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Abstract
In safe reinforcement learning (SRL) problems,
an agent explores the environment to maximize
an expected total reward and meanwhile avoids
violation of certain constraints on a number of
expected total costs. In general, such SRL prob-
lems have nonconvex objective functions subject
to multiple nonconvex constraints, and hence are
very challenging to solve, particularly to provide
a globally optimal policy. Many popular SRL al-
gorithms adopt a primal-dual structure which uti-
lizes the updating of dual variables for satisfying
the constraints. In contrast, we propose a primal
approach, called constraint-rectified policy opti-
mization (CRPO), which updates the policy alter-
natingly between objective improvement and con-
straint satisfaction. CRPO provides a primal-type
algorithmic framework to solve SRL problems,
where each policy update can take any variant
of policy optimization step. To demonstrate the
theoretical performance of CRPO, we adopt natu-
ral policy gradient (NPG) for each policy update
step and show that CRPO achieves an O(1/

√
T )

convergence rate to the global optimal policy in
the constrained policy set and an O(1/

√
T ) er-

ror bound on constraint satisfaction. This is the
first finite-time analysis of primal SRL algorithms
with global optimality guarantee. Our empirical
results demonstrate that CRPO can outperform
the existing primal-dual baseline algorithms sig-
nificantly.

1. Introduction
Reinforcement learning (RL) has achieved great success in
solving complex sequential decision-making and control
problems such as Go (Silver et al., 2017), StarCraft (Deep-
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Mind, 2019) and recommendation system (Zheng et al.,
2018), etc. In these settings, the agent is allowed to explore
the entire state and action space to maximize the expected
total reward. However, in safe RL (SRL), in addition to
maximizing the reward, an agent needs to satisfy certain
constraints. Examples include self-driving cars (Fisac et al.,
2018), cellular network (Julian et al., 2002), and robot con-
trol (Levine et al., 2016). The global optimal policy in SRL
is the one that maximizes the reward and at the same time
satisfies the cost constraints.

The current safe RL algorithms can be generally catego-
rized into the primal and primal-dual approaches. The
primal-dual approaches (Tessler et al., 2018; Ding et al.,
2020a; Stooke et al., 2020; Yu et al., 2019; Achiam et al.,
2017; Yang et al., 2019a; Altman, 1999; Borkar, 2005; Bhat-
nagar & Lakshmanan, 2012; Liang et al., 2018; Paternain
et al., 2019a) are most commonly used, which convert the
constrained problem into an unconstrained one by augment-
ing the objective with a sum of constraints weighted by
their corresponding Lagrange multipliers (i.e., dual vari-
ables). Generally, primal-dual algorithms apply a certain
policy optimization update such as policy gradient alter-
natively with a gradient descent type update for the dual
variables. Theoretically, (Tessler et al., 2018) has provided
an asymptotic convergence analysis for primal-dual method
and established a local convergence guarantee. (Paternain
et al., 2019b) showed that the primal-dual method achieves
zero duality gap. Recently, (Ding et al., 2020a) proposed a
primal-dual type proximal policy optimization (PPO) and
established the regret bound for linear constrained MDP.
The convergence rate of primal-dual method based on a nat-
ural policy gradient algorithm was characterized in (Ding
et al., 2020b).

The primal type of approaches (Liu et al., 2019b; Chow
et al., 2018; 2019; Dalal et al., 2018a) enforce constraints
via various designs of the objective function or the update
process without an introduction of dual variables. The pri-
mal algorithms are much less studied than the primal-dual
approach. Notably, (Liu et al., 2019b) developed an interior
point method, which applies logarithmic barrier functions
for SRL. (Chow et al., 2018; 2019) leveraged Lyapunov
functions to handle constraints. (Dalal et al., 2018a) in-
troduced a safety layer to the policy network to enforce
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constraints. None of the existing primal algorithms are
shown to have provable convergence guarantee to a globally
optimal feasible policy.

Comparing between the primal-dual and primal approaches,
the primal-dual approach can be sensitive to the initialization
of Lagrange multipliers and the learning rate, and can thus
incur extensive cost in hyperparameter tuning (Achiam et al.,
2017; Chow et al., 2019). In contrast, the primal approach
does not introduce additional dual variables to optimize and
involves less hyperparamter tuning, and hence holds the
potential to be much easier to implement than the primal-
dual approach. However, the existing primal algorithms are
not yet popular in practice so far, because of no guaranteed
global convergence and no strong demonstrations to have
competing performance as the primal-dual algorithms. Thus,
in order to take the advantage of the primal approach which
is by nature easier to implement, we need to answer the
following fundamental questions.

� Can we design a primal algorithm for SRL, and demon-
strate that it achieves competing performance or outper-
forms the baseline primal-dual approach?

� If so, can we establish global optimality guarantee and
the finite-time convergence rate for the proposed primal
algorithm?

In this paper, we will provide the affirmative answers to the
above questions, thus establishing appealing advantages of
the primal approach for SRL.

1.1. Main Contributions

A New Algorithm: We propose a novel primal ap-
proach called Constraint-Rectified Policy Optimization
(CRPO) for SRL, where all updates are taken in the pri-
mal domain. CRPO applies unconstrained policy maxi-
mization update w.r.t. the reward on the one hand, and if
any constraint is violated, momentarily rectifies the policy
back to the constraint set along the descent direction of the
violated constraint also by applying unconstrained policy
minimization update w.r.t. the constraint function. From the
implementation perspective, CRPO can be implemented as
easy as unconstrained policy optimization algorithms. With-
out introduction of dual variables, it does not suffer from
hyperparameter tuning of the learning rates to which the
dual variables are sensitive, nor does it require initialization
to be feasible. Further, CRPO involves only policy gradi-
ent descent for both objective and constraints, whereas the
primal-dual approach typically requires projected gradient
descent, where the projection causes higher complexity to
implementation as well as hyperparameter tuning due to the
projection thresholds.

To further explain the advantage of CRPO over the primal-
dual approach, CRPO features immediate switches be-

tween optimizing the objective and reducing the constraints
whenever constraints are violated. However, the primal-dual
approach can respond much slower because the control is
based on dual variables. If a dual variable is nonzero, then
the policy update will descend along the corresponding con-
straint function. As a result, even if a constraint is already
satisfied, there can often be a significant delay for the dual
variable to iteratively reduce to zero to release the constraint,
which slows down the algorithm. Our experiments in Sec-
tion 5 validates such a performance advantage of CRPO
over the primal-dual approach.

Theoretical Guarantee: To provide the theoretical guar-
antee for CRPO, we adopt NPG as a representative policy
optimizer and investigate the convergence of CRPO in two
settings: tabular and function approximation, where in the
function approximation setting the state space can be infinite.
For both settings, we show that CRPO converges to a global
optimum at a convergence rate of O(1/

√
T ). Furthermore,

the constraint violation also converges to zero at a rate of
O(1/

√
T ). To the best of our knowledge, we establish the

first provably global optimality guarantee for a primal SRL
algorithm of CRPO.

To compare with the primal-dual approach in the function
approximation setting, the value function gap of CRPO
achieves the same convergence rate as the primal-dual ap-
proach, but the constraint violation of CRPO decays at a rate
of O(1/

√
T ), which is much faster than the rate O(1/T

1
4 )

of the primal-dual approach (Ding et al., 2020b).

Technically, our analysis has the following novel develop-
ments. (a) We develop a new technique to analyze a stochas-
tic approximation (SA) that randomly and dynamically
switches between the target objectives of the reward and the
constraint. Such an SA by nature is different from the anal-
ysis of a typical policy optimization algorithm, which has a
fixed target objective to optimize. Our analysis constructs
novel concentration events for capturing the impact of such
a dynamic process on the update of the reward and cost
functions in order to establish the high probability conver-
gence guarantee. (b) We also develop new tools to handle
multiple constraints, which is particularly non-trivial for our
algorithm that involves stochastic selection of a constraint
if multiple constraints are violated.

1.2. Related Work

Safe RL: Algorithms based on primal-dual methods have
been widely adopted for solving constrained RL problems,
such as PDO (Chow et al., 2017), RCPO (Tessler et al.,
2018), OPDOP (Ding et al., 2020a) and CPPO (Stooke et al.,
2020). Constrained policy optimization (CPO) (Achiam
et al., 2017) extends TRPO to handle constraints, and is later
modified with a two-step projection method (Yang et al.,
2019a). The effectiveness of primal-dual methods is justi-
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fied in (Paternain et al., 2019b), in which zero duality gap is
guaranteed under certain assumptions. A recent work (Ding
et al., 2020b) established the convergence rate of the primal-
dual method under Slater’s condition assumption. Other
methods have also been proposed. For example, (Chow
et al., 2018; 2019) leveraged Lyapunov functions to handle
constraints. (Yu et al., 2019) proposed a constrained policy
gradient algorithm with convergence guarantee by solving a
sequence of sub-problems. (Dalal et al., 2018a) proposed to
add a safety layer to the policy network so that constraints
can be satisfied at each state. (Liu et al., 2019b) developed
an interior point method for safe RL, which augments the
objective with logarithmic barrier functions. Our work pro-
poses a CRPO algorithm, which can be implemented as
easy as unconstrained policy optimization methods and has
global optimality guarantee under general constrained MDP.
Our result is the first convergence rate characterization of
primal-type algorithms for SRL.

Finite-Time Analysis of Policy Optimization: The finite-
time analysis of various policy optimization algorithms un-
der unconstrained MDPs have been well studied. The con-
vergence rate of policy gradient (PG) and actor-critic (AC)
algorithms have been established in (Shen et al., 2019; Pap-
ini et al., 2017; 2018; Xu et al., 2020a; 2019a; Xiong et al.,
2020; Zhang et al., 2019) and (Xu et al., 2020b; Wang et al.,
2019; Yang et al., 2019b; Kumar et al., 2019; Qiu et al.,
2019), respectively, in which PG or AC algorithm is shown
to converge to a local optimal. In some special settings such
as tabular and LQR, PG and AC can be shown to conver-
gence to the global optimal (Agarwal et al., 2019; Yang
et al., 2019b; Fazel et al., 2018; Malik et al., 2018; Tu &
Recht, 2018; Bhandari & Russo, 2019; 2020). Algorithms
such as NPG, NAC, TRPO and PPO explore the second
order information, and achieve great success in practice.
These algorithms have been shown to converge to a global
optimum in various settings, where the convergence rate has
been established in (Agarwal et al., 2019; Shani et al., 2019;
Liu et al., 2019a; Wang et al., 2019; Cen et al., 2020; Xu
et al., 2020c).

2. Problem Formulation and Preliminaries
2.1. Markov Decision Process

A discounted Markov decision process (MDP) is a tuple
(S,A, c0,P, ξ, γ), where S and A are state and action
spaces; c0 : S × A × S → R is the reward function;
P : S × A × S → [0, 1] is the transition kernel, with
P(s′|s, a) denoting the probability of transitioning to state
s′ from previous state s given action a; ξ : S → [0, 1]
is the initial state distribution; and γ ∈ (0, 1) is the dis-
count factor. A policy π : S → P(A) is a mapping
from the state space to the space of probability distribu-
tions over the actions, with π(·|s) denoting the proba-

bility of selecting action a in state s. When the associ-
ated Markov chain P(s′|s) =

∑
A P (s′|s, a)π(a|s) is er-

godic, we denote µπ as the stationary distribution of this
MDP, i.e.

∫
S P(s′|s)µπ(ds) = µπ(s′). Moreover, we

define the visitation measure induced by the police π as
νπ(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s, at = a).

For a given policy π, we define the state value
function as V 0

π (s) = E[
∑∞
t=0 γ

tc0(st, at, st+1)|s0 =
s, π], the state-action value function as Q0

π(s, a) =
E[
∑∞
t=0 γ

tc0(st, at, st+1)|s0 = s, a0 = a, π], and the
advantage function as A0

π(s, a) = Q0
π(s, a) − V 0

π (s). In
reinforcement learning, we aim to find an optimal policy
that maximizes the expected total reward function defined
as J0(π) = E[

∑∞
t=0 γ

tc0(st, at, st+1)] = Eξ[V 0
π (s)] =

Eξ·π[Q0
π(s, a)].

2.2. Safe Reinforcement Learning (SRL) Problem

The SRL problem is formulated as an MDP with additional
constraints that restrict the set of allowable policies. Specifi-
cally, when taking action at some state, the agent can incur
a number of costs denoted by c1, · · · , cp, where each cost
function ci : S×A×S → R maps a tuple (s, a, s′) to a cost
value. Let Ji(π) denotes the expected total cost function
with respect to ci as Ji(π) = E[

∑∞
t=0 γ

tci(st, at, st+1)].
The goal of the agent in SRL is to solve the following con-
strained problem

max
π

J0(π), s.t. Ji(π) ≤ di, ∀i = 1, · · · , p, (1)

where di is a fixed limit for the i-th constraint. We denote
the set of feasible policies as ΩC ≡ {π : ∀i, Ji(π) ≤
di}, and define the optimal policy for SRL as π∗ =
arg minπ∈ΩC J0(π). For each cost ci, we define its corre-
sponding state value function V iπ , state-action value function
Qiπ , and advantage functionAiπ analogously to V 0

π , Q0
π , and

A0
π , with ci replacing c0, respectively.

2.3. Policy Parameterization and Policy Gradient

In practice, a convenient way to solve the problem eq. (1)
is to parameterize the policy and then optimize the policy
over the parameter space. Let {πw : S → P(A)|w ∈ W}
be a parameterized policy class, whereW is the parameter
space. Then, the problem in eq. (1) becomes

max
w∈W

J0(πw), s.t. Ji(πw) ≤ di, ∀i = 1, · · · , p. (2)

The policy gradient of the function Ji(πw) has been
derived by (Sutton et al., 2000) as ∇Ji(πw) =
E[Qiπw(s, a)φw(s, a)], where φw(s, a) := ∇w log πw(a|s)
is the score function. Furthermore, the natural policy
gradient was defined by (Kakade, 2002) as ∆i(w) =
F (w)†∇Ji(πw), where F (w) is the Fisher information ma-
trix defined as F (w) = Eνπw [φw(s, a)φw(s, a)>].
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Algorithm 1 Constraint-Rectified Policy Optimization
(CRPO)

1: Initialize: initial parameter w0, empty setN0

2: for t = 0, · · · , T − 1 do
3: Policy evaluation under πwt : Q̄

i
t(s, a) ≈ Qiπwt (s, a)

4: Sample (sj , aj) ∈ Bt ∼ ξ · πwt , compute constrain estima-
tion J̄i,Bt =

∑
j∈Bt ρj,tQ̄

i
t(sj , aj) for i = 0, · · · , p, (ρj,t

is the weight)
5: if J̄i,Bt ≤ di + η for all i = 1, · · · , p, then
6: Add wt into setN0

7: Take one-step policy update towards maximize J0(wt):
wt → wt+1

8: else
9: Choose any it ∈ {1, · · · , p} such that J̄it,Bt > dit + η

10: Take one-step policy update towards minimize Jit(wt):
wt → wt+1

11: end if
12: end for
13: Output: wout uniformly chosen fromN0

3. Constraint-Rectified Policy Optimization
(CRPO) Algorithm

In this section, we propose the CRPO approach (see Al-
gorithm 1) for solving the SRL problem in eq. (2). The
idea of CRPO lies in updating the policy to maximize the
unconstrained objective function J0(πwt) of the reward, al-
ternatingly with rectifying the policy to reduce a constraint
function Ji(πwt) (i ≥ 1) (along the descent direction of this
constraint) if it is violated. Each iteration of CRPO consists
of the following three steps.

Policy Evaluation: At the beginning of each iteration,
we estimate the state-action value function Q̄iπt(s, a) ≈
Qiπwt (s, a) (i = {0, · · · , p}) for both reward and costs un-
der current policy πwt .

Constraint Estimation: After obtaining Q̄iπt , the con-
straint function Ji(wt) = Eξ·πwt [Q

i
wt(s, a)] can then be

approximated via a weighted sum of approximated state-
action value function: J̄i,Bt =

∑
j∈Bt ρj,tQ̄

i
t(sj , aj). Note

this step does not take additional sampling cost, as the gen-
eration of samples (sj , aj) ∈ Bt from distribution ξ · πwt
does not require the agent to interact with the environment.

Policy Optimization: We then check whether there exists
an it ∈ {1, · · · , p} such that the approximated constraint
J̄it,Bt violates the condition J̄it,Bt ≤ di + η, where η is
the tolerance. If so, we take one-step update of the policy
towards minimizing the corresponding constraint function
Jit(πwt) to enforce the constraint. If multiple constraints
are violated, we can choose to minimize any one of them. If
all constraints are satisfied, we take one-step update of the
policy towards maximizing the objective function J0(πwt).
To apply CRPO in practice, we can use any policy optimiza-
tion update such as natural policy gradient (NPG) (Kakade,

2002), trust region policy optimization (TRPO) (Schulman
et al., 2015), proximal policy optimization (PPO) (Schulman
et al., 2017), ACKTR (Wu et al., 2017), DDPG (Lillicrap
et al., 2015) and SAC (Haarnoja et al., 2018), etc, in the
policy optimization step (line 7 and line 10).

The advantage of CRPO over the primal-dual approach can
be readily seen from its design. CRPO features immediate
switches between optimizing the objective and reducing the
constraints whenever they are violated. However, the primal-
dual approach can respond much slower because the control
is based on dual variables. If a dual variable is nonzero, then
the policy update will descend along the corresponding con-
straint function. As a result, even if a constraint is already
satisfied, there can still be a delay (sometimes a significant
delay) for the dual variable to iteratively reduce to zero to
release the constraint, which yields unnecessary sampling
cost and slows down the algorithm. Our experiments in
Section 5 validates such a performance advantage of CRPO
over the primal-dual approach.

From the implementation perspective, CRPO can be imple-
mented as easy as unconstrained policy optimization such
as unconstrained policy gradient algorithms, whereas the
primal-dual approach typically requires the projected gra-
dient descent to update the dual variables, which is more
complex to implement. Further, without introduction of the
dual variables, CRPO does not suffer from hyperparameter
tuning of the learning rates and projection threshold of the
dual variables, whereas the primal-dual approach can be
very sensitive to these hyperparamters. Nor does CRPO
require initialization to be feasible, whereas the primal-dual
approach can suffer significantly from bad initialization. We
also empirically verify that the performance of CRPO is
robust to the value of η over a wide range, which does not
cause additional tuning effort compared to unconstrained
algorithms. More discussions can be referred to Section 5.

CRPO algorithm is inspired by, yet very different from the
cooperative stochastic approximation (CSA) method (Lan
& Zhou, 2016) in optimization literature. First, CSA is de-
signed for convex optimization subject to convex constraint,
and is not readily capable of handling the more challenging
SRL problems eq. (2), which are nonconvex optimization
subject to nonconvex constraints. Second, CSA is designed
to handle only a single constraint, whereas CRPO can han-
dle multiple constraints with guaranteed constraint satisfac-
tion and global optimality. Thus, the finite-time analysis
for CSA and CRPO feature different approaches due to the
aforementioned differences in their designs.

4. Convergence Analysis of CRPO
In this section, we take NPG as a representative optimizer in
CRPO, and establish the global convergence rate of CRPO
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in both the tabular and function approximation settings.
Note that TRPO and ACKTR update can be viewed as
the NPG approach with adaptive stepsize. Thus, the con-
vergence we establish for NPG implies similar results for
CRPO that takes TRPO or ACKTR as the optimizer.

4.1. Tabular Setting

In the tabular setting, we consider the softmax parameteri-
zation. For any w ∈ R|S|×|A|, the corresponding softmax
policy πw is defined as

πw(a|s) :=
exp(w(s, a))∑

a′∈A exp(w(s, a′))
, ∀(s, a) ∈ S ×A. (3)

Clearly, the policy class defined in eq. (3) is complete, as
any stochastic policy in the tabular setting can be repre-
sented in this class.

Policy Evaluation: To perform the policy evaluation in
Algorithm 1 (line 3), we adopt the temporal difference (TD)
learning, in which a vector θi ∈ R|S|×|A| is used to estimate
the state-action value function Qiπw for all i = 0, · · · , p.
Specifically, each iteration of TD learning takes the form of

θik+1(s, a) = θik(s, a)

+ βk[ci(s, a, s
′) + γθik(s′, a′)− θik(s, a)], (4)

where s ∼ µπw , a ∼ πw(·|s), s′ ∼ P(·|s, a), a′ ∼ πw(·|s′),
and βk is the learning rate. In line 3 of Algorithm 1, we
perform the TD update in eq. (4) for Kin iterations. It has
been shown in (Sutton, 1988; Bhandari et al., 2018; Dalal
et al., 2018b) that the iteration in eq. (4) of TD learning
converges to a fixed point θi∗(πw) ∈ R|S|×|A|, where each
component of the fixed point is the corresponding state-
action value: θi∗(πw)(s, a) = Qiπw(s, a). After performing
Kin iterations of TD learning as eq. (4), we let Q̄it(s, a) =
θiKin

(s, a) for all (s, a) ∈ S ×A and all i = {0, · · · , p}.

Constraint Estimation: In the tabular setting, we let the
sample set Bt include all state-action pairs, i.e., Bt = S×A,
and the weight factor be ρj,t = ξ(sj)πwt(aj |sj) for all
t = 0, · · · , T − 1. Then, the estimation error of the
constraints can be upper bounded as |J̄i(θit) − Ji(wt)| =
|E[Q̄it(s, a)]−E[Qiπwt (s, a)]| ≤ ||Q̄i(θit)−Qiπwt ||

2. Thus,
our approximation of constraints is accurate when the ap-
proximated value function Q̄it(s, a) is accurate.

Policy Optimization: In the tabular setting, it can be
checked that the natural policy gradient of Ji(πw) is
∆i(w)s,a = (1− γ)−1Qiπw(s, a) (see Appendix B). Once
we obtain an approximation Q̄it(s, a) ≈ Qiπw(s, a), we can
use it to update the policy in the upcoming policy optimiza-
tion step:

wt+1 = wt + α∆̄t, (line 7)
or wt+1 = wt − α∆̄t (line 10), (5)

where α > 0 is the stepsize and ∆̄t(s, a) = (1 −
γ)−1Q̄0

t (s, a) (line 7) or (1− γ)−1Q̄itt (s, a) (line 10).

Our main technical challenge lies in the analysis of pol-
icy optimization, which runs as a stochastic approximation
(SA) process with random and dynamical switches be-
tween optimization objectives of the reward and cost targets.
Moreover, since critics estimate the constraints and help
actor to estimate the policy update, the interaction error be-
tween actor and critics affects how the algorithm switches
between objective and constraints. The typical analysis
technique for NPG (Agarwal et al., 2019) is not applicable
here, because NPG has a fixed objective to optimize, and its
analysis technique does not capture the overall convergence
performance of an SA with dynamically switching optimiza-
tion objective. Furthermore, the updates with respect to
the constraint functions involve the stochastic selection of a
constraint if multiple constraints are violated, which further
complicates the random events to analyze. To handle these
issues, we develop a novel analysis approach, in which we
focus on the event in which critic returns almost accurate
value function estimation. Such an event greatly facilitates
us to capture how CRPO switches between objective and
multiple constraints and establish the convergence rate.

The following theorem characterizes the convergence rate
of CRPO in terms of the objective function and constraint
error bound.

Theorem 1. Consider Algorithm 1 in the tabular setting
with softmax policy parameterization defined in eq. (3)
and any initialization w0 ∈ R|S|×|A|. Suppose the pol-
icy evaluation update in eq. (4) takes Kin = Θ(T 1/σ(1 −
γ)−2/σ log2/σ(T 1+2/σ/δ)) iterations. Let the tolerance
η = Θ(

√
|S| |A|/((1 − γ)1.5

√
T )) and perform the NPG

update defined in eq. (5) with α = (1− γ)1.5/
√
|S| |A|T .

Then, with probability at least 1− δ, we have

J0(π∗)− E[J0(wout)] ≤ Θ

( √
|S| |A|

(1− γ)1.5
√
T

)
,

E[Ji(wout)]− di ≤ Θ

( √
|S| |A|

(1− γ)1.5
√
T

)

for all i = {1, · · · , p}, where the expectation is taken with
respect to selecting wout from N0.

As shown in Theorem 1, starting from an arbitrary ini-
tialization, CRPO algorithm is guaranteed to converge to
the globally optimal policy π∗ in the feasible set ΩC at
a sublinear rate O(1/

√
T ), and the constraint violation of

the output policy also converges to zero also at a sublin-
ear rate O(1/

√
T ). Thus, to attain a wout that satisfies

J0(π∗) − E[J0(wout)] ≤ ε and E[Ji(wout)] − di ≤ ε for
all 1 ≤ i ≤ p, CRPO needs at most T = O(ε−2) iterations,
with each policy evaluation step consists of approximately
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Kin = O(T ) iterations when σ is close to 1. Theorem 1
is the first global convergence for a primal-type algorithm
even under the nonconcave objective with nonconcave con-
straints.

Outline of Proof Idea. We briefly explain the idea of the
proof of Theorem 1, and the detailed proof can be referred
to Appendix B. The key challenge here is to analyze an SA
process that randomly and dynamically switches between
the target objectives of the reward and the constraint. To this
end, we construct novel concentration events for capturing
the impact of such a dynamic process on the update of the
reward and cost functions in order to establish the high
probability convergence guarantee.

More specifically, we focus on the event in which all policy
evaluation step returns an estimation with high accuracy.
Then we show that under the parameter setting specified
in Theorem 1, either the size of the approximated feasible
policy set N0 is large, or the average policies in the set
N0 is at least as good as π∗. In the first case we have
enough candidate policies in the set N0, which guarantees
the convergence of CRPO within the set N0. In the second
case we can directly conclude that J(wout) ≥ J(π∗). To
establish the convergence rate of the constraint violation,
note that wout is selected from the set N0, and thus the
violation cost is not worse than the summation of constraint
estimation error and the tolerance.

4.2. Function Approximation Setting

In the function approximation setting, we parameterize the
policy by a two-layer neural network together with the soft-
max policy. We assign a feature vector ψ(s, a) ∈ Rd
with d ≥ 2 for each state-action pair (s, a). Without
loss of generality, we assume that ‖ψ(s, a)‖2 ≤ 1 for all
(s, a) ∈ S ×A. A two-layer neural network f((s, a);W, b)
with input ψ(s, a) and width m takes the form of

f((s, a);W, b) =
1√
m

m∑
r=1

br · ReLU(W>r ψ(s, a)), (6)

for any (s, a) ∈ S × A, where ReLU(x) = 1(x > 0) · x,
b = [b1, · · · , bm]> ∈ Rm, and W = [W>1 , · · · ,W>m ]> ∈
Rmd are the parameters. When training the two-layer neural
network, we initialize the parameter via [W0]r ∼ Dw and
br ∼ Unif[−1, 1] independently, where Dw is a distribution
that satisfies d1 ≤ ‖[W0]r‖2 ≤ d2 (where d1 and d2 are
positive constants), for all [W0]r in the support of Dw. Dur-
ing training, we only update W and keep b fixed, which is
widely adopted in the convergence analysis of neural net-
works (Cai et al., 2019; Du et al., 2018). For notational
simplicity, we write f((s, a);W, b) as f((s, a);W ) in the
sequel. Using the neural network in eq. (6), we define the

softmax policy

πτW (a|s) :=
exp(τ · f((s, a);W ))∑
a′A exp(τ · f((s, a′);W ))

, (7)

for all (s, a) ∈ S × A, where τ is the tempera-
ture parameter, and it can be verified that πτW (a|s) =
πτW (a|s). We define the feature mapping φW (s, a) =
[φ1
W (s, a)>, · · · , φmW (s, a)>]>: Rd → Rmd as

φrW (s, a)> =
br√
m
1(W>r ψ(s, a) > 0) · ψ(s, a),

for all (s, a) ∈ S ×A and for all r ∈ {1, · · · ,m}.

Policy Evaluation: To estimate the state-action value func-
tion in Algorithm 1 (line 3), we adopt another neural net-
work f((s, a); θi) as an approximator, where f((s, a); θi)
has the same structure as f((s, a);W ), with W replaced by
θ ∈ Rmd in eq. (7). To perform the policy evaluation step,
we adopt the TD learning with neural network parametriza-
tion, which has also been used for the policy evaluation step
in (Cai et al., 2019; Wang et al., 2019; Zhang et al., 2020).
Specifically, we choose the same initialization as the policy
neural work, i.e., θi0 = W0, and perform the TD iteration as

θik+1/2 =θik + β(ci(s, a, s
′) + γf((s′, a′); θik)

− f((s, a); θik))∇θf((s, a); θik), (8)

θik+1 = arg min
θ∈B

∥∥∥θ − θik+1/2

∥∥∥
2
, (9)

where s ∼ µπW , a ∼ πW (·|s), s′ ∼ P(·|s, a), a′ ∼
πW (·|s′), β is the learning rate, and B is a compact
space defined as B = {θ ∈ Rmd :

∥∥θ − θi0∥∥2
≤

R}. For simplicity, we denote the state-action pair as
x = (s, a) and x′ = (s′, a′) in the sequel. We
define the temporal difference error as δk(x, x′, θik) =
f(x′k, θ

i
k) − γf(xk, θ

i
k) − ci(xk, x

′
k), stochastic semi-

gradient as gk(θik) = δk(xk, x
′
k.θ

i
k)∇θf(xk, θ

i
k), and full

semi-gradient as ḡk(θik) = EµπW [δk(x, x′, θik)∇θf(x, θik)].
We then describe the following regularity conditions on
the stationary distribution µπW , state-action value function
QiπW , and variance, which have been adopted widely in the
analysis of TD learning with function approximation and
stochastic approximation (SA) (Cai et al., 2019; Wang et al.,
2019; Zhang et al., 2020; Fu et al., 2020).

Assumption 1. There exists a constant C0 > 0 such that
for any τ ≥ 0, x ∈ Rd with ‖x‖2 = 1 and πW , it holds that
P
(∣∣x>ψ(s, a)

∣∣ ≤ τ) ≤ C0 · τ , where (s, a) ∼ µπW .

Assumption 2. We define the following function class:

FR,∞ =
{
f((s, a); θ) = f((s, a); θ0)

+

∫
1(θ>ψ(s, a) > 0) · λ(θ)>ψ(s, a)dp(θ)

}
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where f((s, a); θ0) is the two-layer neural network corre-
sponding to the initial parameter θ0 = W0, λ(θ) : Rd →
Rd is a weighted function satisfying ‖λ(w)‖∞ ≤ R/

√
d,

and p(·) : Rd → R is the density Dw. We assume that
QiπW ∈ FR,∞ for all πW and i = {0, · · · , p}.
Assumption 3. For any parameterized policy πW , there
exists a constant Cζ > 0 such that for all k ≥ 0,

EµπW
[
exp

(∥∥ḡk(θik)− gk(θik)
∥∥2

2
/C2

ζ

)]
≤ 1.

Assumption 1 implies that the distribution of ψ(s, a) has
a uniformly upper bounded probability density over the
unit sphere, which can be satisfied for most of the ergodic
Markov chain. Assumption 2 is a mild regularity condition
on QiπW , as FR,∞ is a function class of neural networks
with infinite width, which captures a sufficiently general
family of functions. Assumption 3 on the variance bound
is standard, which has been widely adopted in stochastic
optimization literature (Ghadimi & Lan, 2013; Nemirovski
et al., 2009; Lan, 2012; Ghadimi & Lan, 2016).

In the following lemma, we characterize the convergence
rate of neural TD in high probability, which is needed for our
the analysis. Such a result is stronger than the convergence
in expectation provided in (Bhandari et al., 2018; Cai et al.,
2019; Wang et al., 2019; Zhang et al., 2020; Srikant & Ying,
2019), which is not sufficient for our need later on.
Lemma 1 (Convergence rate of TD in high probability).
Consider the TD iteration with neural network approx-
imation defined in eq. (8). Let θ̄K = 1

K

∑K−1
k=0 θk be

the average of the output from k = 0 to K − 1. Let
Q̄it(s, a) = f((s, a), θiKin

) be an estimator of QiπτtWt (s, a).
Suppose Assumptions 1-3 hold, assume that the stationary
distribution µπW is not degenerate for all W ∈ B, and
let the stepsize β = min{1/

√
K, (1− γ)/12}. Then, with

probability at least 1− δ, we have

∥∥∥Q̄it(s, a)−QiπτtWt (s, a)
∥∥∥2
µπ
≤ Θ

( 1

(1− γ)2
√
K

√
log

(
1

δ

))
+Θ

( 1

(1− γ)3m1/4

√
log

(
K

δ

))
.

Lemma 1 implies that after performing the neural TD learn-
ing in eq. (8)-eq. (9) for Θ(

√
m) iterations, we can ob-

tain an approximation Q̄it such that ||Q̄it − QiπτtWt ||µπ =

O(1/m1/8) with high probability.

Constraint Estimation: Since the state space is usually
very large or even infinite in the function approximation
setting, we cannot include all state-action pairs to estimate
the constraints as for the tabular setting. Instead, we sample
a batch of state-action pairs (sj , aj) ∈ Bt from the distri-
bution ξ(·)πWt

(·|·), and let the weight factor ρj = 1/ |Bt|
for all j. In this case, the estimation error of the constrains∣∣J̄i(θit)− Ji(wt)∣∣ is small when the policy evaluation Q̄it

is accurate and the batch size |Bt| is large. We assume the
following concentration property for the sampling process
in the constraint estimation step. Similar assumptions have
also been taken in (Ghadimi & Lan, 2013; Nemirovski et al.,
2009; Lan, 2012; Ghadimi & Lan, 2016).

Assumption 4. For any parameterized policy πW , there
exists a constant Cf > 0 such that for all k ≥ 0,

Eξ·πW
[
exp([Q̄it(s, a)− Eξ·πτtWt [Q̄

i
t(s, a)]2/C2

f )
]
≤ 1.

Policy Optimization: In the neural softmax approximation
setting, at each iteration t, an approximation of the natural
policy gradient can be obtained by solving the following
linear regression problem (Agarwal et al., 2019; Wang et al.,
2019; Xu et al., 2019b):

∆i(Wt) ≈ ∆̄t

= arg min
θ∈B

EνπτtWt [(Q̄it(s, a)− φWt
(s, a)>θ)2]. (10)

Given the approximated natural policy gradient ∆̄t, the
policy update takes the form of

τt+1 = τt + α, τt+1 · wt+1 = τt · wt + α∆̄t (line 7)
or τt+1 · wt+1 = τt · wt − α∆̄t (line 10). (11)

Note that in eq. (11) we also update the temperature parame-
ter by τt+1 = τt+α simultaneously, which ensures wt ∈ B
for all t. The following theorem characterizes the conver-
gence rate of Algorithm 1 in terms of both the objective
function and the constraint violation.

Theorem 2. Consider Algorithm 1 in the function approxi-
mation setting with neural softmax policy parameterization
defined in eq. (7). Suppose Assumptions 1-4 hold. Suppose
the same setting of policy evaluation step stated in Lemma 1
holds, and consider performing the neural TD in eq. (8) and
eq. (9) with Kin = Θ((1− γ)2

√
m) at each iteration. Let

the tolerance η = Θ(m(1−γ)−1/
√
T+(1−γ)−2.5m−1/8)

and perform the NPG update defined in eq. (11) with
α = Θ(1/

√
T ). Then with probability at least 1 − δ, we

have

J0(π∗)−E[J0(πτoutWout)] ≤ Θ
(

1

(1− γ)
√
T

)
+Θ

(
1

(1− γ)2.5m1/8
log

1
4

(
(1− γ)2T

√
m

δ

))
,

and for all i = 1, · · · , p, we have

E[Ji(πτoutWout)]− di ≤ Θ
(

1

(1− γ)
√
T

)
+Θ

(
1

(1− γ)2.5m1/8
log

1
4

(
(1− γ)2T

√
m

δ

))
.

where the expectation is taken only with respect to the ran-
domness of selecting Wout from N0.
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Theorem 2 guarantees that CRPO converges to the global
optimal policy π∗ in the feasible set at a sublinear rate
O(1/

√
T ) with a approximation error O(m−1/8) vanishes

as the network width m increases. The constraint violation
bound also converges to zero at a sublinear rate O(1/

√
T )

with a vanishing error O(m−1/8) decreases as m increase.
The approximation error arises from both the policy evalua-
tion and policy optimization due to the limited expressive
power of neural networks.

To compare with the primal-dual approach in the function
approximation setting, Theorem 2 shows that while the
value function gap of CRPO achieves the same convergence
rate as the primal-dual approach, the constraint violation of
CRPO decays at a convergence rate of O(1/

√
T ), which

substantially outperforms the rate O(1/T
1
4 ) of the primal-

dual approach (Ding et al., 2020b). Such an advantage of
CRPO is further validated by our experiments in Section 5,
which show that the constraint violation of CRPO vanishes
much faster than that of the primal-dual approach.

Remark 1. Our convergence analysis for Theorem 2 can
still hold without Assumptions 3 and 4. As a result, the con-
vergence rate of CRPO would have polynomial dependence
on δ rather than logarithmic dependence.

Remark 2. Both Theorems 1 and 2 can be extended to
cases with Markovian sampling, where an additional bias
error due to Markovian sampling can be bounded using the
standard techniques (e.g. (Bhandari et al., 2018; Tagorti &
Scherrer, 2015)).

Remark 3. The result in Theorem 2 can be extended to sce-
narios with a continuous action space and with a generally
parametrized policy (not necessarily softmax), by leveraging
the analysis in (Agarwal et al., 2019) for proving the global
convergence of NPG with general function approximation.

5. Experiments
In this section, we conduct simulation experiments on dif-
ferent SRL tasks to compare our CRPO with the other base-
line SRL algorithms: primal-dual optimization (PDO), con-
strained policy optimization (CPO), and interior point op-
timization (IPO). We consider two tasks based on OpenAI
gym (Brockman et al., 2016) with each having multiple or a
single constraints given as follows:

Cartpole: The agent is rewarded for keeping the pole up-
right, but is penalized with cost if (1) entering into some
specific areas, or (2) having the angle of pole being large.

Acrobot: The agent is rewarded for swing the end-effector
at a specific height, but is penalized with cost if (1) applying
torque on the joint when the first link swings in a prohibited
direction, or (2) when the the second link swings in a pro-
hibited direction with respect to the first link. In the single
constraint setting, we only consider the fist penalty.

The detailed experimental setting is described in Ap-
pendix A. For all experiments, we use neural softmax policy
with two hidden layers of size (128, 128). We adopt TRPO
as the optimizer for CRPO, PDO and CPO, and PPO as
the optimizer for IPO, which is the approach taken in the
original IPO algorithm in (Liu et al., 2019b). It remains
unclear how to develop an IPO approach based on TRPO. In
CRPO, we let the tolerance η = 0.5. In PDO, we initialize
the Lagrange multiplier as zero, and select the best tuned
stepsize for dual variable update. In CPO, we select the best
tuned size of the line search region for both the reward and
cost optimization. In IPO, the regularization factor of the
barrier function is set to be 20 as suggested in (Liu et al.,
2019b).

5.1. Comparison with PDO

The learning curves for CRPO and PDO are provided in
Figure 1. At each step we evaluate the performance based
on two metrics: the return reward and constraint value of
the output policy. We also show the learning curve of uncon-
strained TRPO (the green line), which, although achieves
the best reward, does not satisfy the constraints.
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Figure 1. Average performance for CRPO, PDO, and uncon-
strained TRPO over 10 seeds. The red dot lines in (a) and (b)
represent the limits of the constraints.

In both tasks, CRPO tracks the constraint returns almost
exactly to the limit, indicating that CRPO sufficiently ex-
plores the boundary of the feasible set, which results in
an optimal return reward. In contrast, although PDO also
outputs a constraints-satisfying policy in the end, it tends
to over- or under-enforce the constraints, which results in
lower return reward and unstable constraint satisfaction per-
formance. In terms of the convergence, the constraints of
CRPO drop below the thresholds (and thus satisfy the con-
straints) much faster than that of PDO, corroborating our
theoretical comparison that the constraint violation of CRPO
(given in Theorem 2) converges much faster than that of
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PDO given in (Ding et al., 2020b).

We also find that the performance of CRPO is robust to
the value of η over a wide range, whereas the convergence
performance of PDO is very sensitive to the stepsize of the
dual variable (see additional experiments of hyperparame-
ters comparison in Appendix A). Thus, in contrast to the
difficulty of tuning PDO, CRPO is much less sensitive to
hyper-parameters and is hence much easier to tune.

5.2. Comparison with CPO

Since it is very difficult for CPO to solve multi-constraint
tasks as discussed in (Liu et al., 2019b), in order to compare
the performance between CRPO and CPO, we focus on the
‘Acrobot’ task with a single constraint. We also add the
learning curve of IPO in the plot for comparison. Figure 2
illustrates that CRPO converges faster and achieves higher
reward than CPO (and IPO), although all algorithms share
similar convergence behavior over the constraint values.

Figure 2. Average performance of CRPO, CPO and IPO in ‘Ac-
robot’ with one constraint over 10 seeds.

5.3. Comparison with IPO

We compare the performance between CRPO and IPO over
the same setting of ‘Acrobot’ with two constraints. As
discussed in (Liu et al., 2019b), IPO relies on the barrier
regularization function to enforce the satisfaction of the
constraints, and hence IPO is guaranteed to converge only
to a suboptimal point. Such a regularization can also slow
down the convergence speed of the constraint value. As
shown in Figure 3, our CRPO outperforms IPO in terms of
the convergence of both the reward and constraint values in
a multi-constraint setting.

Figure 3. Average performance of CRPO and IPO in ‘Acrobot’
with two constraints over 10 seeds.

6. Conclusion
In this paper, we propose a novel CRPO approach for policy
optimization for SRL, which is easy to implement and has
provable global optimality guarantee. We show that CRPO
achieves an O(1/

√
T ) convergence rate to the global opti-

mum and an O(1/
√
T ) rate of vanishing constraint error

when NPG update is adopted as the optimizer. This is the
first primal SRL algorithm that has a provable convergence
guarantee to a global optimum. In the future, it is interest-
ing to incorporate various momentum schemes to CRPO to
improve its convergence performance.
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