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Supplementary Material

This supplemental material first provides the proof of lemma and theorem 1, and then gives the derivation of equation (20).
Finally, degeneration problem is discussed and we provide a pre-training trick to solve it.

A. Proof of Lemma 1

Suppose B∗ is an optimal solution to (10), which satisfies 〈W,B∗〉 ≤ D and
m∑
i=1

b∗ij =
m∑
i=1

b∗ji = p(X = xj), 1 ≤ j ≤ m.

Since ∆ is symmetric, wij = ∆(xi, xj) = ∆(xj , xi) = wji holds for any 1 ≤ i, j ≤ m, which means W = WT . Thus,
we have

〈
W,B∗T

〉
=
〈
WT ,B∗T

〉
= 〈W,B∗〉 ≤ D. (A.1)

Denote the (i, j)-th element of B∗T by b′ij , it follows that b′ij = b∗ji, so that

m∑
i=1

b′ij =

m∑
i=1

b∗ji = p(X = xj)

m∑
i=1

b′ji =

m∑
i=1

b∗ij = p(X = xj).

(A.2)

Then, it is easy to see that B∗T is also a feasible solution to (10). Meanwhile, it can be justified that B∗T is also an optimal
solution to (10) since the objective satisfies

GpX
(B∗T ) = 2H(X) +

m∑
i=1

m∑
j=1

b′ij log b′ij

= 2H(X) +

m∑
i=1

m∑
j=1

b∗ji log b∗ji

= GpX
(B∗).

(A.3)

Next, denote B0 := (B∗+B∗T )/2, we show that GpX
(B0) = GpX

(B∗). First, B0 is a feasible solution of (10) as it
satisfies the constraints

〈W,B0〉 =

〈
WT ,

B∗+B∗T

2

〉
=
〈W,B∗〉+

〈
W,B∗T

〉
2

≤ D

m∑
i=1

b0ij =

m∑
i=1

b∗ij + b′ij
2

=
1

2

(
m∑
i=1

b∗ij +

m∑
i=1

b′ij

)
= p(X = xj)

m∑
i=1

b0ji =

m∑
i=1

b∗ji + b′ji
2

=
1

2

(
m∑
i=1

b∗ji +

m∑
i=1

b′ji

)
= p(X = xj).

(A.4)
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Meanwhile, the objective function GpX
(B0) can be expressed as

GpX
(B0) = 2H(X) +

m∑
i=1

m∑
j=1

b0ij log b0ij

= 2H(X) +

m∑
i=1

m∑
j=1

b∗ij + b′ij
2

log
b∗ij + b′ij

2
.

(A.5)

Notice that the function f(x) = x log x is strictly convex in (0, 1). Thus we have

b∗ij + b′ij
2

log
b∗ij + b′ij

2
≤ 1

2

(
b∗ij log b∗ij + b′ij log b′ij

)
, (A.6)

where the equality holds if and only if b∗ij = b′ij . Then, it follows that

GpX
(B0) = 2H(X) +

m∑
i=1

m∑
j=1

b∗ij + b′ij
2

log
b∗ij + b′ij

2

≤ 1

2

2H(X) +

m∑
i=1

m∑
j=1

b∗ij log b∗ij

+

2H(X) +

m∑
i=1

m∑
j=1

b′ij log b′ij


=

1

2

[
GpX

(B∗) + GpX
(B∗T )

]
= GpX

(B∗).

(A.7)

Recall that B∗ is an optimal solution, hence GpX
(B∗) ≤ GpX

(B0), which together with (A.7) leads to GpX
(B0) =

GpX
(B∗). Thus, B0 is an optimal solution and for any 1 ≤ i, j ≤ m we have

b∗ij + b′ij
2

log
b∗ij + b′ij

2
=

1

2

(
b∗ij log b∗ij + b′ij log b′ij

)
, (A.8)

Furthermore, since f(x) = x log x is strictly convex in (0, 1), we have b′ij = b∗ij for any 1 ≤ i, j ≤ m and hence B∗ = B∗T ,
which finally results in Lemma 1.

B. Proof of Theorem 1
Let X be a memoryless stationary source, Y = (X1, X2, ..., Xt) be a source sequence of length t, L and Q be the encoder
and decoder, respectively, with which the compressed representation is Z = L(Y ) and the output of the encoder is
Ŷ = Q(Z). Since Ft(D, 0) defined in (15) is non-increasing on D, in the case of squared-error distortion, we consider its
inverse form for convenience as

min
L,Q

1

t
E
[∥∥∥Y − Ŷ

∥∥∥2]
s.t. Z = L(Y ), Ŷ = Q(Z),

H(Z) ≤ tR,d(pY , pŶ ) ≤ 0,

(B.1)

which minimizes the MSE distortion under constraints on the average bit-rate and distribution divergence (perception
quality).

For convenience in the sequel analysis, we define the joint distribution matrix of Y and Z as L ∈ Rm×n with the (i, j)-th
element being li,j = pY,Z(yi, zj). Similarly, we define the joint distribution matrix of Ŷ and Z as Q ∈ Rm×n with the
(i, j)-th element being qi,j = pŶ ,Z(yi, zj). In fact, L and Q are the joint distribution matrices of the encoder and decoder,
respectively.

Next we show that for any optimal encoder-decoder pair (L∗, Q∗) to (B.1) with joint distribution matrices (L∗,Q∗), the
encoder-decoder pairs with joint distribution matrices (L∗,L∗) and (Q∗,Q∗) are also optimal to(B.1).
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First, for an optimal encoder-decoder pair (L∗, Q∗) to (B.1), we have H(L∗(Y )) ≤ tR. Let the alphabet of Y be
{y1,y2, ..., ym} and the alphabet of Z be {z1,z2, ..., zn}, and suppose that p(L∗(Y ) = zj) = hj , 1 ≤ j ≤ n. Then we
consider the following formulation

min
L,Q

1

t
E[
∥∥∥Y − Ŷ

∥∥∥2]

s.t. Z = L(Y ), Ŷ = Q(Z), d(pY , pŶ ) ≤ 0,

pZ(zj) = hj , 1 ≤ j ≤ n.

(B.2)

It is easy to see that the feasible region of problem (B.2) is a subset of the feasible region of problem (B.1) and (L∗, Q∗) is
optimal to both (B.1) and (B.2). Thus any optimal solution of problem (B.2) must be an optimal solution of problem (B.1).
Therefore, to justify that the encoder-decoder pairs with joint distribution matrices (L∗,L∗) and (Q∗,Q∗) are optimal to
(B.1), it is enough to justify that (L∗,L∗) and (Q∗,Q∗) are optimal to (B.2).

Obviously, the constraint pZ(zj) = hj in (B.2) can be expressed as
∑
i

li,j =
∑
i

qi,j = hj . Besides, since Y and

Ŷ have the same distribution under perfect perception constraint, the constraint d(pY , pŶ ) ≤ 0 can be expressed as∑
j

li,j =
∑
j

qi,j = pY (yi). Now, we rewrite the objective function of (B.2) as

1

t
E[
∥∥∥Y − Ŷ

∥∥∥2 =
1

t

∑
y,ŷ

pY,Ŷ (y, ŷ)‖y − ŷ‖2

=
1

t
[
∑
y

pY (y)yT y +
∑
ŷ

pŶ (ŷ)ŷT ŷ − 2
∑
y,ŷ

pY,Ŷ (y, ŷ)yT ŷ],

(B.3)

where
∑
y
pY (y)yT y is constant for fixed source, and

∑̂
y

pŶ (ŷ)ŷT ŷ =
∑
y
pY (y)yT y for the perfect perception constraint.

Hence, minimizing the objective function of (B.2) is to equivalent to maximizing
∑
y,ŷ

pY,Ŷ (y, ŷ)yT ŷ, for which we have

∑
y,ŷ

pY,Ŷ (y, ŷ)yT ŷ =
∑
y,ŷ,z

pY,Ŷ ,Z(y, ŷ, z)yT ŷ

(a)
=
∑
y,ŷ,z

pZ(z)pY |Z(y|z)pŶ |Z(ŷ|z)yT ŷ

=
∑
j

hj [
∑
i

pY |Z(yi|zj)yiT
∑
k

pŶ |Z(ŷk|zj)ŷk]

=
∑
j

hjE(Y |Z = zj)
TE(Ŷ |Z = zj)

(B.4)

where in (a) we used the property of Markov chain Y → Z → Ŷ that Y and Ŷ are independent under condition Z. Hence,
using the joint distribution representation (L,Q) of the encoder-decoder pair (L,Q), the problem (B.2) can be equivalently
reformulated as

max
L,Q

∑
j

hjE(Y |Z = zj)
TE(Ŷ |Z = zj)

s.t.
∑
i

li,j =
∑
i

qi,j = hj , 1 ≤ j ≤ n∑
j

li,j =
∑
j

qi,j = pY (yi), 1 ≤ i ≤ m

0 ≤ li,j , qi,j ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(B.5)

Accordingly, the joint distribution matrix pair (L∗,Q∗) corresponding to the optimal encoder-decoder pair (L∗, Q∗) is an
optimal solution to (B.5). Recall that L is the probability matrix of pY,Z and Q is the probability matrix of pŶ ,Z , hence
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E(Y |Z = zj) and E(Ŷ |Z = zj) are functions of L and Q. Define

fj(L) := E(Y |Z = zj) =
∑
i

li,j
hj

yi, (B.6)

fj(Q) := E(Y |Z = zj) =
∑
i

qi,j
hj

yi, (B.7)

and

F (L,Q) : =
∑
j

hjE (Y |Z = zj)
T E

(
Ŷ |Z = zj

)
=
∑
j

hjfj(L)T fj(Q).
(B.8)

Next, we show (L∗,L∗) and (Q∗,Q∗) are also optimal solutions to (B.5).

Because (L∗,Q∗) is an optimal solution to (B.5), the optimal objective value of (B.5) is F (L∗,Q∗). Since the constraints of
L and Q are the same, it is easy to see that (L∗,L∗) and (Q∗,Q∗) are both feasible solutions to (B.5). Meanwhile, we have

F (L∗,L∗) =
∑
j

hjfj(L
∗)T fj(L

∗) =
∑
j

hj‖fj(L∗)‖2, (B.9)

F (Q∗,Q∗) =
∑
j

hjfj(Q
∗)T fj(Q

∗) =
∑
j

hj‖fj(Q∗)‖2. (B.10)

Summing up (B.9) and (B.10) yields

F (L∗,L∗) + F (Q∗,Q∗) =
∑
j

hj

(
‖fj(L∗)‖2 + ‖fj(Q∗)‖2

)
≥ 2

∑
j

hj ‖fj(L∗)‖ ‖fj(Q∗)‖

(b)

≥ 2
∑
j

hj |fj(L∗)T fj(Q∗)|

(c)

≥ 2
∑
j

hjfj(L
∗)T fj(Q

∗)

= 2F (L∗,Q∗),

(B.11)

where in (b) we used the Cauchy inequality and (c) is due to the non-negativity of hj . Since (L∗,Q∗) is an optimal solution
to (B.5), F (L∗,Q∗) ≥ F (L,Q) holds for any (L,Q) under the constraint of (B.5), which together with (B.11) implies
F (L∗,L∗) = F (Q∗,Q∗) = F (L∗,Q∗). Therefore, (L∗,L∗) and (Q∗,Q∗) are also optimal solutions to (B.5)

Thus, for any source length t, there exist optimal solutions to (B.5) satisfying

pY,Z = pŶ ,Z , pY |Z = pŶ |Z , (B.12)

which finally results in Theorem 1.
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(a) MSE loss versus training epoch (b) Visual comparison of the output

Figure 1. Illustration of a typical degeneration case.

C. Derivation of equation (20)
Equation (20) can be straightforwardly derived as

1

t
E[
∥∥∥Y − Ŷ

∥∥∥2 =
∑
y,ŷ

pY,Ŷ (y, ŷ)‖y − ŷ‖2

(d)
=

1

t

∑
y,ŷ,z

pY,Ŷ ,Z(y, ŷ, z)
∥∥∥y − E[Y |z]+E[Ŷ |z]− ŷ

∥∥∥2
(e)
=

1

t

∑
y,z

pY,Z(y, z)‖y − E[Y |z]‖2 +
1

t

∑
ŷ,z

pŶ ,Z(ŷ, z)
∥∥∥E[Ŷ |z]− ŷ

∥∥∥2
(f)
=

2

t
E
[
‖Y − E[Y |Z]‖2|Z

]
,

(C.1)

where (d) is due to E[Y |Z] = E[Ŷ |Z], (e) is due to∑
y

pY |Z(y|z)(y − E[Y |Z]) =
∑
y

pY |Z(y|z)y − E[Y |Z]

= E[Y |Z]− E[Y |Z] = 0

(C.2)

∑
ŷ

pŶ |Z(ŷ|z)(ŷ − E[Ŷ |Z]) =
∑
ŷ

pŶ |Z(ŷ|z)ŷ − E[Ŷ |Z]

= E[Ŷ |Z]− E[Ŷ |Z] = 0

(C.3)

and (f) is due to the same distribution of Y and Ŷ .

D. Degenerate problem
Figure 1 shows a degeneration case in training G2, where the MSE of G2 converges to a value deviates largely from the
2-fold MSE of G1. From Fig. 7(b), while the output numbers of G1 are correct, those of G2 are incorrect though more clear.
It means that the bit stream from E contains enough information for correctly reconstructing the numbers, but the trained
model G2 tends to generate numbers randomly. This problem is typically encountered in adversarial training, due to that the
the alternating training procedure converges to a poor point. To address this problem, we pre-train the discriminator J to
discriminate between (xi, E(xi)) and (xj , E(xi)) with i 6= j, where xi and xj are samples of X . Intensive experiments
show that this strategy can effectively reduce the occurrence of the degeneration problem.


