
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming

A. Data Preprocess
Inspired by classic molecular distance geometry (Crippen
et al., 1988), in our framework we also generate the con-
firmations by taking the inter-atomic distances as the inter-
mediate variables, which enables the invariant property to
rotation and translation. In practice, the chemical bonds ex-
isting in the molecular graph are not sufficient to determine
a conformation, and thus we follow existing works (Simm
& Hernández-Lobato, 2020; Xu et al., 2021) to first expand
the graphs by extending auxiliary edges. Specifically, the
atoms that are 2 or 3 hops away are connected with virtual
bonds, labeled differently from the real bonds in the vanilla
molecule. These extra bonds contribute to reducing the de-
grees of freedom in the 3D coordinates and characterizing
the unique graph, with the edges between 2-hop neighbors
helping to fix the angles between atoms, and those between
3-hop neighbors fixing dihedral angles.

B. Training Algorithm

Algorithm 1 Training Algorithm of ConfVAE.
Input: objective reweighting coefficients α and λ; the inner
loop optimization iterations T and learning rate η; alignment
function A(·, ·); data samples {Gt,R∗t }.
Initial: prior pψ(z|G), decoder pθ(R|z,G) and its dynamics
defined as gθ, encoder qφ(z|R,G)

while θ, φ, ψ have not converged do
µ, σ ← qφ(z|Gt,R∗t )
z ← ε� σ + µ {Reparameterization}
µq, σq ← pψ(z|Gt)
Lprior = 1

2 log σ
σq
− σ2

q+(µq−µ)2

2σ2

d∗ ← R∗t {Calculate d from R∗}
d∗0 = D−1

θ (z,G) = d∗ +
∫ t0
t1
gθ(d

∗(t), t,G, z)dt
Laux = log p(d∗0)−

∫ t1
t0

Tr
(
∂gθ
∂d(t)

)
dt

Initialize R0, sample d(t0) ∼ N (0, I)

d = Dθ(z,G) = d(t0) +
∫ t1
t0
gθ(d(t), t,G, z)dt

for t = 1, 2, · · · , T do
Rt+1 = Rt − η∇H(Rt,d) {Inner loop}

end for
R← RT

Lrecon = −
∑n
i=1

∑3
j=1 (Rij −A(R,R∗)ij)

2

L = Lrecon + λLprior + αLaux
θ, φ, ψ ← Adam(L; θ, φ, ψ)

end while
return qφ, pθ, pψ

C. Additional Comparisons
C.1. Property Prediction

This task is first proposed in Simm & Hernández-Lobato
(2020), which estimates the expected molecular properties
for molecular graphs by a set of generated conformations.
This task can further demonstrate the effectiveness and qual-
ity of generated samples, and is important for many real-
world applications such as drug and material design.

Dataset. Following Simm & Hernández-Lobato (2020),
we also employ the ISO17 dataset. More details about the
dataset can be found in Sec. 4.3.

Evaluation metrics. For comparison, we calculate the en-
semble properties of each molecular graph by averaging
over a set of generated conformations. Specifically, we cal-
culate the total electronic energyEelec, the energy of HOMO
εHOMO and the LUMO εLUMO, and the dipole moment µ, us-
ing the quantum chemical calculation package Psi4 (Smith
et al., 2020). In practice, we generate 50 samples from dif-
ferent methods to estimate the property, and report median
error of averaged properties to measure the accuracy of pre-
dicted properties. Similar to Simm & Hernández-Lobato
(2020), we exclude CVGAE from this analysis due to its
poor generated quality.

Results. The results are shown in Tab. 3. As shown in the
table, ConfVAE outperforms all other generative models,
and shows competitive results compared with RDKit. Close
observation indicates that CGCF struggles with this task
since the generated conformations suffer a extremely high
variance. By contrast, our proposed method enjoys the
best performance thanks to the high quality of generated
samples.

Table 3. Median difference in averaged properties between ground-
truth and generated conformations from different methods. Unit:
Eelec(kJ/mol), εHOMO(eV), εLUMO(eV), µ(debye).

Eelec εHOMO εLUMO µ

RDKit 42.7 0.08 0.15 0.29
GraphDG 58.0 0.10 0.09 0.33
CGCF 208.2 0.80 1.11 0.46
ConfVAE 40.2 0.10 0.08 0.29

C.2. More Results of Coverage Score

In this section, we give more results about Coverage score
with different thresholds δ. The details about the COV score
can be found in Sec. 4.2. Results are shown in Fig. 4. As
shown in the figure, ConfVAE consistently achieves better
performance than previous state-of-the-art models, which
demonstrates our proposed method is capable to generate
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Figure 4. Curves of the Coverage score with different thresholds δ on GEOM-QM9 (left two) and GEOM-Drugs (right two) datasets. The
first and third curves evaluates the generated conformations from different generative models, while the other two are further optimized
with the empirical force field.
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Figure 5. Marginal distributions p(duv|G) of ground-truth and generated conformations from generative models. We study the edges
between C and O atoms, and omit the H atoms for clarity. In each subplot, the annotation (u − v) denotes the corresponding atoms
connected by the chemical bond duv .

more realistic samples.

C.3. Visualization of Distributions

In Fig. 5, we investigate the accuracy of generated confor-
mations by visualizing the marginal distributions p(duv|G)
for all pairwise distances between C and O atoms of a molec-
ular graph in the ISO17 test set. As shown in the figure,
though primarily designed for learning the 3D structures
via an end-to-end framework, our method can still make a
much better estimation of the distance distributions than the
state-of-the-art model for molecular geometry modeling. As
a representative element of the pairwise property between
atoms, the inter-atomic distances demonstrate the capacity
of our model to capture the inter-atomic interactions.


