

|9&rw($)| S |9/I,71/)(33) - 90T,7¢(33)| S Hokﬂ‘ - 00,7'”2 )

which further implies

11(6) ,0(z) > 0) — 1 (0g,,0(z) > 0)| < 1(|0g,%(x)| < 10k, — Oo.rl5)- (1)

Then, we can derive the following upper bound

1 m
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o fam /2 /o ) 1/2
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" <Z )\
(u) COR
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= diym’
where (i) follows from Assumption 1 and (4¢) follows from the fact that ||0 .||, > d;. O

Lemma 12. Suppose Assumption I holds. For any policy 7 and all k > 0, it holds that

4CyR?
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Proof. By definition, we have
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1

ﬁ
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—

—
.
=
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ﬁ
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-
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M§

Ms

£(167,6@)] < 10k = Bolly) (180, = Onrlly + (105, 4()],)

ﬂ
Il
—

< 1(|64.,%(2)| < 10k, — Oo,0 1) 100, — Ox,ill, - (24)

r=1

where () follows from eq. (21). We can then obtain the following upper bound.

Ey, [1£((5:0):00) = fo((s. @);00)”
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2
4
< — < _
— m [(Z]l |907‘ ||0k:’r‘ 90,7‘”2) HQO,T ek’fr 2) ]
Z]l |907 < ||9k7 00,7‘||2)200,r_0k,r||§]

uw [Zﬂ ‘HOr < ||‘9kr eo,rz)]
r=1

(i) 4Cy R?
< G

where (4) follows from Holder’s inequality, and (i¢) follows from the derivation in Lemma 11 after eq. (22).

Lemma 13. Suppose Assumption 1 holds. For any policy m and all k > 0, with probability at least 1 — §, we have

log(
g (Ok) — Go(O1)]|, < © ((1_5521)/4) :

Proof. By definition, we have

gk (0x) — G0 (0k)]l,

= |E,., [0k (z,2".0k) Vo f (x,0k)] — By [0 (z, 2" .0k) Vo fo(, 0x)]ll,

= |Ep, [0k (x,2".0k) — do(z, 2".0k)) Vo f(,0k) + do(x,2".01) (Vo f(x,0k) — Vo folz, o)),
< E,, [|0k (2, 2".01) — do(x,2".0)| Vo f (2,08, + 100(x,2".0k)] | Vo f(z,0) — Vo folx,0k)]

—
= |
=

< By, [10x(2, 2".0k) — do(,2".0k)|] + Epu, [|00(z, 2".01) [ | Vo f(x,0r) — Vo folz,01)l,],
where (i) follows from the fact that ||V f(z, 6)||, < 1. Then, eq. (26) implies that
13 (0x) — o (6113
< 2By, (|0 (2,2 0k) — do(x, @' )] + 2 (B, [|00 (2,2 -00)| | Vo £ (2, 08) — Vo fol, 0x) )
< 2K, [|6x(x,2".0k) — So(w,2".00)[*] + 2B, [|d0(z, ' 0x)*|E,., [| Vo f (2, 0) — Vo folx, 0x)]l3).
We first upper bound the term E,,_[|0x(z, 2'.0) — do(z, '.0;)|?]. By definition, we have
|0k (2, 2" .0)) — o(x, 2.0k
= [f(z,0) — folx,0r) —(f (2, 0) — fo(a',0k))|
S |f(x79k) - fo(xaakﬂ + |f(x/70k) - fO(x/aakN )

which implies

E,.[|0k(, 2" .0) — do(z, 2" .0k)|’]

< 9B, [|f(x,0k) — fol(z,00)°] + 2B, [| (2, 6x) — fola',0k)[)
= 4B, [|f(z,0k) — fo(z,0k)[]

) 16CyR>

diym '

where () follows from Lemma 12. We then proceed to bound the term E,,_[||Vq f(z, 01)

INS

(25)

(26)

27)

(28)

,0k) — Vo fo(z,0:)]3]. By definition,
we have

Vo f(x,0k) — Vo folz, 0k)ll,
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- S~ 8-
NE

"y
Ms

NE

[1(6) () > 0) — 1 (6,1 (x) > 0)] b6 ,1(x)

1

|1 (6, %(x) > 0) =1 (0, ¢(x) > 0)] 00,0,

1
I

2

—~
.
=

S
Il
—

—~

i)
< 1(|6, ()| < 10k, — 00,0 ll) 100,15 » (29)

1

where (i) follows because |b,| < 1 and |[1(s)||, < 1, and (i7) follows from eq. (21). Further, eq. (29) implies that

E,., [|Vaf(z,0k) — Vofolz, 03]

1 m
E (Z]l ‘9 < 10k, — Oo.rl, ) <;90,r|§>1

R? &
Siz ‘907“ |<H9k7‘

i
Il

2)

(30)

where (4) follows from the derivation in Lemma 11 after eq. (22).

Finally, we upper-bound E,,_[|do(, 2’ 05)]]. We proceed as follows.

By, [|00(x, 2 .01)|]

< By, [fo(@, 0k) — r(z,2") — vfo(a’, 0x)|%]
< 3E,.. [ fo(x, 06)*] + 3K, [r?(x,2")] + 3v°E,. [l fo(2', 61) 3]

< 6B, [|fo(x, 0k)[*] + 32 as

= 6, [|fo(,0) — fo(w,0%) + fo(@,0%) — Qu(2) + Qu(@)[’] + 3¢20s

= 18E,,, [|fo(,0) — fo(x,05)"] + 18E,,, (| fo(w, %) — Qu(2)[*] + 18E,, [|Qx (2)%] + 3chax
2

(1) 21
< I8R? + S 18, (1ol 07) — Qn(a) ) 31

where (i) follows from the fact that Qr (2) < =2x, [|0k |, < Rand [|07], < R.

Since Fo m C Fo.m- Lemma 10 implies that with probability at least 1 — J, we have

. 4R?log (% 1
B fo(e.03) - Qe < ) < apvog (7). @
Thus, with probability at least 1 — §, we have
212 1
max 4 72R%1 33
s + 1ok 7). ¢
Combining eq. (28), eq. (30) and eq. (33), we can obtain that, with probability at least 1 — §, we have

E,_[|60(z, 2 .0;)°] < 18R +

Iov(00) - o813 < € (s )

which implies that with probability at least 1 — §, we have
log()
(= m'7

which completes the proof. O

9% (01) — Go(Or)|l, < ©
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C.2. Proof of Lemma 1

We consider the convergence of ¢}, for a given i under a fixed policy 7. For the iteration of ), we proceed as follows.

16541 — 0113
= | B (0 — Bgr(0r)) — Tp (0" — Bgo(07))|;
< [|(0x — 07) — Blgr(0x) — Go(67))]13
= 161 — 0*[I3 — 28(gx(Ox) — Go(07)) T (Br — %) + B g1 (6x) — 5o(67)II3
=110k — 617 — 28(30(Ok) — Go(6")) T (0 — 67) + 2B(Gk (O%) — g1(01)) " (Bx — 6%)
+28(50(6%) — Gk(60)) T (6 — %) + B |l gu(B1) — 30613
< (161 — 6*|13 — 26(50(8%) — Go(8*)) " (0 — 6%) + 2B(Gk (0%) — g1(61)) " (Bx — 67)
+26(50(0k) — Gx(01)) T (B — 07) + 352 | (Bx) — Gk (0x)]15 + 362 13k (O%) — Go(8x) |
+36% 19o(0k) — 90(07) |3
04— 07112 — 201 — 8B, [(fol(5:@)s00) — fol(5, @):0°))]
+2B(Gk(0x) — gk (01) T (0 — 0%) + 4RB 3o (0) — G (0x) |l + 38 g (0) — G (0x) |3
+ 3619k (0) — Go(0x) 15 + 38 190(6k) — Go (6715
o — 0712 — 2601 — ) — 126%E,.. [(fol(s,@)s00) — fol(5, @):0°))
+2B(Gr(0x) — gk (01) T (0 — 0%) + 4RB 5o (0) — G (0x) |l + 38 g (0) — G (0x) |3
+36° || gk (0r) — 90(9k)||§ ) (34)
where (4) follows from the fact that
(90(0k) — Go(07)) " (61, — 0%)
> (1= NE,, [(fo((s,a);0k) — fo((s,a);0%))*] — RI|gr(0k) — Go(6k)]l5 »

and (74) follows from the fact that

190 (0%) — Go (6715 < 4By, [(fo((s,a); 0) — fo(s,a);6%))%] .
Rearranging eq. (34) yields
[28(1 =) = 128%|B,,, [(fo((s,a); 6k) — fo((s,a);6%))°]
< 16k = 6715 = [16k41 — 0715 + 2B(gk (6x) — gx(6x)) " (O — %) + ARB [|go(6x) — i (Ok) Il
+36° (|91 (0) — 31 (k)15 + 36”195 (%) — Go (61115 - (35)
Taking summation of eq. (35) over t = 0 to K — 1 yields

K-1

281 =) — 1287 3" B, [(Fol(5,@): 00) — fol(s, a); 0°))2]
t=0
< 1100 — 0712 — 105 — 012 +28 3 (@6 (05) — 91(60)T (O — 6%) +4R8 3" 30(0s) — k(60
K-—1 = K-1 =
+382 " llge(Ok) — gr(O)l5 + 382 D gk (k) — G0 (00|
t=0 t=0

2R 195 Z Cr(0k) T (0 — 07) + 35° Z 16k (88)5 + 4R Z €481, + 36° Z €5 (01113 ,

t=0 t=0 t=0
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gk(0r) and &, (Ox) = gr (k) — go (k)

where in (i) we define (x(0;) = i (0k) —
||Ck(9k)|\g. We proceed as follows

We first consider the term Zt,
K-1
P, (Z 16k (01115 = (1 + A)C§K>
t=0
Yo ISk (0015
=P, (CQK2 >1+4
0
=P, |exp (Z C!LC"}C{( k>||2> > exp(1l+ A))
K—-1
1 (6
<P, exp <|Ckk)||2) > exp(1+ A))
t=0
® 15 16 (00) 115
§ ? EMW [exp <CY22 /exp(l + A)
t=0 ¢
(44)
< exp(—4), (36)
where () follows from Markov’s inequality, (i7) follows from Assumption 3. Then, eq. (36) implies that with probability at
least 1 — 67, we have
K-1 1
oo < (1108 (3 ) ) c2K <2108 () €2 7

t=0

We then consider the term Zf{:_ol Ce(01) T (0 — 0%). Note that for any 0 < k < K — 1, we have
|2 2 )2 2 2
|Gk (O1) " (O = 07)]" < 1IC(00) 113 16% — 07115 < R [1Ge (003 »

<E, lexp <|ck<ce)§>||§>] < exp(L).
¢

which implies

|G (61) T (6 — 9*>|2>

E.. |exp < BQCE
Applying Bernstein’s inequality for martingale (Ghadimi & Lan, 2013)[Lemma 2.3], we can obtain
K—1
P, ( (:k((gk)T(ek —60")| > \/5(1 + A)Cg\/?) < exp(—/l2/3),
t=0
which implies that with probability at least 1 — d5, we have
K-1 1
> Gl0k) T (0k — 07)| < V2 (1 +/3log <5 )) CeVK < 5C¢ [log <5> VK. (38)
o 2 2
||§;C (t9;€)\|2 Lemma 13 implies that with probability at least

We then consider the terms Zt 0 [ (0x)]l, and Z

1 —d3/K, we have
log(£)

||fk-(9k-)||2 <6 (1 _ 'y)m1/4
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Applying then union bound we can obtain that with probability at least 1 — d3, we have

K-1 K log(%)

@ll, <o ——+ |- 39
vy ||§k k H2 (1 — 'y)ml/4 ( )

Similarly, we can obtain that with probability at least 1 — d3, we have
K-1 K
Klog(é—)

@, <O | ——2=]. 40

] ||£k k HQ (( V)le/g ( )

Combining eq. (37), eq. (38), eq. (39) and eq. (40) and applying the union bound, we can obtain that with probability at least
1 — (81 4 62 + 5 + d4), we have

K—-1
281 —7) = 1261 Y " E,, | $0k) — fo((s,a);6%))]
t=0
1 1 log(£)
9 10g(5 )

Divide both sides of eq. (41) by [23(1 — ) — 123?] K. Recalling that the stepsize § = min{1/vK, (1 — 7)/12}, which

implies that \/?[26(1i7)71262] < (IEY)Q. Then, with probability at least 1 — (§; + d2 + 3 + 04), we have

2
o

Orc) — fo((s,a); 6%)||
<% 2 B, [(fo((s,a);0k) — fo((s,a);6%))?]

R2 108C¢4 /log (é) 65 log ( ) CC
=280 - 27K T 251 —~) - 2RIVE | 2501 ) - 1208VE

o 10%(%) 1
TO\ @ ) a0 ) - 2R )VE
(%) 1
(1 =7)?mi/2 | [26(1 — ) — 1262]VE
1 1 1 1 1
<9<(1—v)2ﬁ>+9<( vy G >>+6<< SRk G ))
log(5;) log(X)
A=t | PO\ T—pmr
1 1 1
=6 ((1—’7)2\/E <\/10g <61> + \/log <51>>>
1 K K
+Q<(1—Py)3ml/4 <\/10g(53)+\/10g<§4>>>. (42)
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Finally, we upper bound Hf((s, a);0x) — Qr(s,a) ||i . We proceed as follows

1£((5.0):0x) — Qn(s,a)| |2

<31 £((5,):8x) — fol(s,):8x) [, + 3| fo((5, 0): B1) = fol(s,0): 6]
+ 3 fol(s,a):6%) — Qu(s,0)|”.

(%)

26 ) + 3l a0~ S a0

T ol i)~ Qa4

where (7) follows from Lemma 12 and the fact that

1

1fo((s,a);0") = Qu(s,a)ll;,, < ﬁllfo((S ,a):07) = Qx(s, )|y,

which is given in (Cai et al., 2019). Then, eq. (32) implies that, with probability at least 5, we have
, AR’log (i)
1fo((s,a); 07) = Qn (s, a)ll,, < ————=. (44)

m

Substituting eq. (42) and eq. (44) into eq. (43), we have with probability at least 1 — (d1 + d2 + 5 + d4 + J5), the following
holds:

1£((5.0):0x) — Qn(s,a)|[2_

<o (e (i (3) = ()

Letting §; = 02 = 03 = 04 = 05 = g, we have with probability at least 1 — §, the following holds:

Hfsa K) — QﬂsaH

<ot ())@<Hm o (X))

which completes the proof.

C.3. Supporting Lemmas for Proof of Theorem 2

For the two-layer neural network defined in eq. (6), we have the following property: 7 - f(x, W) = f(z,7W). Thus, in the
sequel, we write 7]y, (a|s) = mrw (als). In the technical proof, we consider the following policy class:

exp(f((s,a); W))
Yaaexp(f((s,a); W)’

and .J;(W) as the accumulated cost with policy 7y . We denote @iy, (s, a) = Vi f;((s,a), W). We define the diameter of
By as Ryy. When performing each NPG update, we will need to solve the linear regression problem specified in eq. (10).
As shown in (Wang et al., 2019), when the neural network for the policy parametrization and value function approximation
share the same initialization, 6; is an approximated solution of the problem eq. (10). Thus, instead of solving the problem
eq. (10) directly, here we simply use 6; as the approximated NPG update at each iteration:

mw(als) =

V(s,a) € S x A, (45)

Tep1 Wipr =7 - Wi +

o -
0;.
1—7v t
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Without loss of generality, we assume that for the visitation distribution of the global optimal policy v*, there exists a
constants C'ry such that for all 7y, the following holds

/x (cmfd“ mw () < Chyy- (46)

Lemma 14. For any 0,0’ € B and m, we have

[éo(s.)"0" = du,(s. )"0 <

Proof. By definition, we have

bo(s,a) 70" — pg,(s,a) ¢

~—

3

- 5l 5l 5l 3l 5
Ms

(L0, ¥ (2) > 0) = 1(0g ¥ (x) > 0)) b0, ()

[

M= 3

IN

(L6, % () > 0) = 1(bg .4 (x) > 0)] [br] [|6:T 9 (=),

i
I
-

—~
=)
N2

1(]60g % ()] < 10 — 00,0 ll,) |01 v ()|,

i
Il
N

Ms

IN

1(|0g,¢(x)| < 116r — bo.rll,) (HH/T ) =69 0(@)|, + ||60,.4 x>”2)

%
Il

<

Ms

1((63, ()| < 116~ o, l1,) (16— B0 111, + 116,60 |,

ﬁ
Il
—

m

_\ﬁz (100, (@@)] < 110: = Bo.rlly) (107 — bo.rlly + 160 = bor

3

) (47)

where (7) follows from eq. (21). Following from Holder’s inequality, we obtain from eq. (47) that

|pa (s, a)' 0 — by, (s, a)TH”2

1 [ & m
<— lZ (160, ¢(@)| < 16r = 0,01, HZ e;—00.,r||2+||er—eo,r||2)"’]
2 | & m m
Sle (160,-4(@)] < 16, — 60,01, HZ@' eo,r||§+z||er—eo,r||§]
r=1 =1 r=1

IN

4R?
> 160,40 ()] < 16r — bo.ell,).

which implies

T Tor||? T T ACR?
[@o(s.a)T0" — @oq(s,0) T O'||, =Ep,[|¢o(s,a)T0" — ¢g,(s,a) 0" < i (48)
where (4) follows from the derivation in Lemma 11 after eq. (22). O

Lemma 15 (Upper bound on optimality gap for neural NPG). Consider the approximated NPG updates in the neural
network approximation setting. We have

a(l =) (Jo(m") = Jo(7r,w,))
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SOéCRN\/ CoR1'5
\/Eml/zl

< Ev+ [Dxe(m™[|mrw,)] = Eve [Dre(m™[|7r, o wi )] + +a’L(R* + md3)

4+ 2aCrN Hf((s, a),0) — Qn,,w, (s, a)H

Hrerwy

Proof. It has been verified that the feature mapping ¢, (s, a) is bounded (Wang et al., 2019; Cai et al., 2019). By following
the argument similar to that in (Agarwal et al., 2019)[Example 6.3], we can show that log(m,,(als)) is L;-Lipschitz.
Applying the Lipschitz property of log(m,,(a|s)), we can obtain the following.

E, [DKL(W*HW‘HWJ} —Ep- [DKL(W*||7TTt+1Wt+1 )}
=E,- [log(WTt+1Wt+l(a|S)) - log(ﬂ—TtWt (a‘|‘9))]

(i) L

> By [V log(mrw, (als))] T (01 Wigs — Wi) — 7f 741 Wesr = 7eWall3
_ o?L

= aE,- [V log(mrw, (als)]" 0 — L |6

= By [dw,(5,0) — En_ . [bwi (s, a’)]] g -2 Lf 16
= aE,- I:Qﬂ"rtwt (S, a’) - Eﬂ-rtwt [Qﬂrtwt (87 a/)]] + aEV* [¢Wt (S, a)Tét - Qﬂrtwt (87 CL)]
Oé2Lf

+ aEV*ETFTtWt [QﬂTtWt (37 a’/) - ¢Wt (S’ a/)Tét] - ||§t|’§

= a(l =) (Jo(r") = Jo(mrw,)) + aBu- [ow, (s.0) 0 — f((s,0), 00)]
+ alE, - [f((sv a)a gt) - QTFT,,Wt (S’ a)] + O‘EV*EWT,,Wt [Qﬂ'nwt (57 a/) - f((S, a/)’ ét)]

_ _ 2Ly~
+ QEU*Eﬂ-rtWt [f((sa a/),et) - ¢Wt (S’ a/)TGt] - - 9 ! HatHi

= a(l =7)(Jo(m*) = Jo(mr,w,)) + aBu [dw, (5,a) "0, — f((s,a),6,)]
—|—OLE,,* [f((57a)aét) _Qﬂq—twt (S,(Z)] +a]EV*ETF7—tWt [Qﬂqwt( ) ((Sva/)7ét)]

_ _ 2L~
+ QEV*Eﬂ'nwt [f((saa/)79t) - ¢Wt (S’a’/)—ret] - - HetH;

= a1 =)(Jo(7") = Jo(mrw,)) + oEy-Eg, [$w, (s,0) 0 — f((s,a),0)]
+ oE,- [f((S, a)a a_t) - Qm—twt (57 (Z)] + a]EV*EﬂrtWt [Qﬂ'rtwt (87 al) - f((sa a/)v 0_15)]

B e, [f((5),00) — b (s, @) ] — 2L ||
> a1 — ) (Jo(*) — Jo(mr,w,)) a\/Ey* ¢w, (s,a)T0; — f((s,a)ﬁt)ﬂ
= 0 fBr [(F((5:0:00) — Qe (5,0)7] = B By, (@ (5:0) — £((5:0).5))]
— o fB By, [0 ). 01) — b ) T007] — L a2 (49)

where (¢) follows from the L ¢-Lipschitz property of log(m,,(a|s)). Note that for any  ~ v, , and any function h(x), we

have
[ 1wyt @) = [ @) 2Dt ()

\/ / h2(2)dfin,, ( \/ / dum d#ww(l')

< iy 1h(@)l.,., - (50)
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where () follows from Holder’s inequality, and (i¢) follows from eq. (46). Similarly, we can obtain
[ rad (@) < Chy @),
Substituting eq. (50) and eq. (51) into eq. (49) and using the fact that H@HQ < R+ /mdy yield
By« [DxL (7|7, w, )] — Eve [DrL(m*||7r sy )]
a(l =) (Jo(r*) = Jo(mrw,)) — aCRN\/E”thwt {((bwt (5,a)T0; — f((s,a), ét))ﬂ
— aCrny [, [(F((5,0),00) = Q. (5,0))?]
— aCrwy By, (@, (5:0') = F((5.:@).6))7]

—aCrn\[By,_,, [(F((5,0),00) = 6w, (5,0)T0)°] = a* Ly (1 + md)

= a(l =) (Jo(7") = Jo(7r,w,)) — ZaCRN\/EM”Wt [(¢Wt(87 )"0, — f((s, a),ét)ﬂ
_ QaCRN\/EMHWt [(f((s,a),0:) — Qnr,, v, (5,0))2] — &’ Ly(R* + md3)

= a(l = 7)(Jo(n*) = Jo(mrw,)) — 2aCrw ||$w, (5,0) "6, — f((s, a), 0.,
—2aCrN Hf((s,a), 9_,5) - Qﬂnwt (s, a)||uﬂ7 - a2Lf(R2 + md%)

t Wi

We then proceed to upper bound the term ||¢w, (s, a) T8, — f((s,a). 0;) Hiﬂnwt -
Jow: (s, )70 = £((s,0), 0]}
= l|ow,(s.0) 70 — 6w, (5,0) T8 + G, (5,0) 6 — F(s.). 80,
<2|\6w, (s,0) 76, — ¢W0(s,a)T§tHiWTtWt + 2|\ ¢w, (s,0) T 0: — f((s,0), ét)HiWVt
(<) 16Co R?
S G

where (4) follows from Lemma 12 and Lemma 14. Substituting eq. (53) into eq. (52) yields

E, [DKL(T(*HTFTtWt)] —E,- [DKL(W*HTFTHAW):JA )}

. 8aC WRLB
< a(l =) (Jo(r*) = Jo(mrw,)) — %

—2aCrN ||f((87 a)vét) - Qwrtwt (s, a)H

— a?L¢(R* + md3)

K,

Rearranging the above inequality yields the desired result.

Note that when we follow the update in line 10 of Algorithm 1, we can obtain similar results for the case ¢ € {1,
stated in Lemma 15:

a(l =v)(Ji(mrw,) — Ji(77))
< EV* [DKL(W*”,]TTtWt)] - EV* [DKL(W*Hﬂ-Tf,+1Wt+1):| =+

+ 2aCRN Hf((57a')a§t) - QTthWt (S’G)HM‘NT w .

SQCRN\/ C()Rl'5

2 2 2
NEE + oLy (R° +md3)

(G

(52)

(53)

- p)as
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Lemma 16. Considering the CRPO update in Algorithm 1 in the neural network approximation setting. Let K;, =
C1((1 —~)2y/m) and N = T log(2T/§). With probability at least 1 — &, we have

L =7) D (Jo(m™) = Jo(mw,)) + a(l = 7)Y INj]

teNy i=1

oI
< B Duals ) + Ca (2575 ) + Calem)

ol 1 T?’
+ Cjs ((1 — 7)1_5m1/8 log1 ( 5 )) + Cg ( ( ’Y)\/T) .
where C'3 = %, Cy = Ly(R?+d3), C5 = 3aC2CRry, Cs = 2Cy and Cy is a positive constant depend on Ch.

Proof. We define N; as the set of steps that CRPO algorithm chooses to minimize the i-th constraint. If ¢ € Ny, by
Lemma 15 we have

a(l =7)(Jo(7*) = Jo(mr,w,))

% % 8aCrnvVC RS
<E,- [DKL(TF ||7T7'1,Wt,)] —Ey- [DKL(W ‘|7r7't,+1Wt+l )] + RV D

2 2 2
N + oLy (R° +md3)

200 | o500, 00~ Q2 5.0

Tre Wy

(54)

K,

If t € N, similarly we can obtain
a(l =) (Ji(rrw,) — Ji(7"))

% « SQCRN\/ C()Rl'5
< By [Dxo(n”|mr,w,)] = Eoe [Dxu (w77 wiy )] + —Jamii a®Ly(R® +md3)

+ 2aCgrN ’

fil(s,a), Gt) 7thWt(s,a)‘

(55)

K w,

Taking summation of eq. (12) and eq. (13) from¢ = 0to T — 1 yields

bS]

(L =7) Y (Jo(x) = Jo(mw,)) +a(l — Z Z i(mw,) = Ji(7"))

teNo i=1

% S(XCRN\/ C()Rl 5T
S IESNV"IDKL(W ||7Tw0) + \/—m1/4
s, a)

+2OZORNZ Z ’fz s,a) et WTtWt( ’

1=0 tEN H"TtWt

“ Z

+a?L;(R* +md3)T

(56)

Note that when t € A; (i # 0), we have J;(0%) > d; + 7 (line 9 in Algorithm 1), which implies that

Ji(mryw,) — Ji(m*) > Ji(67) — Ji(7*) — |1 (0}) — Ji(mr,w,)|
>d; +n— J(W*) | Ji(07) — Ji(mrw,)|
—|J:(6}) — Ji(mrw,)| - (57)

To bound the term | J;(6}) — J;(mr,w,)|,

|jl(02) - Ji(ﬂ-TtWt)‘
(6)) —EVW [Fi((5.0),0)) + B, [£((5,0).00)] = Ji(mr,w,)
Ji0) ~ Eu, , Uil(5,), 00| + [ £il(s,0).80) = Q% (s,0)

Vrr Wy
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@-
<70 ~ v, il(5.0).00]] + Crn || il (5. ).0) — Q% (5| (58)
Ty Wi
where () can be obtained by following steps similar to those in eq. (50). Substituting eq. (58) into eq. (57) yields
Ji (TrTsz) - Jl(ﬂ-*)
> - ( TA0) ~ B, 11i((5,0),80]| + Crw [ £il(5,@).00 = @1, (5,) ) . (59)
t Wi t Horr v,
Then, substituting eq. (59) into eq. (56) yields
P
a(l =) Y (Jo(m*) = Jo(mu,)) +a(l =) IN|
teNo i=1
% SOéCRN\/ C()RI'ST
< B Dip (7% [Ty ) + N +a?Ly(R? +md3)T
+3aCRNZ Z fi((s,a),0;) — mtwt(s,a)‘
i=0 teN; Kz wy
0) = Eu_,, [fil(s,0),00)]
i=1teN;
" 8aCrnVCoRYPT 2 2
< Egor Dy (77|70 ) + RSV +a’L¢(R* +md;)T
T—
+ 3aCRrN Z fil(s,a),0;) — wnwt (s,a)
=0 Ky wy
Vo Wy [fz((sva)7§t)] . (60)

t=0

We then upper bound the term ZtT;()l

1il(5,0),0) — Qi (5,0)]
C1((1 — )?y/m), then with probability at least 1 — &, /T, we have

.50 - @u(s.0),, < s (e tost (LE2VY )

1

. Lemma 1 implies that if we let K, =
Koy vy

where C and C5 are positive constant. Applying the union bound, we have with probability at least 1 — &1,

_ . T 1 1—~)2T
ZO f,((S, a), 01‘) ;—Ttwt (S, a)‘ s S CQ ((1—’)/)157’711/8 logZ <(7§1\/m>) . (61)
t= TtWt

We then bound the term /' |Ji(6}) — Vo [fi((s,a),0:)]|.  For simplicity, we denote J!(6;) =
0;

Eepr [fi((s,a),8,)]. Recall that J;(6}) = + ZJ 1 fi((sj,a;),0;). Foreach t > 0, we bound the error J;(6%) — J/(6;)

as follows:
N 2 2
1+A)C
Z (s5:a5), 0¢) = J; (6r) Z%
N /
<p 12 [fi((s;,a;), ) J(Ht)] S 144

Jj=1
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>14+4

1K [fill(s,a5),0,) — J(8)]”
R NZ[ 7 |

j=1

N ] 1(0,)]°
<P % exp<[fi(($j,aj),9t)Ji(et)] >>1+A

=1 Cj
) 1 [fi((s5.a,).00) — J}(6,)]
SN;Elexp< c )]/exp(l—i—/l)
< exp(—4), (62)

Applying the union bound, we have with probability at least 1 — Jo,

Tz—:l

7.(9 ) ] CLJ / T >
Ji(0;) —E,_ fil(s,a),0:)]| < 1+4/lo . (63)
2 (6%) W, [fi((s,a) )]‘ N ( g (62>

Letting ; = 0o = %, N = Tlog(2T/4), and combing eq. (61) and eq. (63), we have with probability at least 1 — &

(L =) Y (Jo(m™) = Jo(mw,)) + @l =) >IN

teNy i=1

N aoT
S ESNV* DKL(']T ||7Tw0) + 03 (7711/4) + C4(a2mT)
oT 1 ((1=7)?*Tym
+Cs ((1—7)1‘5m1/8 log? ( 5 +Cs (a(l—v)\/f) ,
where C3 = %, Cy = Ly(R*+ d3), C5 = 3aC2CRrn, and Cs = 2C} are positive constants. O

Lemma 17. Let K;, = C1((1 — v)2y/m), N = T'log(2T/4), and

3001 = VT 2 Bu Dia(r” 1) + o (2577 ) + Calam)
2 i/
ol 1 ((L=9)*Ty/m
+Cs <(1_7)1‘5m1/8 log 1 ( ; )) + Gy (a(lf'y)\/f) (64)

Then with probability at least 1 — 0, we have the following holds

1. Nog # 0, i.e., wy is well-defined,

2. One of the following two statements must hold,
(a) [No| >T/2,
(b) > ieg(Jo(m™) = Jo(wy)) < 0.

Proof. Under the event given in Lemma 16, which happens with probability at least 1 — d, we have

L =) Y (Jo(m™) = Jo(mw,)) +all = 7)1 ) INi]

teNy i=1
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T
S ESNV*DKL(’]T*Hﬂ'wg) + 03 <W(j1/4) + C4(a2mT)
oT 1 ((1=7)?*Tym
+0Cs ((1_7)1‘%1/8 log® ( 5 )) +Cs (a(l—v)ﬁ). (65)

We first verify item 1. If Ny = 0, then Y %, |N;| = T, and Lemma 16 implies that

* aT
a(l —y)nT < ]Es~u*DKL(7T ||7Tw0) +Cs (W) + C4(a2mT)
ol 1 (1—~)*Tym
+Cs ((1 ) Emis log ( 5 + Cs (a(l - W)ﬁ) ,

which contradicts eq. (64). Thus, we must have Ny # 0.

We then proceed to verify the item 2. If 7, - (Jo(7*) — Jo(w¢)) < 0, then (b) in item 2 holds. If ) 7, - (Jo(7*) — Jo(w;)) <
0, then eq. (65) implies that

P
aT
(1 =) Y NG| € B D () + Ca (15577 ) + )
i=1
aT 1 (1 =7)*Tym
+C5 <(1—’}/)1-57ﬂ,1/810g4 (5 +C6 (Oé(].*’Y)\/T)

Suppose that [Np| < T'/2,1i.e., > b_, |N;| > T/2. Then,

1 aT

5&(1 = INT < Esnpe Do (77| ) + Cis <m1/4> + Cy(a®mT)

aT 1 (1 =7)*Tym
+Cs ((1—7)1~5m1/8 log?1 ( 5 +Cs (a(l—'y)x/f),

which contradicts eq. (64). Hence, (a) in item 2 holds. O

C.4. Proof of Theorem 2

We restate Theorem 2 as follows to include the specifics of the parameters.
Theorem 4 (Restatement of Theorem 2). Consider Algorithm 1 in the neural network approximation setting. Suppose

. _ 1
Assumptions 1-4 hold. Let o = 3G, VT and

_ AC4E Dyt (7 ||y ) L2 . om
- )T A —mi/A T AT

oT (1= Y)*T/m 2Cs
+ 205 ((1 — 7)2-5m1/8 log <(5 + ﬁ

Suppose performing neural TD with K, = C1(1 — ~)2\/m iterations at each iteration of CRPO. Then, with probability at
least 1 — 9§, we have

. Crm C 1 ((1=~)2Tm
o) = Bl )] € T gt (L2,

(L—WWT (1—7)*m g
where
C7 _ 4C4DKL(7T Hﬂ—wo) + 2(1 —’)/)CG + 1,
m m
and
2 1—~)5
08 = 205 + M

mi/8
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Foralli € {1,---  p}, we have
ACy Esmp Dgp (7% | 7w ) n 2C3 n m
(1—VT (L=ym!* (1= y)VT

+2(Cy + C5) ((1_70)‘;_51%1/810& (W)) + f/cjij

E[Ji(Tw,,)] — di <

To proceed the proof of Theorem 2/Theorem 4, we consider the event given in Lemma 16, which happens with probability
atleast 1 — 4:

a1 =7) D (Jo(m*) = Jo(mw,)) + a(l =) Y INil

teNo i=1
aT
< B Dua (5" 1) + o (57 ) + Cala?mT)
oT L ((L=7)*Tym

We first consider the convergence rate of the objective function. Under the aforementioned event, we have the following
holds:

(L =) Y (Jo(m™) = Jo(mw,))

teNo

T
< By Dy (m ||7ru,0)+03< S )+C’4(a mT)

+Cs ((1 - 70)‘?%1/8 log (( - VfT‘/ﬁ» +Cs (a1 = VT).

If > e p, (Jo(m™) — Jo(mm,)) < 0, then we have Jo(7*) — Jo(Tw,,) < 0. I 37z (Jo(77) — Jo(7w,)) > 0, we have
|No| > T'/2, which implies the following convergence rate

Jo(m*) — E[Jo(mw,, )] > (Jo(m) = Jo(muw,))
|N’O‘ teNo
S 2ES~V*DKL(7T*||7T’[DO) + 203 + 2040[771
a(l=T (L=y)mt/t " 1—y
2C, 1 ((1=7)2Tym 2C
+ —2?51/8 log‘ll <W> + 76
(1 =7)?5m 0 VT
Letting o = 5 041 7> We can obtain the following convergence rate
Crm Cs 1 ((1 — 7)2T\/m>
Jo(m*) — E[J; T wWout < + logd [ ———— ,
o(m") [Jo(Twe)] (1 —'y)\/T (1 —7)2'57711/8 g )
where
4C4D |7 2(1 —
¢, _ 40D rug) | 20 -9)Co
m m
and
203(1 — ’}/)1'5
Cg = 2C5 + T
We then proceed to bound the constraint violation. For any ¢ € {1,--- | p}, we have

E[‘]i(ﬂ-wom) - i |NO| Z J Trwt - i
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1 = 1 .
< ol (Ji(et)_di)+m Z | Ji(mw,) — Ji(6})]
Ol tens teNy
= B
<N+ = |Ji(7rwt)_ z(9§)|
ol =
= B
<N+ Ji(0;) —E.. . [fi((s,a),0)]
| 0 t=0 t t
T-1
CrN 5 ;
vaE % ) 70 - :L;r ’
- No t=0 ’f((S @), 0:) ”Wt(s a)‘ K w,

Recalling eq. (61) and eq. (63), under the event defined in eq. (66), we have

T—1
Ji(0) — Eo,_, [fi((5,0),0)]| < CoVT,
t=
and
T—1 B
> |fis0.00 - QL (s,0)
t=0 Bmrywy
T 1 (2(1=9)*Tym
(e G |
Let the value of the tolerance 1 be
o 4C4E5~V*DKL(7T*||7TU)O) + 203 + m
(1=VT (L=)m!/* (1 —y)VT
oT 1 ((1—=9)2T/m 2Cs
205 | —————+—< log* —,
205 (s et (5 T

‘We have

1 aT
704(1 — ’y)’l]T > ESNV*DKL(W*Hﬂ'wO) +C3 | —— | + C4(042mT)
2 m1/4

+ s <(1 - of gt ((I_V)QT\%)) + C (a(l—y)ﬁ),

7)L5m1/8

0

(67)

(68)

(69)

which satisfies the requirement specified in Lemma 17. Combining eq. (67), eq. (68) and eq. (69), and using Lemma 17, we

have with probability at least 1 — J at least one of the following holds:
E[Ji(ﬂ-wou()] - dl < Oa
or |Ny| > T'/2, which further implies

4C4E5N,,* DKL(TF*Hﬂ'wO) 203 m

ElJi(mun)) = di < (1 —)VT A T AV

+2(Cy + Cs) (O‘T log* ((1 - WT%)) +

(1—~)25ml/s 5

4Co
VT



