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In this supplemental material, we provide (1) additional
details for persistence image; (2) additional examples to
illustrate the matrix reduction algorithm for extended persis-
tent homology; (3) a complete proof of the correctness of the
proposed faster algorithm; and (4) additional experimental
details and qualitative results.

1. Persistence Image
In recent years, efforts have been made to map persistence
diagrams into representations valuable to machine learning
tasks. Persistence Image (Adams et al., 2017) is one such
approach to convert persistence diagrams to vectors, which
will be used in our model. Let T : R2 → R2 be a linear
transformation T (x, y) = (x, y − x) of persistence points.
Given a persistence diagram D, T (D) = {T (d)|d ∈ D}
is the transformed diagram. For any z ∈ R2, φu(z) =

1
2πσ2 e

− ||z−u||
2

2σ2 is the 2D Gaussian function with mean u
and standard deviation σ.

Let α : R2 → R be a non-negative weight function
for the persistence plane R2. Given a persistence dia-
gram DgX , its persistence surface is defined as: ρD(z) =∑
u∈T (D) α(u)φu(z). Fix a grid in the plane with n pix-

els, the persistence image is the collection of pixels PID =
{PID[p]} ∈ Rn where PID[p] =

∫ ∫
p
ρD(x, y)dxdy, thus

can be directly used in machine learning tasks. The stability
of persistence image under perturbation has been proven in
(Adams et al., 2017). In our setting, α is a piecewise linear
weighting function:

α(x, y) =


0 if y ≤ 0

y if 0 < y ≤ 1

1 if y > 1

.
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2. Examples of the Matrix Reduction
Algorithm

The reduction matrix M for Figure 1 is shown in Figure 2.
Recall that M is a binary valued matrix to encode the
adjacency relationship between nodes and edges. M is
a 2m × 2m matrix consisting of four m × m matrices:

M =

[
A P
0 D

]
. Every column or row of M corresponds

to a simplex. In particular, the first m columns of M cor-
respond to the ascending sequence of simplices κ1, ..., κm.
The last m columns of M correspond to the descending
sequence of simplices λ1, ..., λm. The setting is the same
for the rows of M . Matrix A encodes the relationship be-
tween all the simplices in the ascending sequence. Similar
to the incidence matrix of a graph, A[i, j] = 1 iff κi is the
boundary of κj , i.e., κi is a node adjacent to the edge κj .

D is defined similarly, except that it encodes the relationship
of the simplices in the descending sequence, i.e.,D[i, j] = 1
iff λi is the boundary of λj . P stores the permutation that
connects the two sequences of simplices, i.e., P [i, j] = 1
iff κi and λj denote the same simplex. 0 is a zero-valued
m×m matrix.

Algorithm 1 reduces the columns of matrix M from left
to right. If we allow certain flexibility in the reduction or-
dering, we can separate the algorithm into 3 phases: the
reduction of matrix A (Phase 1), the reduction of matrix D
(Phase 2) and the reduction of matrix P (Phase 3) (Cohen-
Steiner et al., 2009). We define a simplex as positive if its
corresponding column is zero after reduction, and negative
if its corresponding column is not zero after reduction. In
our setting, all the nodes, as well as edges that give rise
to a loop are positive simplices, edges that destroy a con-
nected component are negative simplices. All the simplices
are either negative or positive (Edelsbrunner et al., 2000;
Edelsbrunner & Harer, 2010). Notice that the positive and
negative edges in the ascending filtration are not the same as
the positive and negative edges in the descending filtration.

In the following paragraph, we will introduce the whole
process of the matrix reduction algorithm by introducing
the 3 phases successively.
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(a) (b) (c)

Figure 1. An illustration of extended persistent homology. (a) We plot the input graph with a given filter function. The filter value for each
node is f(u1) = t1, f(u2) = t2, f(u3) = t3, f(u4) = t4. (b) The ascending and descending filtrations of the input graph. The bars of
brown and blue colors correspond to the life spans of connected components and loops respectively. The first four figures are the ascending
filtration, while the last four figures denote the descending filtration. In the ascending filtration, f(uv) = max(f(u), f(v)), while in the
descending filtration, f(uv) = min(f(u), f(v)). (c) In the resulting extended persistence diagram, red and blue markers correspond to
0-dimensional and 1-dimensional topological structures. There are two blue markers, corresponding to two loops (u1u3, u3u4, u4u1),
(u2u3, u3u4, u4u2). The range of filter function f for these two loops are [t1, t4], [t2, t4] respectively. These ranges are encoded as the
coordinates of the blue markers.

(a) (b)

(c) (d)

Figure 2. Reduction matrix M for Figure 1
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2.1. Phase 1

Phase 1 is the matrix reduction for A. All the columns of
nodes and all the rows of edges are all zero in A, therefore
they will have no impact on the matrix reduction algorithm.
After deleting these rows and columns, matrix A is shown
below:

A u1u3 u2u3 u1u4 u2u4 u3u4
u1 1 0 1 0 0
u2 0 1 0 1 0
u3 1 1 0 0 1
u4 0 0 1 1 1

For simplicity, we define lowA(ei) as the maximum row of
node vj for which A[vj , ei] = 1. Notice that lowA is orig-
inally defined for the row index, and we replace the index
with the simplex it represents. i.e., we replace A[1, 1] = 1
with A[u1, u1u3] = 1, and we replace lowA(1) = 3 with
lowA(u1u3) = u3.

From left to right, we can find that lowA(u1u3) = u3,
and lowA(u2u3) = u3 = lowA(u1u3), thus we add col-
umn of u1u3 to column of u2u3: [1, 0, 1, 0] + [0, 1, 1, 0] =
[1, 1, 0, 0]. Notice that “add” here means the mod-2 sum of
the two binary vectors. Thus lowA(u2u3) = u2.

Then we can find that lowA(u1u4) = u4, lowA(u2u4) =
u4 = lowA(u1u4), we add the column of u1u4 to the
column of u2u4: [1, 0, 0, 1] + [0, 1, 0, 1] = [1, 1, 0, 0],
thus lowA(u2u4) = u2 = lowA(u2u3). Again we add
the column of u2u3 to the column of u2u4: [1, 1, 0, 0] +
[1, 1, 0, 0] = [0, 0, 0, 0]. Notice here the column value for
u2u3 is the value after matrix reduction. Therefore u2u4 is
not paired.

Similarly, we add the column of u1u4 and column of u1u3 to
column of u3u4 and get [0, 0, 0, 0]. Then u3u4 is not paired.
After Phase 1, matrix A is shown below. And we can obtain
the persistence pair: (u3, u1u3), (u2, u2u3), (u4, u1u4).

A u1u3 u2u3 u1u4 u2u4 u3u4
u1 1 1 1 0 0
u2 0 1 0 0 0
u3 1 0 0 0 0
u4 0 0 1 0 0

Recall that A encodes the relationship between all the sim-
plices in the ascending sequence. In the ascending se-
quence, the filter function for an edge uiuj is defined as
fa(uiuj) = max(f(ui), f(uj)). Thus we can infer the per-
sistence points from the persistence pairs: (t3, t3), (t2, t3),
(t4, t4). We remove the persistence points whose birth time
and death time are the same, and get the final persistence
point: (t2, t3).

Recall that a simplex is defined as positive if its correspond-
ing column is zero after reduction, and negative if its corre-

sponding column is not zero after reduction. So the positive
edges in the ascending sequence are u2u4 and u3u4, the
negative edges in the ascending sequence are u1u3, u2u3,
and u1u4.

2.2. Phase 2

Phase 2 is the matrix reduction for D. Notice that we define
lowD similar to lowA, and Phase 2 influences not only D
but also P (Cohen-Steiner et al., 2009). All the columns of
nodes and all the rows of edges are all zero in D. In P , all
the columns of nodes and all the rows of nodes have no im-
pact to the reduction process and pairing for 1-dimensional
topology. Therefore for simplicity, we delete these rows and
edges and obtain the condensed matrices P and D:

P u4u3 u4u2 u3u2 u4u1 u3u1
u1u3 0 0 0 0 1
u2u3 0 0 1 0 0
u1u4 0 0 0 1 0
u2u4 0 1 0 0 0
u3u4 1 0 0 0 0

D u4u3 u4u2 u3u2 u4u1 u3u1
u4 1 1 0 1 0
u3 1 0 1 0 1
u2 0 1 1 0 0
u1 0 0 0 1 1

From left to right, lowD(u4u3) = u3, lowD(u4u2) = u2,
lowD(u3u2) = u2 = lowD(u4u2). We add the column
of u4u2 to the column of u3u2: [1, 0, 1, 0] + [0, 1, 1, 0] =
[1, 1, 0, 0]. Then lowD(u3u2) = u3 = lowD(u4u3), and
we add column of u4u3 to column of u3u2: [1, 1, 0, 0] +
[1, 1, 0, 0] = [0, 0, 0, 0]. Therefore u3u2 is not paired. No-
tice that when we add column of u4u2 and column of u4u3
to column of u3u2 in D, we are also adding these columns
in P . Consequently the column of u3u2 in P will become:
[0, 0, 0, 1, 0] + [0, 0, 0, 0, 1] + [0, 1, 0, 0, 0] = [0, 1, 0, 1, 1].

Then we continue the matrix reduction algorithm,
lowD(u4u1) = u1, and lowD(u3u1) = u1 = lowD(u4u1).
Then we add column of u4u1 to column of u3u1:
[1, 0, 0, 1] + [0, 1, 0, 1] = [1, 1, 0, 0], lowD(u3u1) = u3 =
lowD(u4u3). Again we add column of u4u3 to column
of u3u1: [1, 1, 0, 0] + [1, 1, 0, 0] = [0, 0, 0, 0]. Therefore
u3u1 is not paired, and column of u3u1 in P becomes
[1, 0, 1, 0, 1]. Matrix D and P will therefore become:

P u4u3 u4u2 u3u2 u4u1 u3u1
u1u3 0 0 0 0 1
u2u3 0 0 1 0 0
u1u4 0 0 0 1 1
u2u4 0 1 1 0 0
u3u4 1 0 1 0 1
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D u4u3 u4u2 u3u2 u4u1 u3u1
u4 1 1 0 1 0
u3 1 0 0 0 0
u2 0 1 0 0 0
u1 0 0 0 1 0

Similar to the process to discover the persistence point,
negative edges and positive edges in Phase 1. We can find
that all the persistence pairs appear and disappear at the
same time, thus there is no persistence point. The positive
edges in the descending sequence are u3u2 and u3u1. The
negative edges in the descending sequence are u4u3, u4u2,
and u4u1.

Notice that before Phase 3, all the persistence points are
all 0-dimensional persistence points. In other words, they
just record the birth and death of connected components.
1-dimensional extended persistence pair will be discussed
in Phase 3, where positive edges in the descending filtration
will each be paired with an edge in the ascending filtration,
thus the saliency of loops can be measured.

2.3. Phase 3

Phase 3 is the reduction process of P . Only positive de-
scending edges (edges whose column in D is 0) will be
reduced, thus the value in D will not be influenced. Similar
to the definition of lowA in Phase 1, we define lowP (ei) as
the maximum row of edge ej for which P [ej , ei] = 1.

From left to right, we only consider the positive descending
edges. We find that lowP (u3u2) = u3u4, lowP (u3u1) =
u3u4 = lowP (u3u2). We add column of u3u2 to column
of u3u1: [0, 1, 0, 1, 1] + [1, 0, 1, 0, 1] = [1, 1, 1, 1, 0].

As a consequence, we can get matrix P and D after Phase3:

P u4u3 u4u2 u3u2 u4u1 u3u1
u1u3 0 0 0 0 1
u2u3 0 0 1 0 1
u1u4 0 0 0 1 1
u2u4 0 1 1 0 1
u3u4 1 0 1 0 0

D u4u3 u4u2 u3u2 u4u1 u3u1
u4 1 1 0 1 0
u3 1 0 0 0 0
u2 0 1 0 0 0
u1 0 0 0 1 0

And the extended persistence pair is (u3u4, u3u2),
(u2u4, u3u1). Notice that for a extended persistence pair,
the latter edge is the positive edge in the descending filtra-
tion, and the former edge is its paired edge in the ascending
filtration. i.e, in the extended persistence pair (u3u4, u3u2),
u3u2 is the positive edge in the descending filtration, while
u3u4 is the paired edge in the ascending filtration. Re-
call that for a certain edge, its filter value in the ascend-

ing sequence is defined as the maximum value of the fil-
ter value of its nodes: fa(u3u4) = max(f(u3), f(u4)) =
max(t3, t4) = t4. Similarly, fa(u2u4) = t4. And for a
certain edge in the descending filtration, its filter value is
defined as the minimum value of the filter value of its nodes:
fd(u3u2) = min(f(u3), f(u2)) = min(t3, t2) = t2. Sim-
ilarly, fd(u3u1) = t1. As a consequence, the extended
persistence point are (t4, t2) and (t4, t1) respectively.

After the whole matrix reduction algorithm, we can get
the ordinary persistence diagram for 0-dimensional topo-
logical structures (connected components): [(t2, t3)] and
the extended persistence diagram for 1-dimensional topo-
logical structures (loops): [(t4, t2), (t4, t1)]. To get the 0-
dimensional extended persistence diagram, the birth and
death of the whole connected component is also recorded,
that is, the minimum and the maximum filter value (t1, t4).
So the 0-dimensional extended persistence diagram is
[(t2, t3), (t1, t4)], as shown in Figure 1 (c).

3. Correctness of the Faster Algorithm
In this section, we provide complete proof of the correctness
of the faster algorithm. For convenience, we restate the
matrix reduction algorithms Alg. 1 and the proposed faster
algorithm Alg. 2. We also restate the main theorem 1.

Theorem 1. Algorithm 2 outputs the same extended persis-
tence diagram as Algorithm 1.

To prove Theorem 1, the core of our proof is to show that for
each positive descending edge, its corresponding pair found
by the new algorithm is equivalent to the pair resulting
from the matrix reduction algorithm. We prove this by
induction. As we go through all positive descending edges
in the descending filtration, we show that for each positive
edge, which creates a new loop, its extended persistence
pair from our algorithm is the same as the reduction result.

In Lemma 2, we prove that after reducing the D part of
the column of a given edge ei, i.e., when lowM (ei) ≤ m,
the remaining entries of ei in P constitute a unique loop in
{ei} ∪ T .

Algorithm 1 Matrix Reduction
1: Input: filter funtion f , graph G
2: Persistence Diagram PD = {}
3: M = build reduction matrix(f,G)
4: for j = 1 to 2m do
5: while ∃k < j with lowM (k) = lowM (j) do
6: add column k to column j
7: end while
8: add (f(lowM (j)), f(j)) to PD
9: end for

10: Output: Persistence Diagram PD
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Algorithm 2 A Faster Algorithm for Extended Persis-
tence Diagram

Input: filter funtion f of descending filtration, graph
G, filter function fa of ascending filtration
0-dim PD, Epos, Eneg = Union-Find(G, f )
Tree T = Eneg + all the nodes
1-dim PD = {}
for ej in Epos do

assume ej = uv, Pathu ⊆ T is the path from u to
r within the tree T , Pathv ⊆ T is the path from v
to r
Loop = Pathu ∪ Pathv − Pathu ∩ Pathv + ej
add (maxe∈Loopfa(e), f(ej)) to 1-dim PD
ek = argmaxe∈Loopfa(e)
T = T − {ek}+ {ej}

end for
Output: 0-dim PD, 1-dim PD

In Lemma 3 and Lemma 4, we prove that: (1) The lowest
entry of the reduced column, ej , is not paired by any other
previous edges, and thus will be paired with ei. Indeed, it
is the last edge in the loop w.r.t. the ascending ordering. (2)
The updating of the tree T = T − {ej} + {ei} is equiva-
lent to adding the reduced column of ei to all descending
columns with nonzero entry at row of ej . Although this
will affect the final reduced matrix, it will not change the
resulting simplex pairings.

In Lemma 5, we further prove inductively that in Phase 3,
the remaining entries of ei in P constitute a unique loop
in {ei} ∪ Ti−1. Here Ti is the tree after updating the first i
positive edges.

Finally, in Lemma 6, we prove that the highest filter value
and the lowest value exactly form the persistence point of
the loop.

Lemma 2. After Phase 2 (the reduction of descending ma-
trix D) and before Phase 3 (the reduction of permutation
matrix P ), for a positive edge λj , the set {κi|P [i, j] = 1}
stores the loop that λj and some of the former negative
edges form. Besides, it is the loop that λj gives birth to.

Proof. Denote the reduced matrix and its submatrices after

Algorithm 1 by M =

[
A P
0 D

]
. As is shown in (Edels-

brunner & Harer, 2010), matrix reduction algorithm can be
interpreted as computing the reduced matrix i.e., A = AV1,
D = DV2, P = PV2V3, where V1, V2 and V3 are invertible
and upper-triangular matrices.

For a positive edge λj , we observe that after Phase 2, its
column in D is set to zero. Here D[:, j] is denoted as the
j-th column of matrix D, and we have DV2[:, j] = D[:
, j] = 0. According to the definition of loop, the boundary

of λj is finally reduced to zero, so the set {λi|V2[i, j] = 1}
contains all the edges that form the loop which λj gives
birth to. Considering that (1) V2 is upper-triangular, thus
only columns of former edges will be added to the column
of λj . (2) All the columns of former positive edges in D
have been reduced to zero, thus λj will not be reduced by
positive edges. {λi|V2[i, j] = 1} contains the loop that λj
and some of the former negative edges form.

In fact, after Phase 2, P represents the matrix PV2. Re-
call that P stores the permutation that connects the two
sequences of simplices, i.e., P [i; j] = 1 iff κi and λj denote
the same simplex. Thus {κi|PV2[i, j] = 1} stores the same
component as {λi|V2[i, j] = 1}, that is the loop λj and
some of the negative edges form. It is the loop that λj gives
rise to.

In Algorithm 2, we first add all the negative edges and all the
nodes to form the original tree T . If we add a positive edge
λj to T , then a loop will appear. Considering that in the
graph T + {λj}, there is only one loop that λj gives birth
to, and it consists of λj and some of the negative edges that
appear before λj in the descending sequence. Therefore, it
is exactly the loop that set {κi|P [i, j] = 1} consists of after
Phase 2.

In the following lemmas, we try to show that: In Algo-
rithm 2, replacing the paired edge ek with the positive edge
ej every step has the same result with the same step in Phase
3 (matrix reduction for P ).

Lemma 3. In Algorithm 2, the process of replacing the
positive edge ej with its paired edge ek is equivalent to
adding the column of ej to all the columns whose row of ek
is one.

Proof. If we add the column of ej to all the later columns
whose row of ek is “one”, all the rows of ek in the later
columns will be zero. i.e., assume P [ek, el] = 1 1, then
after adding column of ej with column of el, P [ek, el] = 0.
The set {ei|P [ei, el] = 1} contains the loop that appear
before el (without ek) and ej , el.

Here we denote Tej = T − {ek}+ {ej}. In the graph Tej
+ {el}, there is only a loop. Therefore, it is exactly the loop
that set {ei|P [ei, el]} consists of.

For the former columns whose row of ek is “one”, i.e.,
P [ek, el] = 1. This means lowP (el) > ek

2, then adding
column ej to el will not change the extended persistence pair
because lowP (el) will not be affected by previous edges
and thus remain the same.

1Here, for simplicity, we use ek and el to represent their in-
dices.

2If lowP (el) = ek, ek will be paired in the former columns,
thus dissatisfies the assumption that lowP (ej) = ek.
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Lemma 4. Adding the column of ej to all the columns
whose row of ek is one in Lemma 3 has the same extended
pair as the matrix reduction algorithm in Phase 3.

Proof. Assume P [ek, el] = 1, for simplicity, we de-
fine lowP (el) as the maximum row index ei for which
P [ei, el] = 1. If lowP (el) = ek, then in the matrix reduc-
tion algorithm, we should add column ej to el, thus the two
algorithms are exactly the same. If lowP (el) 6= ek, which
means lowP (el) > ek, then adding column ej to el will not
change the extended persistence pair because lowP (el) will
not be affected by previous edges and thus remain the same.
As a consequence, adding the column of ej to all the later
columns whose row of ek is one in Lemma 3 has the same
extended pair with the matrix reduction algorithm in Phase
3. Together with Lemma 3, adding the column of ej to all
the columns whose row of ek is one in Lemma 3 has the
same extended pair with the matrix reduction algorithm in
Phase 3.

From Lemma 3 and Lemma 4, we manage to prove that in
Algorithm 2, replacing the paired edge ek with the corre-
sponding positive edge ej is equivalent to Phase 3 (matrix
reduction for P ). Combining it with Lemma 2, we can
prove that for every positive edge, to update T in the faster
algorithm leads to the same extended pair with the matrix
reduction algorithm. We have proved that in a single step,
the two algorithms are equivalent. Then we should prove
inductively that the whole process of the Algorithm 2 is
equivalent to the matrix reduction Algorithm 1.

Lemma 5. In Algorithm 2, the process to update the tree T
is equivalent to the matrix reduction process in Phase 3.

Proof. First, in the original lemmas, we have proved that
adding a positive edge to the original tree T and updating
the tree leads to the same result as the matrix reduction
algorithm.

We then assume that after adding the first j − 1 positive
edges, the process of updating the tree can output the same
results as the matrix reduction algorithm. Denote the tree
after updating the first j − 1 positive edges as Tj−1.

When adding the j-th positive edge ej . Similar to the prove
in Lemma 2, we can prove that the set {ei|P [ei, ej ] =
1} stores the loop that ej and Tj−1 form. And similar to
the prove in Lemma 3 and Lemma 4, we can prove that
replacing the paired edge ek with the newly added positive
edge ej leads to the same extended persistence pair with the
matrix reduction algorithm in Phase 3. As a consequence,
the process of updating the tree to Tj can lead to the same
results as the reduction algorithm. Then Lemma 5 is proved
inductively.

In the above Lemmas, we have proven that to update the
tree T in the faster algorithm output the same result as the
matrix reduction algorithm. Then we should confirm that
the extended point given by Algorithm 2 is correct.
Lemma 6. In a loop, the highest filter value and the lowest
filter value form its extended persistence point.

Proof. For a positive edge ej , the edge it pairs in matrix
P is the lowest one in its column, representing the lat-
est one in the ascending filtration. Notice that in the as-
cending filtration, we define the filter value of an edge
fa(uv) = max(f(u), f(v)), thus it has the biggest filter
value in the loop. ej is the latest born edge in the descend-
ing filtration, Recall that we define the filter value of an edge
in the descending filtration as fd(uv) = min(f(u), f(v)),
thus it contains the lowest filter value in the loop. As a
result, the extended persistence point will be the highest and
lowest filter value of the loop.

From Lemma 6, we manage to prove that the persistence
point of the positive edge ej is exact the value provided in
Algorithm 2. As a consequence, we can justify Theorem 1:
Algorithm 2 outputs the same extended persistence diagram
as Algorithm 1.

4. Experiment
4.1. Details of Real-World Datasets

The real-world datasets in this paper include:

1. Citation network: PubMed (Sen et al., 2008) is a stan-
dard benchmark describing citation network where
nodes denote scientific papers and edges are citations
between them.

2. Amazon networks: Photo and Computers (Shchur et al.,
2018) are datasets related to Amazon shopping records
where nodes represent products and edges imply that
two products are frequently brought together.

3. PPI networks: 24 Protein-protein interaction net-
works(Zitnik & Leskovec, 2017) where nodes denote
protein and edges represent the interaction between
proteins. Each graph has 3000 nodes with average
degree 28.8. The dimension of node feature vector is
50.

The detailed statistics of these data is shown in Table 1.
Because PPI networks contain multiple graphs, we do not
add it in the Table.

4.2. Details of Experiment Setting

Data split. We follow the experimental setting from (Chami
et al., 2019; Zhu et al., 2020) and use 5% (resp. 10%)
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Figure 3. The t-distributed stochastic neighbor embedding (t-SNE) projection of the persistence images on PubMed. In the figure, the red
and blue marks denote the persistence images generated by the negative edge and positive edges respectively.

(a) (b)

(c) (d)

Figure 4. We sample two positive edges from the visualization of PubMed in Figure 3. We draw their subgraphs and diagrams. (a) and (c)
represent the sample in the brown box. (b) and (d) represent the sample in the purple box.
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Table 1. Statistics of benchmark datasets

DATASET FEATURES NODES EDGES EDGE DENSITY

PUBMED 500 19717 44338 0.0002
PHOTO 745 7487 119043 0.0042
COMPUTERS 767 13381 245779 0.0027

of existing links as positive samples of the validation set
(resp. test set). And equal number of non-existent links are
sampled as negative samples of the validation and test set.
The remaining 85% existing links are used as the positive
training set. In every epoch, we randomly choose the same
number of remaining non-existent links as the negative train-
ing set. We report the results on test set when the models
achieve the best performance on the validation set.

Training setting. On synthetic experiments, we run all
the methods on each graph 10 times and report the mean
average area under the ROC curve (ROCAUC) scores as the
result. On real-word benchmarks, we run all the methods
on each graph 50 times and report the mean and standard
deviation of ROCAUC scores as the result. All methods use
the following training strategy: the same training epochs
(2000), and the same early stopping on validation set with
200 patience epochs. The only exception is SEAL; due to
its slow training speed and fast convergence, we only train
200 epochs.

Following (Chami et al., 2019; Zhu et al., 2020), during
training, we remove positive validation and test edges from
the graph. Cross Entropy Loss is chosen as the loss function
and Adam is adopted as the optimizer with the learning rate
set to 0.01 and weight-decay set to 0. For fairness, we set
the number of node embeddings of the hidden layer and the
final layer to be the same (100 and 16) for all networks. The
backbone GNN in our model is a classic 2-layer GCN with
one hidden and one output layer. All persistence images
in the experiments are 25-dimension. All the activation
function used in the graph neural networks is RELU and all
the activation function used in Fermi-Dirac decoder (needed
in TLC-GNN) is Leakyrelu with negative slope set to 0.2.

Details on evaluation of algorithm efficiency. To evalu-
ate the efficiency of the proposed faster algorithm (Section
5.3 in the main paper), we use the following setting. For
the sparse graph PubMed, we compute 0-dimensional and
1-dimensional extended persistence diagrams on all the ex-
isting edges. No edges are removed. For large and dense
graphs like Photo and Computer, we compute 0-dimensional
and 1-dimensional extended persistence diagrams on the
first 1000 edges in the default edge list. We run the al-
gorithms on each graph 10 times and report the average
seconds per edge as the result. We use a cluster with two
Intel Xeon Gold 5128 processors and 192GB RAM to run

Table 2. Experimental results(s) on the chosen of hop distance

k 1 2

PubMed 96.79 97.03
PPI 83.92 84.11

the two algorithms without multi-threading.

4.3. Further experiments

In this paragraph, we add experiments to evaluate the effect
of k (the hop distance to form the enclosing subgraph).

Considering that on large and dense graphs such as Photo
and Computers, it costs immensely to compute the persis-
tence image when k is 2, and on all the datasets, computing
persistence image when k is larger than 3 takes immense
computational cost, we evaluate the effect of k on PubMed
and a sampled graph in PPI. As shown in Table 2, k = 2 is
generally a good choice in these two datasets. However, it
cost much more to compute the persistence images in PPI
networks when k = 2, so we finally set k = 1 in PPI datasets.

4.4. Visualization of Extended Persistence

We provide qualitative examples to further illustrate how
topological features can help differentiate edges/non-edges.

We use the t-distributed stochastic neighbor embedding (t-
SNE) (Van der Maaten & Hinton, 2008) to map the 25-dim
persistence images of samples to a 2D plane, as shown in
Figure 3. The persistence images here are created using the
Ollivier-Ricci curvature (Ni et al., 2018) as the filter function.
For each graph, we randomly choose 1500 positive edges
and 1500 negative edges. Figure 3 shows the t-SNE results
of PubMed. The red and blue marks represent negative
and positive edges respectively. Despite some exceptions,
negative edges and positive edges are well separated in terms
of persistent homology features.

To further understand the data, we choose 2 positive sam-
ples from the t-SNE plot of PubMed (Figure 3) and draw
their local enclosing graphs and persistence diagrams. In
the t-SNE plot, positive samples form an elongated linear
structure. We intentionally sample the two samples from the
two ends of the structure. One from the center of the brown
box. The other from the center of the purple box. The local
enclosing graph and diagram of the first sample is drawn
in Figure 4 (a) (c). The graph and diagram of the second
sample is drawn in Figure 4 (b) (d).

In the graph, the red nodes denote the target nodes, while
the other nodes are black. In the persistence diagram, the
red and blue markers represent the 0-dimensional and 1-
dimensional persistence points respectively. Notice that we
add a random jitter to each persistence point so that we can
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observe the overlapped persistence points.

For the sample in the brown square, we observe that in
its enclosing subgraph, there are several loops passing the
target nodes. They correspond to 1D persistence points with
death time zero in the diagram. The only loop that does not
pass the target nodes has the same birth and death time, thus
is not shown in the persistence diagram.

For the sample in the purple square, we observe that there
exist many loops in the generated subgraph, and the distri-
bution of the 1-dimensional persistence points mainly con-
centrate on the top right of the diagram. In addition, more
0-dimensional extended persistence points whose birth time
is smaller than its death time appear. We observe (1) the den-
sity of 1-dimensional extended persistence points gradually
increase from the bottom to the upper-right of the diagram.
(2) more 0-dimensional extended persistence points from
the ascending filtration appear.

Discussion. From Figure 3 and Figure 4, we observe the fol-
lowing phenomena. Persistence images effectively differen-
tiate positive and negative edges in all graphs. While almost
all negative samples form a tight cluster, positive samples
form clusters like pieces of 1-manifolds. This makes us
wonder whether these clusters can be parameterized by a
latent parameter. The selected two samples further suggest
the possibility of this hypothesis. The brown and purple
samples represent the two extreme of the positive cluster in
PubMed. The share common characteristics, e.g., both have
rich loops (compared to their number of nodes). Meanwhile,
they range from small subgraphs with less loops to dense
subgraphs with many loops. To investigate further on these
positive sample clusters is an interesting research direction
in the future.
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